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PREFACE 

THESE lectures were delivered at  the University of Virginia in December 
1963 under the sponsorship of the Page-Barbour Lecture Foundation. 
They present some topics from the beginnings of topology, centering 
about L. E. J. Brouwer’s definition, in 1912, of the degree of a mapping. 
The methods used, however, are those of differential topology, rather 
than the combinatorial methods of Brouwer. The concept of regular 
value and the theorem of Sard and Brown, which asserts that every 
smooth mapping has regular values, play a central role. 

To simplify the presentation, all manifolds are taken to be infinitely 
differentiable and to be explicitly embedded in euclidean space. A small 
amount of point-set topology and of real variable theory is taken for 
granted. 

I would like here to express my gratitude to David Weaver, whose 
untimely death has saddened us all. His excellent set of notes made this 
manuscript possible. 

J. W. M. 
Princeton, New Jersey 
March 1965 
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Q1. SMOOTH MANIFOLDS 

AND SMOOTH MAPS 

FIRST let us explain some of our terms. Rk denotes the k-dimensional 
euclidean space; thus a point x E Rk is an k-tuple x = (xi, . . . , xk) of 
real numbers. 

Let U C Rk and V C R' be open sets. A mapping f from U to V 
(written f : U .+ V )  is called smooth if all of the partial derivatives 
ay/ax,, . - - ax, exist and are continuous. 

More generally let X C Rk and Y C R' be arbitrary subsets of 
euclidean spaces. A map f : X ---f Y is called smooth if for each x E X 
there exist an open set U C Rk containing x and a smooth mapping 
F : U --f R 1  that coincides with f throughout U A X .  

If f : X + Y and g : Y -+ 2 are smooth, note that the composition 
g o f : X + 2 is also smooth. The identity map of any set X is auto- 
matically smooth. 

DEFINITION. A map f : X --f Y is called a di$eomorphisnz if f carries X 
homeomorphically onto Y and if both f and f-' are smooth. 

We can now indicate roughly what diferential topology is about by 
saying that it studies those properties of a set X C Rh which are invariant 
under diffeomorphism. 

We do not, however, want to look a t  completely arbitrary sets X .  
The following definition singles out a particularly attractive and useful 
class. 

DEFINITION. A subset ilf C Rk is called a smooth inanifold of dimension 
m if each x E Af has a neighborhood W A M that is diffeomorphic to 
an open subset U of the euclidean space R". 

Any particular diffeomorphism g : U --f W A Af is called a para- 
metrixation of the region W A M .  (The inverse diffeomorphism 
W A AI + U is called a system of coordinates on W A M . )  
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t 1 Rm 

Figure 1 .  Parametrization of a region in I I f  

Sometimes we will need to look a t  manifolds of dimension zero. By 
definition, M is a manifold of dimension zero if each x E M has a neigh- 
borhood W n M consisting of x alone. 

EXAMPLES. The unit sphere S2, consisting of all (2, y ,  z )  E R3 with 
x2 + y2 + z2 = 1 is a smooth manifold of dimension 2. In  fact the 
diff eomorphism 

( x ,  Y )  + ( x ,  Y ,  d1 - x2 - Y", 
for x2 + y2 < 1, parametrizes the region z > 0 of S2. By iritcrchanging 
the roles of x, y ,  z, and changing the signs of the variables, we obtain 
similar parametrizations of the regions x > 0, y > 0,  x < 0,  y < 0, 
and z < 0. Since these cover S2, it follows that S2 is a smooth manifold. 

. , x,,) 
with x: = 1 is a smooth manifold of dimension n - 1. For example 
So C R' is a manifold consisting of just two points. 

A somewhat wilder example of a smooth manifold is given by the 
set of all (x ,  y )  E R2 with x # 0 and y = sin(l/x). 

More generally the sphere Sn-' C R" consisting of all (xl, 

TANGENT SPACES AND DERIVATIVES 

To define the notion of derivative df ,  for a smooth map f : M + N 
of smooth manifolds, we first associate with each x E M C Rk a linear 
subspace T M ,  c Rk of dimension m called the tangent space of dd a t  x. 
Then df ,  will be a linear mapping from T M ,  to TN,,  where y = f ( x ) .  
Elements of the vector space T M ,  are called tangent vectors to llil a t  x.  

Intuitively one thinks of the m-dimensional hyperplane in Rk which 
best approximates 114 near x; then T M ,  is the hyperplane through the 

origin that is parallel to  this. (Compare Figures 1 and 2.) Similarly 
one thinks of the nonhomogeneous linear mapping from the tangent 
hyperplane a t  x to  the tangent hyperplane a t  y which best approxi- 
mates f .  Translating both hyperplanes to the origin, one obtains dfz .  

Before giving the actual definition, we must study the special case 
of mappings between open sets. For any open set U C Rk the tangent 
space T U ,  is defined to be the entire vector space Rk. For any smooth 
map f :  U + V the derivatiue 

d f z  ; Rk + R' 

is defined by the formula 

df,(h) = lim ( f ( x  + th) - f ( x ) ) / t  

for x E U ,  h E Rk. Clearly df,(h) is a linear function of h. (In fact d f ,  
is just that linear mapping which corresponds to the 1 X k matrix 
(af J a x i > ,  of first partial derivatives, evaluated a t  2.) 

Here are two fundamental properties of the derivative operation: 

1 (Chain rule). I f  f : U + V and g : V + W are smooth maps, with 

t -0 

f(x) = y,  then 

d(g  0 f &  = dg ,  0 d f z .  

In  other words, to every commutative triangle 

rv\ 
r/\ 
U-w 

9 O f  

of smooth maps between open subsets of Rk, R', Rnk there corresponds 
a commutative triangle of linear maps 

Rf 

R d 2 R Y  
4 9  f)= 

2. If I i s  the identity map of U ,  then d I ,  i s  the identity map of Rk.  
More generally, if U C U' are open sets and 

i : U - - + U '  

I): 
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smooth map 
f : M + N  

with f(x) = y. The derivative 
dfz : T M ,  3 T N ,  

is defined as follows. Since J is smooth there exist an open set W con- 
taining x and a smooth map 

F : W 4 R 1  

that coincides with f on W (7 M. De&e df,(v) to be equal to dF,(v) 
for all v e TM,. 

To justify this definition we must prove that dF,(v) belongs to T N ,  
and that it does not depend on the particular choice of F .  

Choose parametri~ ,a t' ions 

g : U + M C R E  and h : V - + N C R '  

for neighborhoods g(U)  of x and h(V)  of y. Replacing U by a smaller 
set if necessary, we may assume that g ( U )  C W and that f maps g ( U )  
into h(V).  It follows that 

h-' o f o g : U -+ V 

is a well-defined smooth mapping. 
Consider the commutative diagram 

P 

9 f h-1 f o  g J h  
U V 

of smooth mappings between open sets. Taking derivatiws, we obtain 
a commutative diagram of linear mappings 

RE d F Z  >R1 

dha, 
>R" 

dgu T R m  d(h-' 0 f 0 g > u  

where U = g-'(x), v = h-'(y). 

It follows immediately that dF,  carries TAT, = Image (dg,) into 
TN,, = Image (dh,). Furthermore the resulting map df, does not 
depend on the particular choice of F,  for we can obtain the same linear 
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transformation by going around the bottom of the diagram. That is: 

df, = dh, 0 d(h-' 0 f 0 g)u 0 (dgJ*. 

This completes the proof that 

df, : TM,  -+ T N ,  
is a well-defined linear mapping. 

*4s before, the derivative operation has two fundamental properties: 

1. (Chain rule). If f : M + N and g : N --+ P are smooth, with f(s) = y, 
then 

d(g 0 f>r = dgu 0 dfz. 
2. If I i s  the identity m a p  of M ,  then d I z  i s  the identity m a p  of TM,. 

More generally, if M C N with inclusion map  i, then T M ,  C Thrz with 
irrclusion mup  di,. (Compare Figure 2.) 

Figure 2. 7'he tangent space of a submanifold 

The proofs are straightforward. 
As before, these two properties lead to the following: 

ASSERTION. I f  f : M 7 N i s  a difleonzoyphism, then df, : TAT, -+ T N ,  
i s  an isomorphism of vector spaces. In payticular the dimension of ill 
must be equal to the dimension of N .  

REGULAR VALUES 

Let f : ill .+ N be a smooth map between manifolds of the same 
dimension.* We say that x e n/r is a regular point of j if the derivative 

* This restriction will be removed in $2. 
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df, is nonsingular. In this case it follows from the inverse function 
theorem that f maps a neighborhood of x in M diffeomorphically onto 
an open set in N .  The point y E N is called a regular value if f-'(y) 
contains only regular points. 

If df, is singular, then x is called a critical point of f ,  and the image 
f ( x )  is called a critical value. Thus each y E N is either a critical value or a 
regular value according as f - ' (y )  does or does not contain a critical point. 

Observe that if M i s  compact and ?J E N i s  a regular value, then f-'(y) 
is afini te  set (possibly empty). For f - ' (y )  is in any case compact, being 
a closed subset of the compact, space M ;  and f - ' (y )  is discrete, since f 
is one-one in a neighborhood of each x P f - ' (y ) .  

For a smooth f : M --$ N ,  with M compact, and a regular value y E N ,  
we define #f- ' (y)  to be the number of points in f - ' (y ) .  The first observation 
to be made about #f-'(y) is that it is locally constant as a function of y 
(where y ranges only through regular values!). I.e., there i s  a neighbor- 
hood V C N of y such that #f-'(y') = #f-'(y) for any  y' E V .  [Let x l ,  - . . , x k  
be the points of f - ' ( y ) ,  and choose pairwise disjoint neighborhoods 
U,, - - , Ur of these which are mapped diffeomorphically onto neighbor- 
hoods V,, . * -  , V ,  in N .  We may then take 

V = V ,  A V ,  A A V ,  - f ( M  - U ,  - - UiJ .I 

THE FUNDAMENTAL THEOREM OF ALGEBRA 

As an application of these notions, we prove the fundamental theorem 
of algebra: every nonconstant complex polynomial P(z)  must have a zero. 

