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1 Group
1.1 Monoids
We call a mapping S×S → S a law of composition. The image of the pair (x, y) is called their product
or sum.
Let S be a set with a law of composition, and x, y, z be elements of S. Then we can form their product
in the ways: (xy) z or x (yz). If (xy) z = x (yz) for all x, y, z ∈ S, then the law of composition is
associative.
We call the element e of S is unit element if e such that ex = x = xe for all x ∈ S. When the law
of composition is additive, the unit element is denoted by 0 and is called zero element.And the unit
element is unique, so if e′ is another unit element, we have e = ee′ = e′.

Def 1. A monoid is a set G, with a law of composition which is associative, and having a unit
element(in particular, G is not empty).

For instance, we can consider maps f : S × S → T and g : A × B × C → D. Commutativity
means f (x, y) = f (y, x) for all x, y ∈ S, and associativitymeans that (ab) c = a (bc) for all a ∈ A, b ∈
B, c ∈ C. And if the law of composition of G is commutative, we also call that G is commutative or
abelian.

Prop 1. Let G be a commutative monoid, and x1, · · · , xn elements of G. Let ψ be a bijection

of the set of integers (1, · · · , n) onto itself Then
n∏
ν=1

xψ(ν) =

n∏
ν=1

xν .

Proof. We can prove it by induction. And we only need to know for all x1, · · · , xn
n∏
1

xψ(ν) =
k∏
1

xψ(ν) · xψ(ν) ·
n−k∏
1

xψ(k+ν)

=

k∏
1

xψ(ν) ·
n−k∏
1

xψ(k+ν) · xψ(k)

Cor 1. Let G be a commutative monoid, I be a set, and let f : I → G be a mapping such that
f (i) = e for almost all i ∈ I. Let I0 be the subset of I consisting of those i such that f (i) ̸= e.
Then the product

∏
i∈I

f (i) is defined as
∏
i∈I0

f (i). In particular, the empty product is equal to

e.(If G is additive, the empty sum is equal to 0)

Cor 2. Let I, J be two sets, and f : I × J → G a mapping into a commutative monoid which

takes the value e for almost all pairs (i, j), we have
∏
i∈I

∏
j∈J

f (i, j)

 =
∏
j∈J

[∏
i∈I

f (i, j)

]
.

If S, S′ are two subsets of a monoidG, then we define SS′ to be the subset consisting of all elements
xy, with x ∈ S and y ∈ S′. And inductively, we can define the product od a finite number of subsets,
and we have associativity.

Def 2. A submonoid of G is a subset H of G containing the unit element, and such that if
x, y ∈ H then xy ∈ H(We say that H is closed under the law of composition). It is clear that
H is also a monoid.



1.2 Group
Def 3. A group G is a monoid, such that for every element x ∈ G there exists an element
y ∈ G such that xy = yx = e. Such an element y is called an inverse for x. Similar to
unit element, the inverse is also unique, because if y′ is also an inverse for x, then y′ = y′e =
y′ (xy) = (y′x) y = ey = y. We denote this inverse by x−1 (or −x when the law of composition
is additive).

We could also define left units and left inverses obviously. And it's easily to prove that these are also
units and inverses respectively under suitable conditions. We can prove a set with an associative law of
compositionG is a group ifG has a left unit for the law and a left inverse for every elements. Let a ∈ G
and b ∈ G be such that ba = e, then bab = eb = b. Multiplying on the left by a left inverse for b yields
ab = e, in other words, b is also a right inverse for a, and a is a left inverse for b.

e.g. 1. Let S be a non-empty set, and G be the set of bijective mappings of S onto itself.
Then G is a group, the law of composition being ordinary composition of mappings. The unit
element of G i the identity map of S, and the other group properties are trivially verified. The
elements of G are called permutations of S. We also denote G by Perm(S).

e.g. 2. Let k be a field and V a vector space over k. Let GL (V ) denote the set of invertible
k−linear maps of V onto itself. Then GL (V ) is a group under composition of mappings.
Similarly, let k be a field and let GL (n, k) be the set of invertible n×n matrices with components
in k. Then GL (k) is a group under the multiplication of matrices. For n ≥ 2, this group is not
commutative.

e.g. 3. (Direct product)
Let G1, G2 be groups. Let G1×G2 be the direct product as sets, so G1×G2 is the set of all pairs
(x1, x2) with xi ∈ Gi. We define the law of composition componentwise by (x1, x2) (y1, y2) =
(x1y1, x2, y2). Then G1 ×G2 is a group, whose unit element is (e1, e2) (where ei ∈ Gi).

Def 4. A subgroup H of group G is a subset of G containing the unit element, and such that
H is closed under the law of composition and inverse(on the other hand, it’s a submonoid, such
that if x ∈ H then x−1 ∈ H). A subgroup is called trivial if it only consists of the unit element.

Def 5. Let G be a group and S a subset of G. We say that S generates G, or S is a set of
generators for G, if every element of G can be expressed as a product of elements of S or
inverses of elements of S. S generates G if and only if the smallest subgroup of G containing S
is G itself. And we write G = ⟨S⟩ if G is generated by S.

LetG,G′ be monoids. Amonoid-homomorphism ofG intoG′ is a mapping f : G→ G′ such that
f (xy) = f (x) f (y) for all x, y ∈ G, and mapping the unit element G into that of G′. And if G,G′ are
groups, it's a group-homomorphism.
Let f : G → G′ be a group-homomorphism. Then f

(
x−1

)
= f (x)−1. Because if e, e′ are the unit

elements of G,G′ respectively, then e′ = f (e) = f
(
xx−1

)
= f (x) f

(
x−1

)
. Let G,G′ be monoids. A

homomorphism f : G→ G′ is called an isomorphism if there exists a homomorphism g : G′ → G such
that f ◦ g and g ◦ f are the identity mappings. It's trivially verified that f is an isomorphism if and only
if f is bijective. And it's denoted byG ≃ G′. IfG = G′, we say that isomorphism is an automorphism.
A homomorphism of G into itself is also called an endomorphism.
Let f : G → G′ and g : G′ → G′′ be two group-homomorphisms. Then the composite map g ◦ f is a
group-homomorphism. If f, g are isomorphisms then so is g ◦ f . Furthermore f−1 : G′ → G is also an
isomorphism. In particular, the set of all automorphisms of G is itself a group, denoted by Aut (G).
Let f : G→ G′ be a group-homomorphism and e, e′ be the respective unit elements ofG,G′. We define
the kernel of f to be the subset of G consisting of all x such that f (x) = e′. H is closed under the
inverse mapping. Let x ∈ H , then f

(
x−1

)
f (x) = f (e) = e′. Since f (x) = e′, we have f

(
x−1

)
= e′,

whence x−1 ∈ H . Let H ′ be the image of f . Then H ′ is a subgroup of G′, because it contains e′, and



if f (x) , f (y) ∈ H , thenf (xy) = f (x) f (y) lies also in H ′.f
(
x−1

)
= f (x)−1 is in H ′, hence H ′

is a subgroup of G′. The kernel and image of f are denoted by Kerf and Imf . A homomorphism
f : G → G′ which establishes an isomorphism between G and its image in G′ will also be called an
embedding.

Prop 2. A homomorphism whose kernel is trivial is injective.
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