For the proof it is first necessary to pass from the plane of complex 
numbers to a compact manifold. Consider the unit sphere X2 C R3 and 
the stereographic projection 

h+ : Sz - ((0, 0,  1)) -+ R2 X 0 C R3 

from the "north pole" (0, 0, 1) of S2. (See Figure 3.) We will identify 
R2 X 0 with the plane of complex numbers. The polynomial map P from 
R2 x 0 itself corresponds to a map f from S2 to itself; where 

f ( x )  = h;'Ph+(x) for x # (0, 0 ,  1) 

f ( 0 ,  0, 1) = (0, 0, 1). 
It is well known that this resulting map f is smooth, even in a neighbor- 
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Figure 3. Stereographic projection 

hood of the north pole. To see this we introduce the stereographic 
projection h- from the south pole (0, 0, -1) and set 

&(z) = h-fhI'(z). 

Kotc, by elementary geometry, that 

h,hI'(z) = z / 1 ~ 1 ~  = 1/Z. 

Sow  if P(z)  = a,$ + alzn-l + . . . + a., with a, # 0, then a short 
computation shows that 

&(z) = z"/(a0 + d,z + * * * + an?). 
Thus Q is smooth in a neighborhood of 0, and it follows that f = hI'Qh- 
is smooth in a neighborhood of (0, 0, 1). 

Next observe that f has only a finite number of critical points; for P 
fails to be a local diffeomorphism only a t  the zeros of the derivative 
polynomial P'(z) = a,-i jzl-', and there are only finitely many 
zeros since P' is not identically zero. The set of regular values of f ,  
being a sphere with finitely many points removed, is therefore connected. 
Hence the locally constant function #f- ' (y)  must actually be constant 
on this set. Since #f-'(y) can't be zero everywhere, we conclude that 
it is zero nowhere. Thus f is an onto mapping, and the polynomial P 
must have a zero. 
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O F  SARD AND BROWN 

IN GENERAL, it is too much to hope that the set of critical values of a 
smooth map be finite. But this set will be LLsmall,'l in the sense indicated 
by the next theorem, which was proved by A. Sard in 19-12 following 
earlier work by A. P. Illorse. (References [30], [HI.) 

Theorem. Let f : U + R" be a smooth m a p ,  deJined on  a n  open set 

C = { X E  U I rankdf, < n ) .  
T h e n  the image f(C) C R" has Lebesgue measure zero.* 

Since a set of measure zero cannot contain any nonvacuous open set, 
it follows that the complement R" - f(C) must be everywhere denset 
in R". 

The proof will be given in $3. It is essential for the proof that f should 
have many derivatives. (Compare Whitney [38].) 

We will be mainly interested in the case m 2 n. If m < n, then 
clearly C = U ;  hence the theorem says simply that f ( U )  has measure 
zero. 

U C Rm, and let 

More generally consider a smooth map f : M -+ N ,  from a manifold 
of dimension m to  a manifold of dimension n. Let C be the set of all 
x E M such that 

df ,  : T M ,  + TN,(,, 

* In other words, given any B > 0, it is possible to cover f(C) by a sequence of 

t Proved by Arthur B. Brown in 1935. This result was rediscovered by Dubovickii 
cubes in R" having total n-dimensional volume less than E .  

in 1953 and by Thom in 1954. (References [51, [S], [361.) 
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has rank less than n (i.e. is not onto). Then C will be called the set 
of critical points,  f(C) the set of critical values, and the complement 
N - f (C) the set of repular values of f .  (This agrees with our previous 
definitions in the case n~ = n.) Since M can be covered by a countable 
collection of neighborhoods each diffeomorphic to an  open subset of 
R"', we have: 

Corollary (A. B. Brown). 

In  order to exploit this corollary we will need the following: 

Lemma 1. 

T h e  set of regular values of a smooth m a p  
f : M --f N i s  everywhere dense in N .  

If f : AT --+ N i s  a smooth m a p  between manifolds  of dimen- 
sion m 2 n, and i f  y E N i s  a regular value, then the set f - ' ( y )  C M i s  a 
smooth manifold of dimension m - n. 

PROOF. Let x E f - ' ( y ) .  Since y is a regular value, the derivative djl 
must map TAI, onto 2'". The null space 91 C T M ,  of dfL. will therefore 
be an (nz. - n)-dimensional vector space. 

If M c Rkl choose a linear map I, : Rk -+ R'''-n that is nonsingular 
on this subspace (31 C TM, C Rk. Now define 

F : M -+ N X R"-" 

by F(E) = (f(t), L ( t ) ) .  Thc derivative d F ,  is clearly given by the formula 

dPz(v) = (dfdv), U V ) ) .  

Thus d F ,  is nonsingular. Hence F maps some neighborhood U of x 
diffeoinorphically onto a neighborhood I' of (y, L(x ) ) .  Kote that f-'(y) 
corresponds, under F ,  to  the hyperplane y X R"'-". In fact F maps 
f - ' ( y )  r\ U diffeomorphically onto (y X R"-") A V. This proves that 
f-'(y) is a smooth manifold of dimension m - n. 

As an example we can give an easy proof that the unit sphere Sm-' 
is a smooth manifold. Consider the function f : R" --+ R defined by 

f(.) = x: + x; + * * *  + xi. 
Any y # 0 is a regular value, and the smooth manifold f-'(l) is the 
unit sphere. 

If M' is a manifold which is contained in &I, it has already been 
noted that TM:  is a subspace of T M ,  for x E M'.  The orthogonal corn- 
plement of TM: in T M ,  is then a vector space of dimension na - m' 
called the space of normal vectors to M' in M at x. 

In particular let M' = f-'(y) for a regular value y of f : M -+ N .  
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Lemma 2. The null space of df, : T M ,  - T N ,  i s  precisely equal to 
the tangent space T M :  C T M ,  of the submanifold M' = f - ' (y) .  Hence 
d f l  maps  the orthogonal complement of T M :  isomorphically onto TN,. 

PROOF. From the diagram 

i M' 

we see that df ,  maps the subspace TA!!: C T M ,  to zero. Counting 
dimensions we see that df, maps  the space o j  normal vectors to M' isomor- 
phically onto TN,. 

MANIFOLDS WITH BOUNDARY 

The lemmas above can be sharpened so as to apply to a map defined 
on a smooth "manifold with boundary." Consider first the closed 
half-space 

H" = { ( x1 ,  e . 0  , x,) ER" I X ,  2 O } .  

The boundary dH" is defined to be the hyperplane R"-' X 0 C R". 

DEFINITION. A subset X C Rk is called a smooth m-manifold with 
boundary if each x E X has a neighborhood U n X diffeomorphic to 
an open subset V n H" of H". The boundary aX is the set of all points 
in X which correspond to points of dH" under such a diffeomorphism. 

It is not hard to show that dX is a well-defined smooth manifold 
of dimension nz - 1. The interior X - dX is a smooth manifold of 
dimension m. 

The tangent space T X ,  is defined just as in 51, so that T X ,  is a full 
m-dimensional vector space, even if x is a boundary point. 

Here is one method for generating examples. Let M be a manifold 
without boundary and let g : M ---f R have 0 as regular value. 

Lemma 3. The  set of x in M with g(x) 2 0 i s  a smooth manifold, with 
boundary equal to g-'(O) . 

The proof is just like the proof of Lemma 1. 
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1 - cx: 2 0, 

EXAMPLE. The unit disk Dm, consisting of all x E R'" with 

is a, smooth manifold, with boundary equal to AS"-'. 

boundary to an n-manifold, where m > n. 
Now consider a smooth map f : X -+ N from an m-manifold with 

Lemma 4. If y c N i s  a regular value, both for f and for the restriction 
f 1 ax, then f - ' (y )  C X is a smooth (m - n)-manifold with boundary. 
Furthermore the boundary a ( f - ' ( y ) )  i s  precisely equal to the intersection 
of f - ' ( y )  with aX. 

PROOF. Since we have to prove a local property, it suffices to consider 
the special case of a map f : H" + R", with regular value y E R". Let 
Z E f - ' (y) .  If z is an interior point, then as before f - ' (y )  is a smooth 
manifold in the neighborhood of 2. 

Suppose that 3 is a boundary point. Choose a smooth map g : U + R" 
that is defined throughout a neighborhood of 3 in R" and coincides with 
f on U A H". Replacing U by a smaller neighborhood if necessary, we 
may assume that g has no critical points. Hence g- '(y)  is a smooth 
manifold of dimension m - n. 

Let IT : g- l (y )  --f R denote the coordinate projection, 

n(x1, * . .  , 2,) = x,. 

We claim that IT has 0 as a regular value. For the tangent space of 
g- '(y)  at  a point x c r - ' ( O )  is equal to the null space of 

~ dg, = d f ,  : R" + R"; 

but the hypothesis that f I aH" is regular at  x guarantees that this 
null space cannot be completely contained in R"-' X 0. 

Therefore the set g-'(y) f l  H" = f - ' (y )  A U,  consisting of all x E g-'(y) 
with n ( x )  2 0, is a smooth manifold, by Lemma 3; with boundary 
equal to n-'(O). This completes the proof. 

THE BROUWER FIXED POINT THEOREM 

We now apply this result to prove the key lemma leading to the 
classical Brouwer fixed point theorem. Let X be a compact manifold 
with boundary. 
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Lemma 5. There i s  no smooth map f : X + a X that leaves a X point- 
wise jixed. 

PROOF (following M. Hirsch). Suppose there were such a map f. 
Let y E ax be a regular value for f .  Since y is certainly a regular value 
for the identity map f I aX also, it follows that f-'(y) is a smooth 1- 
manifold, with boundary consisting of the single point 

f-'(y) n ax = {v). 
But f-'(y) is also compact, and the only compact 1-manifolds are finite 
disjoint unions of circles and segments,* so that aff'(y) must consist of 
an  even number of points. This contradiction establishes the lemma. 

In particular the unit disk 

D"= ( x E R " I x : +  +z:< 1) 

is a compact manifold bounded by the unit sphere x"-'. Hence as a 
special case we have proved that the ident i ty  map of A"-' cannot be ex- 
tended to a smooth map D" --f AY-'. 

Lemma 6. A n y  smooth map g : D" + D" has aJixed point (i.e. a point 
z P D" with g(x) = x ) .  

PROOF. Suppose g has no fixed point. For x E D", let f(x) E 8'-' be 
the point nearer x on the line through x and g(x).  (See Figure 4.) Then 
f : D" --+ s"-' is a smooth map with f(x) = x for x E s"-', which is 
impossible by Lemma 5 .  (To see that f is smooth we make the following 
explicit computation: f(x) = x + tu, where 

t = -x.u + d1 - x ' x  + (x.u)z,  x - g(x> 
I IX  - g ( 4 l l  ' U =  

the expression under the square root sign being strictly positive. Here 
and subsequently llxll denotes the euclidean length dx; + . . . + x:.) 

Brouwer Fixed Point Theorem. Any continuous function G : D" + D" 
has a Jixed point. 

PROOF. We reduce this theorem to the lemma by approximating G 
by a smooth mapping. Given t > 0, according to the Weierstrass 
approximation theorem,t there is a polynomial function P,  : R" -+ R" 
with IIP1(x) - G(x)II < t for 2 E D". However, P,  may send points 

I 

Brouwer jixed point theorem 

Fiyrtre 4 

15 

of D" into points outside of D". To correct this we set 

P(x> = P ' ( X ) / ( l  + 4 .  
Then clearly P maps D" into D" and I IP(x) - G(s) 1 I < 2e for x E D". 

Suppose that G ( x )  # x for all x E D". Then the continuous function 
1 IG(x) - $ 1  I must take on :L minimum p > 0 on W. Choosing 1' : D" + I)" 
as above, with I IP(x) - G(x)  I I < p for all x, we clearly have P ( x )  # x.  
Thus P is a smooth map from D" to itself without a fixed point. This 
contradicts Lemma 6,  and completes the proof. 

The procedure employed here can frequently be applied in more 
general situations: to prove a proposition about continuous mappings, 
we first establish the result for smooth mappings and then try to use an 
approximation theorem to pass to the continuous case. (Compare 58, 
Problem 4.) 

* A proof is given in the Appendix. 
f See for example Dieudonn6 [7, p. 1331. 
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Q3. P R O O F O F  

SARD’S THEOREM* 

FIRST let us recall the statement: 

Theorem of Sard. Let f : U .+ R” be a smooth map, with U open in Rn, 
and let C be the set of critical points; that is  the set of all x E U with 

rank d f z  < p .  

Then f(C) c R” has measure zero. 

REMARK. The cases where n _< p are comparatively easy. (Compare 
de Rham [29, p. 101.) We will, however, give a unified proof which 
makes these cases look just as bad as the others. 

The proof will be by induction on n. Note that the statement makes 
sense for n 2 0, p 2 1. (By definition Ro consists of a single point.) 
To start the induction, the theorem is certainly true for n = 0. 

Let C, C C denote the set of all x E U such that the first derivative 
d f z  is zero. More generally let C, denote the set of x such that all partial 
derivatives of f of order < i  vanish a t  x.  Thus we have a descending 
sequence of closed sets 

c 3 c, 3 c, 3 c, 3 . . *  * 
The proof will be divided into three steps as follows: 

STEP 1. The image f(C - C,)  has measure zero. 
STEP 2. The image f(C, - C,,,) has measure zero, for i 2 1. 
STEP 3. The image f(C,) has measure zero for k sufficiently large. 

(REMARK. If f happens to be real analytic, then the intersection of 

* Our proof is based on that given by Pontryagin [28]. The details are somewhat 

I 

easier since we assume that f is infinitely differentiable. 

the C, is vacuous unless f is constant on an entire component of U.  
Hcnce in this case it is sufficient to carry out Steps 1 and 2.) 

PROOF OF STEP 1. This first step is perhaps the hardest. We may 
assume that  p 2 2, since C = C, when p = 1. We will need the well 
known theorem of Fubini* which asserts that a measurable set 

A C R” = R‘ X R”-’ 
iriust have measure xero if it intersects each hyperplane 
in a set of ( p  - 1)-dimensional measure zero. 

(constant) X Rp-’ 

For each f E C - C, we will find an open neighborhood V C R” 
so that f (V  (7 C) has measure zero. Since C - C, is covered by countably 
many of these neighborhoods, this will prove that f (C - C,) has measure 
zero. 

Sincc f # C,, there is some partial derivative, say dfl/dzl, which 
is not zero a t  3. Consider the map h : U --f R” defined by 

h(x) = ( f l ( X > ,  xz, . * *  12,). 

Sincc dh, is nonsingular, h maps some neighborhood V of 3 diffeomor- 
phically onto an  open set V’. The coniposition g = f o h-’ will then 
map V’ into R”. Note that the set C’ of critical points of g is precisely 
h(V  n C); hence the set g(C’) of critical values of g is equal to  f (V  n C). 

Figure 5.  Construction of the map g 

* For an easy proof (as well as an alternative proof of Sard’s theorem) see Stern- 
berg [Xi, pp. 51-52]. Sternberg assumes that A is compact, but the general case 
follows easily from this special case. 
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. , x,J belongs to 
the hyperplane t X R"-' C R": thus g carries hyperplanes into hyper- 
planes. Let 

gt  : ( t  X Rn-l) A V' -+ t X R"-' 

denote the restriction of g. Note that a point of t X R"-' is critical for 
gt  if and only if it is critical for g; for the matrix of first derivatives of g 
has the form 

For each ( t ,  xpl - .  . , 2,) E V' note that g( t ,  x2, 

According to the induction hypothesis, the set of critical values of g t  
has measure zero in t X R"-'. Therefore the set of critical values of g 
intersects each hyperplane t x R"-' in a set of measure zero. This 
set g(C') is measurable, since it can be expressed as a countable union 
of compact subsets. Hence, by Fubini's theorem, the set 

g(C'> = j(V C) 
has measure zero, and Step 1 is complete. 

derivative ak*'f,/ax,,.. .az.,+, which is not zero. Thus the function 
PROOF OF STEP 2. For each z E c k  - C,+, there is some (Ic + I)-'' 

W ( X )  = akf,/ax8, . . . ax,*+, 

vanishes at 
Then the map h : U -+ R" defined by 

but aw/dx,, does not. Suppose for definiteness that s, = 1. 

h(z> = (W(Z>, 2 2 ,  * - *  1 z,> 

carries some neighborhood V of diffeomorphically onto an open set V'. 
Note that h carries Ck A V into the hyperplane 0 X R"-'. Again 
we consider 

g = f o h-' : V' -+ R". 

Let 
0 : (0 X Rn-') n V' -+ R" 

denote the restriction of g. By induction, the set of critical values of 0 
has measure zero in R". But each point in h(C, A V )  is certainly a 
critical point of 0 (since all derivatives of order _<k vanish). Therefore 

gh(Ck n V )  = f(Ck n V )  has measure zero. 

Since c, - Ck+1 is covered by countably many such sets V ,  it follows 
that f(C, -. Ck+l) has measure zero. 

4 

Step 3 19 

PROOF OF STEP 3. Let I" C U be a cube with edge 6. If k is sufficiently 
large ( k  > n / p  - 1 to be precise) we will prove that f(Ck A I") has 
measure zero. Since c k  can be covered by countably many such cubes, 
this will prove that f(C,) has measure zero. 

From Taylor's theorem, the compactness of I", and the definition 
of ck, we see that 1 

f(. + h) = f(x) + R(z1 h) 

ll&, W l I  I c llhll"' 

where 

1) 

for x E C, A I", x + h E I". Here c is a coiistant wliich depends oiily 
on f and I". Now subdivide I" into Y* cubes of edge 6/r. Let I ,  be a cube 
of the subdivision which contains a point x of c k .  Then any point of I1 

I can be written as x + h, with 

2) llhll I di(6h). 
I'rom 1) it follows that / ( I , )  lies in a cube of edge a / ~ ~ + '  ccntered 
about f(z), where a = 2c (di 6 ) k + 1  is constant. EIence f(ck I")  is 
contained in a union of a t  most 1''' cubes having total volume 

D n - ( k + l ) p  V 5 rn(a/l'k+l)n = a 1' 

If k + 1 > n / p ,  then evidently V tends to 0 as 1' -+ m ; so f(C, n In) 
must have measure zero. This completes the proof of Sard's theorem. 
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smooth map F : X X [O, I] + Y with 

F ( x ,  0) = fb), Fb, 1) = 9(z) 
I 

for all z E X .  This map F is called a smooth homotopy between f and g. 
Note that the relation of smooth homotopy is an equivalence relation. 

To see that it is transitive we use the existence of a smooth function 
rp : [0, I] 3 [0, I] with 

p ( t )  = 0 for 0 5 t 5 5 
p ( t )  = 1 for $ 5 t 5 1.  

(For example, let p(t) = X(t - Q ) / ( X ( t  - 8 )  + A($ - t ) ) ,  where X ( T )  = 0 
for T 5 0 and X(7) = exp( -.-I) for 7 > 0.) Given a smooth homotopy F 
between f and g, the formula G(x, t )  = F ( x ,  p( t ) )  defines a smooth 
homotopy G with 

G(z, t )  = f(x) for 0 5 t 5 + 
G(z, t )  = g(x)  for Q 5 t 5 1. 

Now if f - g and g - h, then, with the aid of this construction, it is 
easy to prove that f - h. 

If f and g happen to be diffeomorphisms from X to Y ,  we can also 
define the concept of a “smooth isotopy” between f and g. This also 
will be an equivalence relation. 

I 

DEFINITION. The diffeomorphism f is smoothly isotopic to g if there 
exists a smooth homotopy F : X X [O,  11 -+ Y from f to g so that, 
for each t E [0, 11, the correspondence 

, 

z -+ F(z ,  t )  

84. THE DEGREE MODULO 2 

O F  A MAPPING 

CONSIDER a smooth map f : S“ + S”. If y is a regular value, recall that 
#f-’(y) denotes the number of solutions x to the equation f(z) = y .  
We will prove that the residue class modulo 2 of #f-’(y) does not depend on  
the choice of the regular value y. This residue class is called the mod 2 
degree of f .  More generally this same definition works for any smooth 

f : M - - + N  

where M is compact without boundary, N is connected, and both 
manifolds have the same dimension. (We may as well assume also that N 
is compact without boundary, since otherwise the mod 2 degree would 
necessarily be zero.) For the proof we introduce two new concepts. 

SMOOTH HOMOTOPY AND SMOOTH ISOTOPY 

Given X C Rk, let X X [0, I] denote the subset* of Rk” consisting 
of all (x, t )  with z E X and 0 5 t 5 1. Two mappings 

f ,  g :x+ Y 

are called smoothly homotopic (abbreviated f - g) if there exists a 

* If M is a smooth manifold without boundary, then M X [0, 11 is a smooth 
manifold bounded by two “copies” of M .  Boundary points of M will give rise to 
“corner” points of M X [O, 13. 

maps X diffeomorphically ont.0 Y. 
It will turn out that the mod 2 degree of a map depends only on its 

smooth homotopy class: 

Homotopy Lemma. Let  f, g : M --+ N be smoothly homotopic m a p s  
between manifolds  of the same dimension, where M i s  compact and without 
boundary. I f  y E N i s  a regular value for both f and g ,  then 

#f-’(y> = #9-’(y> (mod 2). 

PROOF. Let F : M X [0, 11 + N be a smooth homotopy between 
f and g. First suppose that. y is also a regular value for F .  Then F-’(y) 
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is a compact 1-manifold, with boundary equal to 

~ - y y )  n (M x o v ~I/I x 1) = f-'(y) x o v g - l ( y )  x 1. 

#f-'(y) + #s-'(y). 

Thus the total number of boundary points of F- ' (y )  is equal to 

But we recall from $2 that a compact 1-manifold always has an even 
number of boundary points. Thus #j-'(y) + #g-'(y) is even, and 
therefore 

#f - ' (y )  = #g-'(Y>T(mod 2 ) .  

M x 0  M x l  

Figure 6.  The number of boundary points o n  the left i s  congruent to the number o n  the 
right modulo 2 

Now suppose that y is not a regular value of F.  Recall (from 51) 
that #f-'(y') and #g-'(y') are locally constant functions of y' (as long 
as we stay away from critical values). Thus there is a neighborhood 
V, C N of y ,  consisting of regular values of f ,  so that 

#f-'(Y'> = #f-W 

#g-'(u') = #g- ' (Y)  

#f-'(Y> = #f-'(z) = #g-%) = #s-YY)) ,  

for all y' E V,; and there is an analogous neighborhood V ,  c N so that 

for all y' E V,. Choose a regular value z of F within V ,  A V,. Then 

which completes the proof. 
We will also need the following: 

Homogeneity Lemma. Let y and z be arbitrary interior points of the 
smooth, connected manifold N .  Then there exists a diffeomorphism h: N + N 
that i s  smoothly isotopic to the identity and carries y into z. 
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(For the special case N = x" the proof is easy: simply choose h to 
be the rotation which carries y into z and leaves fixed all vectors orthog- 
onal to the plane through y and z . )  

The proof in general proceeds as follows: We will first construct a 
smooth isotopy from R" to itself which 

1) leaves all points outside of the unit ball fixed, and 
2 )  slides the origin to any desired point of the open unit ball. 

C 

Figure 7 .  Dejorming the uni t  ball 

Let cp : R" --+ R be a smooth function which satisfies 

&) > 0 .for 11x1 I < 1 

q(x )  = 0 for 11x11 2 1. 

(For example let p(z) = A(l - l l ~ 1 1 ~ )  where A ( t )  = 0 for t 5 0 and 
A(t) = exp(-t-') for t > 0.) Given any fixed unit vector c E S"", 
consider t,he differential equations 

dxi 
d t  - -  - ci&, - . -  , z,); i = 1, - * *  , n. 

For any 2 E R" these equations have a unique solution x = x ( t ) ,  defined 
for all* real numbers which satisfies the initial condition 

x(0) = 2.  

We will use the notation x ( t )  = F t ( 2 )  for this solution. Then clearly 

1) F , ( 2 )  is defined for all t and 2 and depends smoothly on t and 2, 
2) F"(3) = 3, 
3) F.+, (3)  = F ,  0 F,(Z) .  

I 

~ * Compare [22, 02.41. 
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Therefore each F ,  is a diffeomorphism from R" onto itself. Letting t 
vary, we see that each F ,  is smoothly isotopic to the identity under an 
isotopy which leaves all points outside of the unit ball fixed. But clearly, 
with suitable choice of c and t ,  the diffeomorphism F ,  will carry the 
origin to any desired point in the open unit ball. 

Now consider a connected manifold N .  Call two points of N "isotopic" 
if there exists a smooth isotopy carrying one to the other. This is 
clearly an  equivalence relation. If y is an interior point, then it has a 
neighborhood diffeomorphic to R"; hence the above argument shows 
that every point sufficiently close to y is "isotopic" to y. I n  other words, 
each "isotopy class" of points in the interior of N is an open set, and 
the interior of N is partitioned into disjoint open isotopy classes. 
But the interior of N is connected; hence there can be only one such 
isotopy class. This completes the proof. 

We can now prove the main result of this section. Assume that M 
is compact and boundaryless, that N is connected, and that f : A4 -+ N 
is smooth. 

Theorem. If y and z are regular values of f then 

#f-'(y) = #f-'(z) (modulo 2). 

Th i s  common residue class, which i s  called the mod 2 degree of f ,  depends 
only on the smooth homotopy class of f .  

PROOF. Given regular values y and z,  let h be a diffeomorphism 
from N to N which is isotopic to the identity and which carries y to z. 
Then z is a regular value of the composition h o f .  Since h o f is homotopic 
to I ,  the Homotopy Lemma asserts that 

#(h 0 f)-'(z) = #f-'(z) (mod 2). 
c 

But 
(h 0 f)-'(z) = f-'h-'(z) = f-'(y), 

so that 

#(h O f)-'(z) = #f-'(y>. 

#f- ' (y)  = #f-'(z) (mod 21, 

Therefore 

as required. 
Call this common residue class deg2(f). Now suppose that f is smoothly 

homotopic to g.  By Sard's theorem, there exists an  element y P N 
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which is a regular value for both f and g .  The congruence 

deg, f = #f-'(y) = #g-'(y) = deg, g (mod 2) 

now shows that deg, f is a smooth homotopy invariant, and completes 
the proof. 

EXAMPLES. A constant map c : M -+ M has even mod 2 degree. 
The identity map I of M has odd degree. Hence the identity m a p  of a 
compact boundaryless manifold i s  not homotopic to a constant. 

In  the case M = s", this result implies the assertion that no smooth 
map f : Dn+' -+ S" leaves the sphere pointwise fixed. (I.e., the sphere 
is not a smooth ((retract" of the disk. Compare $2, Lemma 5 . )  For such 
a map f would give rise to a smooth homotopy 

F : S" X [0,  11 -+ Sn, F(z ,  t )  = f(tz), 
between a constant map and the identity. 

I 
! 
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IN ORDER to define the degree as an integer (rather than an integer 
modulo 2) we must introduce orientations. 

DEFINITIONS. An orientation for a finite dimensional real vector 
space is an equivalence class of ordered bases as follows: the ordered 
basis (bll - - . , b,) determines the same orientation as the basis (6;, . , 6 9  
if b: = a,,b, with det(a,,) > 0. It determines the opposite orientation 
if det(a.,) < 0. Thus each positive dimensional vector space has precisely 
two orientations. The vector space R” has a standard orientation corre- 
sponding to the basis (1, 0, - . - , 0 ) )  (0, 1, 0, - - , 0), , 0, 1). 

In  the case of the zero dimensional vector space it is convenient to 
define an ‘(orientation” as the symbol + 1 or - 1. 

An oriented smooth manifold consists of a manifold M together 
with a choice of orientation for each tangent space TM,. If m 2 1, 
these are required to fit together as follows: For each point of M there 
should exist a neighborhood U C M and a diffeomorphism h mapping U 
onto an open subset of R“ or H”’ which is orientation preserving, in the 
sense that for each x E U the isomorphism dh, carries the specified 
orientation for T M ,  into the standard orientation for R”. 

If M is connected and orientable, then it has precisely two 
orientations. 

If M has a boundary, we can distinguish three kinds of vectors in 
the tangent space T M ,  at a boundary point: 

, (0, - 

1) there are the vectors tangent to the boundary, forming an (m - 1)- 

2) there are the (‘outward” vectors, forming an open half space 

3) there are the (‘inward” vectors forming a complementary half 

dimensional subspace T(dM) ,  C TM,; 

bounded by T(dM),; 

space. 
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Each orientation for M determines an orientation for dM as follows: 
For x E dM choose a positively oriented basis (u l ,  v2) . - - ) U,) for T M ,  
in such a way that v2, * . . , U ,  are tangent to the boundary (assuming 
that m 2 2 )  and that v, is an ‘(outward” vector. Then (u2, . - .  , U,) 
determines the required orientation for dM a t  x. 

If the dimension of M is 1, then each boundary point x is assigned 
the orientation - 1 or + 1 according as a positively oriented vector 
a t  x points inward or outward. (See Figure 8.) 

1- I 

Figure 8. How to orient a boundary 

As an example the unit sphere Sm-’ C R” can be oriented as the 
boundary of the disk D”. 

THE BROUWER DEGREE 

Now let M and N be oriented n-dimensional manifolds without 
boundary and let 

f : M + N  
be a smooth map. If M is compact and N is connected, then the degree 
of f is defined as follows: 

Let x E M be a regular point of f ,  so that df, : T M ,  -+ TNt(,, is a 
linear isomorphism between oriented vector spaces. Define the sign 
of df, to be + 1 or - 1 according as df, preserves or reverses orientation. 
For any regular value y E N define 

deg(f; y) = sign df,. 
zr f - ’ (u )  

As in $1, this integer deg(f; y) is a locally constant function of y. It is 
defined on a dense open subset of N .  
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Theorem A. T h e  integer deg(f;  y )  does not depend o n  the choice of 

It will be called the degree of f (denoted deg f) .  

Theorem B. If f i s  smoothly homotopic to g ,  then deg f = deg g. 

The proof will be essentially the same as that in $4. It is only necessary 
to keep careful control of orientations. 

First consider the following situation: Suppose that M is the boundary 
of a compact oriented manifold X and that M is oriented as the boundary 
of x. 

regular value y .  

Lemma 1. If f : M -+ N extends to a smooth m a p  F : X --f N ,  then 
deg(f; y )  = 0 for every regular value y .  

PROOF. First suppose that y is a regular value for F ,  as well as for 
f = F I M .  The compact. 1-manifold F - ' ( y )  is a finite union of arcs and 
circles, with only the boundary points of the arcs lying on M = a X .  
Let A C F- ' (y )  be one of these arcs, with aA = { a )  U ( 0 ) .  We will 
show that 

sign dfa + sign dfb = 0, 

and hence (summing over all such arcs) that deg(/ ; y) = 0. 

Figure 9. How to orient F- ' ( y )  

The orientations for X and N determine an orientation for A as 
follows: Given z e A,  let (vl,  * * , v,,+J be a positively oriented basis 
for T X ,  with U, tangent to A. T h e n  U, determines the required orientation 
for TA,  if and only if d F ,  carries (vz, - . . , U,,+') into a positively oriented 
basis for TN,. 

Let v1 ( x )  denote the positively oriented unit vector tangent to A a t  x. 
Clearly U, is a smooth function, and v,(x) points outward a t  one boundary 
point (say b)  and inward a t  the other boundary point a. 

, 

T h e  Brouwer degree 

It follows immediately that 

signdf, = -1, signdf, = +l;  
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with sum zero. Adding up over all such arcs A,  we have proved that 
deg(f; y )  = 0. 

More generally, suppose that yo is a regular value for f ,  but not for F.  
The function deg(f; y )  is constant within some neigliborhood U of y,,. 
Hence, as in $4, we can choose a regular value y for F within U and 
observe that 

d 4 f ;  Yo) = deg(f; Y )  = 0. 
This proves Lemma 1. 

Now consider a smooth homotopy F : [0, I] x Ai? -+ N between 
two mappings fb) = F(O, X I ,  g b )  = F(1,  z). 

Lemma 2. T h e  degree deg(g; y) is  equal to deg(f; y) for a n y  common 
regular value y .  

PROOF. The manifold [0, I] X M" can be oriented as a product, 
and will then have boundary consisting of 1 X M" (with the correct 
orientation) and 0 X M" (with the wrong orientation). Thus the degree 
of F I a([O, 11 X M") a t  a regular value y is equal to the difference 

deg(g; Y) - deg(f; Y > *  
According to Lemma 1 this difference must be zero. 

The remainder of the proof of Theorems A and B is completely 
analogous to the argument in 54. If y and z are both regular values 
for f : M ---$ N ,  choose a diffeomorphism h : N -+ N that carries y to z 
and is isotopic to the identity. Then h will preserve orientation, and 

deg(f; Y )  = deg(h O f;  h ( d )  
by inspection. But f is homotopic to h o f ;  hence 

deg(h 0 f ;  z)  = deg(f; z)  

by Lemma 2. Therefore deg(f; y )  = deg(f; z ) ,  which completes the proof. 

EXAMPLES. The complex function z -+ zk, z # 0, maps the unit circle 
onto itself with degree k .  (Here k may be positive, negative, or zero.) 
The degenerate mapping 

f : M --+ constant e N 
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has degree zero. A diffeomorphism f : Jl + N has dtgree + 1 or - 1 
according as f preserves or reverses orientation. T h u s  a n  orientation 
reversing di feoinorphism of a compact boundaryless manifold i s  not 
smoothly homotopic to the identity.  

One example of an orientation reversing difi'eomorphism is provided 
by the reflection r ,  : S" ---f x", where 

r,(zl, . . -  , 2n+1) = ( ~ 1 ,  * . .  , -L, a - .  , G+J.  
The antipodal map of S" has degree (- l)"", as we can see by noting 
that the antipodal map is the composition of n + 1 reflections: 

-z = r1 o r 2  o 0 . .  O T , , + ~ ( X ) .  

T h u s  if n i s  even, the antipodal m a p  of x" i s  not smoothly homotopic to 
the identity,  a fact not detected by the dcgree modulo 2. 

As an application, following Brouwer, we show that S" admits a 
smooth field of nonzero tangent vectors if and only if n i s  odd. (Compare 
Figures 10 and 11.) 

Figure 10 (above). A nonzero vector jield on the 1-sphere 

Figure 11 (below). Attempts for n = B 

DEFINITION. A smooth tangent vector jield on M C Rk is a smooth 
map v : M -+ Rk such that ~ ( x )  E T M ,  for each x E M .  I n  the case of 
the sphere S" c R"" this is clearly equivalent to the condition 

1) V(X).X = 0 for all 2 E S", 

Y 

i 
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using the euclidean inner product. 
If v(z)  is nonzero for all z, then we may as well suppose that 
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2 )  v(z).2r(x) = 1 for all z E S". 

For in any case 8(z) = v ( ~ ) / ~ ~ v ~ ~ ) ~ ~  would be a vector field which does 
satisfy this condition. Thus we can think of v as a smooth function 
from x" to itself. 

Now define a smooth homotopy 

F : S" X [0, 7r] + S" 

by the formula F(z, 6) = z cos 0 + v (x )  sin 6. Computation shows that 

F ( X ,  e).F(z, e) = 1 

and that 

F(z ,  0 )  = z, F(z, 7r) = -2. 

Thus the antipodal map of S" is homotopic to the identity. Rut for n 
even we have seen that this is impossible. 

On the other hand, if n = 2k - 1, the explicit formula 

U(X1, * - *  , L 2 k )  = (22, -.cl, 5 4 ,  - 23, ... 7 X 2 k i  - 2 2 k - 1 )  

defines a nonzero tangent vector field on S". This completes the proof. 

I t  follows, incidentally, that the antipodal map of S" i s  homotopic 
to the identity for n odd. A famous theorem due to Heinz Hopf asserts 
that two mappings from a connected n-manifold to the n-sphere are 
smoothly homotopic if and only if they have the same degree. In  57 
we will prove a more general result which implies Hopf's theorem. 
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86. VECTOR FIELDS AND 

THE EULER NUMBER 

As a further application of the concept of degree, we study vector fields 
on other manifolds. 

Consider first an open set U C R" and a smooth vector field 

v :U--+R" 

with an isolated zero a t  the point z E U .  The function 

fib> = U(.)/ I l v ( 4  I I 
maps a small sphere centered a t  z into the unit sphere.* The degree 
of this mapping is called the index L of v at  the zero z. 

Some examples, with indices - 1, 0, 1, 2,  are illustrated in Figure 12. 
(Intimately associated with v are the curves "tangent" to v which are 
obtained by solving the differential equations dx,/dt = v,(xl, . . + , xJ. 
It is these curves which are actually sketched in Figure 12.) 

A zero with arbitrary index can be obtained as follows: In the plane 
of complex numbers the polynomial zk defines a smooth vector field 
with a zero of index k a t  the origin, and the function zk defines a 
vector field with a zero of index -k. 

We must prove that this concept of index is invariant under diffeomor- 
phism of U. To explain what this means, let us consider the more 
general situation of a map f : M --+ N ,  with a vector field on each 
manifold. 

DEFINITION. The vector fields v on A I  and U' on N correspond under f 
if the derivative df, carries V ( X )  into v ' ( f ( x ) )  for each x E M .  

* Each sphere is to be oriented as the boundary of the corresponding disk. 

I 

t = -  I t = O  

C = + l  c = + 2  
Figure 12. Examples of plane vector fields 

If f is a diffeomorphism, then clearly U' is uniquely determined by U .  

The notation 

2)' = df 0 2, 0 f-1 

will be used. 

Lemma 1. Suppose that the vector jield v on U corresponds to 

V' = df o of-' 

on U' under a diffeomorphisiii f : U + U'. Then  the index of v at a n  isolated 
zero z i s  equal to the index of U' at f(z). 



34 $6. Vector jields 

Assuming Lemma 1, we can define the concept of index for a vector 
field w on an arbitrary manifold M as follows: If g : U + M is a para- 
metrization of a neighborhood of z in M ,  then the index L of w a t  x is de- 
fined to be equal to the index of the corresponding vector field dg-' 0 w o g 
on U a t  the zero g-'(z). It clearly will follow from Lemma 1 that L is 
well defined. 

The proof of Lemma 1 will be based on the proof of a quite different 
result: 

Lemma 2. A n y  orientation preserving diffeomorphism f of R" i s  
smoothly isotopic to the identity. 

(In contrast, for many values of m there exists an orientation prc- 
serving diffeomorphism of the sphere S'" which is not smoothly isotopic 
to the identity. See [20, p. 4041.) 

PROOF. We may assume that f(0) = 0. Since the derivative a t  0 
can be defined by 

d fo (x )  = lim f ( t z ) / t ,  
t-0 

it is natural to define an isotopy 

F : R" X [O, 11 .+ R" 
by the formula 

F ( x ,  t )  = f(tx)/t  for 0 < t 1, 

F ( x ,  0) = dfo(x>. 
To prove that F is smooth, even as t .+ 0, we write f in the form* 

f ( x )  = x1g1(x) + - * * + xmgm(x), 

F(x i  t )  = Xlg l ( t x )  + * . *  + xmgm(tx) 

where g , ,  - . , g m  are suitable smooth functions, and note that 

for all values of 1.  

to the identity. This proves Lemma 2. 
Thus f is isotopic to the linear mapping dfn, which is clearly isotoyi(* 

PROOF OF LEMMA 1. We may assume that z = f ( x )  = 0 and that U 
is convex. If f preserves orientation, then, proceeding exactly as above, 

* See for example [22, p. 51. 
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we construct a one-parameter family of embeddings 

f t  : U+R" 
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with f o  = identity, f l  = f ,  and f , (O)  = 0 for all t .  Let U ,  denote the 
vector field d f t  o v of;' on f , ( U ) ,  which corresponds to v on U .  These 
vector fields are all defined and nonzero on a sufficiently small sphere 
centered a t  0. Hence the index of v = vo a t  0 must be equal to the 
index of U' = U ,  a t  0. This proves Lemma 1 for orientation preserving 
diff eomorphisms. 

To consider diffeomorphisms which reverse orientation it is sufficient 
to consider the special case of a reflection p .  Then 

v' = p o v  0 p - l ,  

5' = p 0 0  0 p-1. 

so the associated function e ' (x )  = v'(x)/l lv'(z)lj on the +sphere satisfies 

Evidently the degree of 8' equals the degree of fi, which completes the 
proof of Lemma 1. 

We will study the following classical result: Let M be A compact 
manifold and w a smooth vector field on M with isolated zeros. If M 
has a boundary, then w i s  required to point outward at all boundary points. 

The  sum CL of the indices at the zeros of Poincare-Hopf Theorem. 
such a vector jield i s  equal to the Euler number* 

m 

x(M) = (-1)' rank H , ( M ) .  

In particular this index s u m  i s  a topological invariant of M :  it does not 
depend on the particular choice of vector jield. 

(A 2-dimensional version of this theorem was proved by Poincare 
in 1885. The full theorem was proved by Hopf [14] in 1926 after earlier 
partial results by Brouwer and Hadamard.) 

We will prove part of this theorem, and sketch a proof of the rest. 
First consider the special case of a compact domain in R"'. 

Let X C R" be a compact m-manifold with boundary. The Gauss 
mapping 

,=O 

9 : ax .+ sm-' 
assigns to each x E aX the outward unit normal vector a t  x. 

* Here H i ( M )  denotes the i-th homology group of M .  This will be our first and 
last reference to homology theory. 
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Lemma 3 (Hopf). If v : X + R" i s  a smooth vector Jield with isolated 
zeros, and if v points out of X along the boundary, then the index sum L 

i s  equal to the degree of the Gauss inapping from dX to S"-'. In particular, 

For example, if a vector field on the disk D" points outward along 

c does not depend on the choice of U .  

the boundary, then c L = +l. (Compare Figure 13.) 

Figure IS. A n  example with index sum +1 

PROOF. Removing an  €-ball around each zero, we obtain a new 
manifold with boundary. The function 8(x )  = v(z)/ i lv(x)l l  maps this 
manifold into S"-'. Hence the sum of the degrees of 8 restricted to the 
various boundary components is zero. But 6 I a X  is homotopic to 9, 
and the degrees on the other boundary components add up to -E L .  

(The minus sign occurs since each small sphere gets the wrong orien- 
tation.) Therefore 

deg(g) - L = 0 

as required. 

REMARK. The degree of g is also known as the "curvatura integra" 
of dX,  since it  can be expressed as a constant times the integral over 
a X  of the Gaussian curvature. This integer is of course equal to the 
Euler number of X .  For tn odd it  is equal to half the Euler number of a X .  

Before extending this result to other manifolds, some more pre- 

It is natural to try to compute the index of a vector field v at a zero z 
liminaries are needed. 
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in terms of the derivatives of v a t  z. Consider first a vector field U on 
an open set U C R"' and think of v as a mapping U -+ R", so that 
dv, : R"' + R"' is defined. 

DEFINITION. The vector field v is nondegenerate at  z if the linear 
transformation dv, is nonsingular. 

It follows that z is an  isolated zero. 

Lemma 4. The index of v at a nondegenerate zero z i s  either + 1 or - 1 
according as the determinant of dv, i s  positive or negative. 

PROOF. Think of v as a diffeomorphism from some convex neighbor- 
hood U ,  of z into R". We may assume that z = 0. If U preserves orien- 
tation, we have seen that vlUo can be deformed smoothly into the 
identity without introducing any new zeros. (See Lemmas 1, 2.) Hence 
the index is certainly equal to +l. 

If v reverses orientation, then similarly v can be deformed into a 
reflection; hence L = -1. 

More generally consider a zero z of a vector field w on a manifold 
A l  C Rk. Think of w as a map from llf to Rk so that the dcrivative 
dw, : TM.  -+ Rk is defined. 

The  derivative dw, actually carries T M ,  into the subspace 
T M ,  C Rk, and hence can be cmsidered as a linear transformation from 
T M ,  to itself. If this linear transformation has determinant D # 0 then 
z i s  a n  isolated zero of w with index equal to + 1 or - 1 according as D i s  
positive or negative. 

PROOF. Let h U 4 A I  be a parametrization of some neighborhood 
of z .  Let e' denote the i-th basis vector of R" and let 

Lemma 5. 

tt = dh,(e') = ah/au, 

so that the vectors i', * - , t" form a basis for the tangent space TllIhc,) . 
We must compute the image of t' = t ' (u)  under the linear transforma- 
tion dw,,(,,, . First note that 

1) dwh(-)(t ') = d(w 0 h),(e') = aw(h(u))/au,. 

Let = 
field w on M .  By definition U = d h - ' ~  w 0 h, SO that 

v,e' be the vector field on U which corresponds to the vector 

w(h(u))  = dh,(v) = Vati-  

Therefore 

2) aw(h(u))/au, = E: (av,/au,)t' + c: v,(at'/azc,). 
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Combining 1) and 2), and then evaluating a t  the zero h-’(z) of U, we 
obtain the formula 

3) dwz( t*)  = xi (dv,/au,)t’. 

Thus dw,  maps T M ,  into itself, and the determinant L) of this linear 
transformation T M ,  + TAI, is equal to the determinant of the matrix 
(av, /au,) .  Together with Lemma 4 this completes the proof. 

Now consider a compact, boundaryless manifold M C Rk. Let N ,  
denote the closed eneighborhood of M(i.e., the set of all x E Rk with 
115 - yII 5 for some y E M ) .  For E sufficiently small one can show 
that N .  is a smooth manifold with boundary. (See $8, Problem 11.) 

For a n y  vector field v on  M with only nondegenerate zeros, Theorem 1. 
the index s u m  L i s  equal to the degree of the Gauss mapping* 

g : d N ,  -+ Sk-’. 

In  particular this sum does not depend on the choice of vector j e l d .  

PROOF. For x E N ,  let ~ ( x )  E M  denote the closest point of AI. (Compurc 
$8, Problem 12.) Note that the vector x - r ( x )  is perpendicular to the 
tangent space of ill a t  ~(x), for otherwise ~ ( x )  would not be the closest 
point of M .  If E is sufficiently small, then the function r(z)  is smooth a11d 
well defined. 

Figure 14. The eneighborhood of M 

* A different interpretation of this degree has been given by Allendoerfer and 
Fenchel: the degree of g can be expressed as the integral over M of a suitable curva- 
ture scalar, thus yielding an m-dimensional version of the classical Gauss-Bonnet 
theorem. (References [l], [9]. See also Chern [S].) 
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We will also consider the squared distance function 

p(x) = 112 - r(2)1j2. 

An easy computation shows that the gradient of p is given by 

grad p = 2(x - r(z)). 

Hence, for each point 2 of the level surface d N .  = p-’(cz), the outward 
unit normal vector is given by 

g(z) = grad p/l lgrad p[ I = (z - r(z))/e. 

Extend U to a vector field w on the neighborhood N ,  by setting 

w ( z )  = (x - r(z)) + u ( 4 4 ) .  
Then w points outward along the boundary, since the inner product 
w ( x ) - g ( x )  is equal to e > 0. Kote that w can vanish only a t  the zeros 
of v in M :  this is clear since the two summands (x - r(x)) arid u( r (x ) )  
are mutually orthogonal. Computing the derivative of w :it a zero 
z E AI, we see that 

dw,(h) = dv,(h) for all h E TA1, 

dw,(h) = h for h E TM:. 

Thus the determinant of d w ,  is equal to  the determinant of dv,. Hence 
the index of U’ a t  the zero z is equal to the index L of v a t  x .  

L is equal to the degree 
of g .  This proves Theorem 1. 

Kow according to Lemma 3 the index sum 

EXAMPLES. On the sphere S“ there exists a vector field v which 
points “north” a t  every point.* At the south pole the vectors radiate 
outward; hence the index is + 1. At the north pole the vectors converge 
inward; hence the index is (- l)m. Thus the invariant L is equal to 0 
or 2 according as m is odd or even. This gives a new proof that every 
vector field on an even sphere has a zero. 

L is 
zero. For if the vector field v is replaced by - U ,  then each index is 
multiplied by (- l)m, and the equality 

For any odd-dimensional, boundaryless manifold the invariant 

c L = (-1)” c 1 ,  

for 172 odd, implies that L = 0 

* For example, v can be defined by the formula u(z) = p - (p .z )z ,  where p is 
the north pole. (See Figure 11.) 
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L = 0 on a connected manifold M ,  then a theorem 
of Hopf asserts that there exists a vector field on M with no zeros a t  all. 

I n  order to obtain the full strength of the PoincarBHopf theorem, 
three further steps are needed. 

L with the Euler number x(M). 
It is sufficient to construct just one example of a nondegenerate vector 
field on M with i equal to x ( M ) .  The most pleasant way of doing 
this is the following: According to Marston Morse, it is always possible 
to find a real valued function on M whose ('gradient" is a nondegenerate 
vector field. Furthermore, Morse showed that the sum of indices 
associated with such a gradient field is equal to the Euler number of M .  
For details of this argument the reader is referred to Milnor [22, pp. 29, 
361. 

STEP 2. Proving the theorem /or a vector Jield with degenerate zeros. 
Consider first a vector field v on an open set U with an isolated zero 
at z. If 

REMARK. If 

STEP 1. Identification of the invariant 

x : U--+ [ O ,  11 

takes the value 1 on a small neighborhood N ,  of z and the value 0 
outside a slightly larger neighborhood N ,  and if y is a sufficiently 
small regular value of U ,  then the vector field 

d(z )  = U(.) - X(x)y 

is nondegenerate* within N .  The sum of the indices a t  the zeros within N 
can be evaluated as the degree of the map 

0 : aN + X"-', 
and hence does not change during this alteration. 

More generally consider vector fields on a compact manifold M .  
Applying this argument locally we see that any  vector .field with isolated 
zeros can be replaced by a nondegenerate vector jield without altering the 
integer C 1. 

STEP 3. Mani fo lds  with boundary. If M C Rk has a boundary, then 
any vector field v which points outward along aM can again be extended 
over the neighborhood N ,  so as to point outward along aN, .  However, 
there is some difficulty with smoothness around the boundary of M .  
Thus N ,  is not a smooth (i.e. differentiable of class Cm) manifold, 

* Clearly d is nondegenerate within N I .  But if y is sufficiently small, then v' 
will have no zeros a t  all within N - N I .  
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but only a C'-manifold. The extension w, if defined as before by 
w(z) = v(r(z))  + z - r (z ) ,  will only be a continuous vector field 
near aM. The argument can nonetheless be carried out either by showing 
that our strong differentiability assumptions are not really necessary 
or by other methods. 
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T H E  PONTRYAGIN CONSTRUCTION 

THE degree of a mapping M -+ M' is defined only when the manifolds 
M and M' are oriented and have the same dimension. We will study 
a generalization, due to Pontryagin, which is defined for a smooth map 

f : M - - + S "  

from an  arbitrary compact, boundaryless manifold to a sphere. First 
some definitions. 

Let N and N' be compact n-dimensional submanifolds of M with 
aN = aN' = aM = 0. The difference of dimensions m - n is called 
the codimension of the submanifolds. 

DEFINITION. N is cobordant to N' within M if the subset 

N X [0 ,  E) U N' X (1 - E, I ]  

of M X [0, 11 can be extended to a compact manifold 

X C M X 10, 11 
so that 

ax = N x O U N '  x 1, 

and so that X does not intersect M X 0 U M X 1 except at the points 
of ax. 

Clearly cobordism is an equivalence relation. (See Figure 15.) 

DEFINITION. A framing of the submanifold N C M is a smooth 
function t, which assigns to each x E N a basis 

b(x) = (U'(.), . . . , vrn-'(x)) 

for the space TN: C T M ,  of normal vectors to N in M at x. (See 

F 

F 
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M x O  M X  I M X 2  

Figure 15.:Pastiny together two eobordisms within M 

Figure 16.) The pair ( N ,  b) is called a framed submanifold of M .  Two 
framed submanifolds ( N ,  b) and (N' ,  b) are framed cobordant if there 
exists a cobordism X C A1 x [0, 11 between N and N' and a framing 
U of X ,  so that 

u ' ( x ,  t )  = (U'( . ) ,  0) 

uE(z, t )  = (w'(x), 0) 

for (2, t )  E N X [0, E) 

for (z, t )  E N' X (1 - E, I].  

Again this is an equivalence relation. 
Now consider a smooth map f : AP + S" and a regular value y E S". 

The map f induces a framing of the manifold f-'(y) as follows: Choose 
a positively oriented basis b = (U', . . . , U") for the tangent space T ( S Y ) v .  
For each x E f-'(y) recall from page 12 that 

dfb : TAP, -+ z'(sp)y 

maps the subspace Tf-'(y)= to zero and maps its orthogonal complement 
Tf-'(y)t isoinorphically onto T(Sv)II .  Hence there is a unique vector 

w'(x) E Tj-'(y): c T M ,  

that maps into U' under df,. It will be convenient to use the notation 
tm = f*b for the resulting framing w'(x), . . . , ~ " ( x )  of ff'(y). 

DEFINITION. This framed manifold (f-'(y), f*b) will be called the 
Pontryagin manifold associated with f . 

Of course f has many Pontryagin manifolds, corresponding to dif- 
ferent choices of y and b, but they all belong to a single framed cobordism 
class: 

Theorem A. If y' is another regular value off  and b' is a positively 
oriented basis for T(SI))III, then the framed manifold (f-'(y'), f*d) is 
framed cobordant to (f-'(y), f*b). 

Theorem B. Two mappings from M to s" are smoothly homotopic 
if and only if the associated Pontryagin inanifolds are framed cobordant. 
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Figure 16. Framed submanifolds and a framed cobordism 

Theorem C. A n y  compact /rained suhmanifold ( N ,  h~) o j  codimension p 
in M occurs as  Pontryagin manifold for some smooth mapping f : M --f S". 

Thus the homotopy classes of maps are in one-one correspondence 

The proof of Theorem A will be very similar to the arguments in 
with the framed cobordism classes of submanifolds. 

$04 and 5 .  It will be based on three lemmas. 

Lemma 1. If b and b' are two dij'erent positively oriented bases at y, 
then the Pontryagin manifold (f-'(y), f*b) i s  framed cobordant to (f-'(y), 
f*b'). 

PROOF. Choose a smooth path from b to b' in the space of all positively 
oriented bases for T(S"),. This is possible since this space of bases 
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can be identified with the space GL'(p,  R )  of matrices with positive 
determinant, and hence is connected. Such a path gives rise to the 
required framing of the cobordism f-'(y) X [0, I]. 

By abuse of notation we will often delete reference to f*b and speak 
simply of "the framed manifold f-'(y)." 

Lemma 2. If y i s  U regular value off, and z i s  suficiently close to y, then 
f-'(z) is  framed cobordant to f-'(y). 

PROOF. Since the set f(C) of critical values is conipact, we can choose 
e > 0 so that the e-neighborhood of y contains only regular values. 
Given z with I[z - yI( < e, choose a smooth one-parameter family 
of rotations (i.e. an isotopy) r r  : S" --f S" so that rl(y) = z, and so that 

1) r t  is the identity for 0 5 t < E', 

2) rt equals r1  for 1 - e' < 1 5 1, and 
3) each r;'(z) lies on the great circle from y to  z ,  and hence is a 

regular value of f. 

Define the homotopy 
F : M X [0, 11 --f Sv 

by F(z,  1 )  = r , f (z) .  For each t note that z is a regular value of the 
composition 

rt  0 \ : ill -+ S". 

is a regular value for the mapping F .  Herice It follows a fortiori that 

F-'(z) C M X 10, 11 

is a framed manifold and provides a framed cobordism between the 
framed manifolds f-'(z) and (rl o f ) - ' ( z )  = f-'rF'(z) = f-'(y). This 
proves Lemma 2. 

Lemma 3. If f and g are smoothly homotopic and y i s  a regular value 
for both, then f-'(y) i s  framed cobordant to g-l(y). 

PROOF. Choose a homotopy F with 

F ( z ,  t )  = f ( z )  
F(z,  t )  = g(z) 

0 5 t < e ,  

1 - e < t I 1. 

Choose a regular value z for F which is close enough to y so that f-'(z) 
is framed cobordant to f-'(y) and so that g- ' (z )  is framed cobordant 
to g-'(y). Then F- ' (z )  is a framed manifold and provides a framed 
cobordism between f-'(z) and g-'(z). This proves Lemma 3. 



46 $7. Framed cobordism 

PROOF OF THEOREM A. Given any two regular values y and z for f ,  
we can choose rotations 

r t  :SP-+S” 

so that ro is the identity and r l ( y )  = z.  Thus f is homotopic to rl 0 f ;  
hence f-’(z) is framed cobordant to 

(rl 0 f)-’(z) = f-’r;’(z) = f-’(y). 

This completes the proof of Theorem A. 

The proof of Theorem C will be based on the following: Let N C M 
be a framed submanifold of codimension p with framing b. Assume that 
N is compact and that aN = aM = @. 

Product Neighborhood Theorem. Some neighborhood of N in M i s  
diffeomorphic to the product N x R”. Furthermore the diffeomorphism 
can be chosen so that each x E N corresponds to and 
so that each normal frame ~ ( x )  corresponds to the standard basis for R”. 

REMARK. Product neighborhoods do not exist for arbitrary subniani- 

(2, 0 )  E N x R” 

folds. (Compare Figure 17.) 

Figure 17. An unJramable submanifold 

PROOF. First suppose that M is the euclidean space R”’”. Consider 
the mapping g : N X R” -+ M ,  defined by 

g(x ;  t,, . . * , t”) = x + t 1 U 1 ( X )  + * * . + t”U”(X). 

Clearly dg(z ;o , . . .  , o )  is nonsingular; hence g maps some neighborhood 
of (2, 0) E N X R” diffeomorphically onto an open set. 

We will prove that g is one-one on the entire neighborhood N X U ,  
of N X 0, providing that e > 0 is sufficiently small; where U ,  denotes 
the e-neighborhood of 0 in R”. For otherwise there would exist pairs 
(z, U )  # (x’, U’) in N X R” with llull and I/u’I( arbitrarily small and with 

!&l U> = dx’ ,  U’). 
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Since N is compact, we could choose a sequence of such pairs with x 
converging, say to xo, with x’ converging to x;, and with U -+ 0 and 
U’ --+ 0. Then clearly xo = x;, and we have contradicted the statement 
that g is one-one in a neighborhood of (xo, 0). 

Thus g maps N X U ,  dlffeomorphically onto an open set. But U ,  
is diffeomorphic to the full euclidean space R” under the correspondence 

u-+u/(l  - llui12/e2). 

Since g(x ,  0) = x ,  and since dg,,,,, does what is expected of it, this 
proves the Product Neighborhood Theorem for the special case 
M = E’”. 

For the general case it is necessary to replace straight lines in R”’” 
by geodesics in M .  More precisely let g(z; t,, . . . , t,) be the endpoirit 
of the geodesic segment of length I ltld ( x )  + * . + t,u”(x) I I in M which 
starts a t  x with the initial velocity vector 

t lul(x) + . f + t ,U”(X) /~  I t # ’ ( X )  + * * f + t g V ( x )  I 1 .  
The reader who is familiar with geodesics will have no difficulty in 
checking that 

g : N X U , - + M  
is well defined and smooth, for e sufficiently small. The remainder of 
the proof proceeds exactly as before. 

PROOF OF THEOREM C. Let N C AI be a compact, boundaryless, 
framed submanifold. Choose a product representation 

g : N X I Z ” - + V C M  
for a neighborhood V of N ,  as above, and define the projection 

T :  V-+R” 
by s ( g ( x ,  y ) )  = y .  (See Figure 18.) Clearly 0 is a regular value, and 
n-’(O) is precisely N with its given framing. 

N 

Figure 18. Constructing a m a p  with given Pontryagin manifold 

1 
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Now choose a smooth map cp : R” 3 x” which maps every x with 
11x1 I 2 1 into a base point so, and maps the open unit ball in Rp diffeomor- 
phically* onto 8” - so. Define 

f : M - + S ”  

by 
f(z) = &(x)) for x E V 

f(x> = so for x #  V .  

Clearly f is smooth, and the point cp(0) is a regular value of f .  Since 
the corresponding Pontryagin manifold 

f-l(P(0)) = n-’(O> 

is precisely equal to the framed manifold N ,  this completes the proof 
of Theorem C. 

In order to prove Theorem B we must first show that the Pontryagin 
manifold of a map determines its homotopy class. Let f ,  g : M --f S” 
be smooth maps with a common regular value y. 

Lemma 4. I f  the framed manifold (f-’(y), f*b) i s  equal to (g-’(y), g*b), 
then f i s  smoothly homotopic to g. 

PROOF. It will be convenient to set N = f-l(y). The hypothesis 
that f*b = g*b means that df, = dg,  for all 2 E N .  

First suppose that f actually coincides with g throughout an entire 
neighborhood V of N .  Let h : S” - y -+ R” be stereographic projection. 
Then the homotopy 

w, 0 = f(4 for x e V 

F(x ,  t )  = h-’[t*h(f(x))  + (1 - t ) .h(g(x))]  for x E M  - N 
proves that f is smoothly homotopic to g. 

Thus is suffices to deform f so that it coincides with g in some small 
neighborhood of N ,  being careful not to map any new points into y 
during the deformation. Choose a product representation 

N X R” + V C M 
for a neighborhood V of N ,  where V is small enough so that f ( V )  and 

* For example, p(z) = h-l(z/A(\\z1\2)), where h is the stereographic projection 
from SO and where X is a smooth monotone decreasing function with X ( t )  > 0 for 
t < 1 and X ( t )  = 0 for 1 2 1. 
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g ( V )  do not contain the antipode fj of y. Identifying V with N X R” 
and identifying S” - 5 with R”, we obtain corresponding mappings 

F ,  G : N X R” --f R”, 

with 

F-‘(O) = G-’(0) = N X 0, 

and with 

dF,,,,, = dG(,,o, = (projection to R”) 
for all 5 E N .  

We will first find a constant c so that 

F(z ,u ) .u  > 0 ,  G(z ,u ) .u  > 0 

for z E N and 0 < llul[ < c. That is, the points F(z,  U )  and G ( x ,  U )  

belong to the same open half-space in R”. So the honiotopy 

(1 - t)F(z, U) + tG(x, U )  

bet,weeii F and G will not map any new points into 0, a t  least for I Iu[ I < c. 

IIF(z,u) - ~ l l  I c1 l l ~ l l ~ ,  for llull I 1.  

I(F(., 4 - u).uI I c1 I/U113 

F ( z , u ) . u  2 l l U / j 2  - c1 [lull3 > 0 

By Taylor’s theorem 

Hence 

and 

for 0 < \lull < Min(c;’, l), with a similar inequality for G. 

with 
To avoid moving distant points we select a smooth map X : R p  -+ R 

X ( U )  = 1 for llull 5 c/2 

X ( U )  = 0 for ljull 2 c. 

Now the honiotopy 

Ft(z ,  U )  = [l - X ( U ) ~ ] F ( Z ,  U )  + X(U)~G(X,  U )  

deforms F = Fo into a mapping F ,  that (1) coincides with G in the 
region \ ( U ( (  < c/2, (2) coincides with F for ( / U \ (  2 c, and (3) has no 
new zeros. Making a corresponding deformation of the original mapping 
f ,  this clearly completes the proof of Lemma 4. 
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PROOF OF THEOREM B. If f and g are smoothly homotopic, then 
Lemma 3 asserts that the Pontryagin manifolds f f ' ( y )  and g- l (y )  
are framed cobordant. Conversely, given a framed cobordism ( X ,  r ~ )  
between f-'(y) and 9-l (y), an argument completely analogous to the 
proof of Theorem C constructs a homotopy 

F : M X  [0 ,1] -+x"  

whose Pontryagin manifold (F- ' (y ) ,  F 4 )  is precisely equal to ( X ,  m). 
Setting F , ( z )  = F(z, t ) ,  note that the maps F ,  and f have exactly the 
same Pontryagin manifold. Hence F ,  - f by Lemma 4; and similarly 
F 1  - g. Therefore f - g ,  which completes the proof of Theorem B. 

REMARKS. Theorems A, B, and C can easily be generalized so as 
to apply to  a manifold M with boundary. The essential idea is to 
consider only mappings which carry the boundary into a base point 
so. The homotopy classes of such mappings 

.4 

(AI ,  a m  --$ (S",  so) 

are in one-one correspondence with the cobordisni classes of franicd 
submanifolds 

N C Interior(M) 

of codimension p .  If p 2 am + 1, then this set of homotopy classes 
can be given the structure of an abelian group, called the p-th cohomotopy 
group ?rP(Ml d M ) .  The composition operation in ?rp(M, d M )  corresponds 
to the union operation for disjoint framed submanifolds of Interior (M). 
(Compare $8, Problem 17.) 
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As an example, let M be a connected and oriented manifold of dimen- 
sion m = p.  A framed submanifold of codimension p is just a finite set 
of points with a preferred basis at each. Let sgn(z) equal +1 or - 1 
according as the preferred basis determines the right or wrong orien- 
tation. Then sgn(x) is clearly equal to the degree of the associated 
map M -+ S"'. But it is not difficult to  see that the framed cobordisni 
class of the 0-manifold is uniquely determined by this integer sgn(z). 
Thus we have proved the following. 
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If M i s  connected, oriented, and boundaryless, 
then two maps  M -+ S"' are smoothly homotopic if and only if they have 
the same degree. 

On the other hand, suppose that M is not orientable. Then given a 
basis for T M ,  we can slide x around M in a closed loop so as to transform 
the given basis into one of opposite orientation. An easy argument 
then proves the following: 

Theorem of Hopf. 

Theorem. If M i s  cmnected but nonorientable, then two maps  M -+ S'" 

The theory of framed cobordisni was iiitroduced by Pontryagiii in 

are homotopic if and only if they have the same mod 2 degree. 

order to study homotopy classes of mappings 

S" -+ x" 
with m > p.  For example if m = p + 1 2 4, there are precisely two 
hoiiiotopy classes of mappings S"' + S". Pontryagin proved this result 
by classifying framed 1-manifolds in S"'. With considerably more 
difficulty he was able to show that there are just two homotopy classes 
also in the case nz = p + 2 2 4, using framed 2-nianifolds. However, 
for m - p > 2 this approach to the problem runs into manifold diffi- 
culties. 

It has since turned out to be easier to eriunierate homotopy classes 
of mappings by quite different, more algebraic methods.* Pontryagin's 
construction is, however, a double-edged tool. It not only allows us to 
translate information about manifolds into homotopy theory; it con- 
versely enables us to translate any information about homotopy into 
manifold theory. Some of the deepest work in modern topology has 
come from the interplay of these two theories. Ren6 Thorn's work on 
cobordism is an important example of this. (References [36], [all.) 

* See for example S.-T. Hu, Homotopy Theory. 



88. EXERCISES 

IN CONCLUSION here are some problems for the reader. 

PROBLEM 1. Show that the degree of a composition g 0 f is equal to 
the product (degree g) (degree f) .  

PROBLEM 2. Show that every complex polynomial of degree n gives 
rise to a smooth map from the Gauss sphere S2 to itself of degree n. 

PROBLEM 3. If two maps f and g from X to  x" satisfy I If(x) - g(x)  1 1  < 2 
for all x, prove that f is homotopic to g, the homotopy being smooth if f 
and g are smooth. 

PROBLEM 4. If X is compact, show that every continuous map X -+ S" 
can be uniformly approximated by a smooth map. If two smooth maps 
X -+ x" are continuously homotopic, show that they are smoothly 
homotopic. 

PROBLEM 5.  If m < p ,  show that every map fiI" --$ S" is homotopic 
to a constant. 

PROBLEM 6. (Brouwer). Show that any map S" -+ S" with degree 
different from (- l)"+' must have a fixed point. 

PROBLEM 7. Show that any map s" -+ S" of odd degree must carry 

PROBLEM 8. Given smooth manifolds M C Rk and N C R', show 

some pair of antipodal points into a pair of antipodal points. 

that the tangent space T ( M  x N ) c , , , ,  is equal to T M ,  X TN,. 

PROBLEM 9. The graph r of a smooth map f : M -+ N is defined to be 
the set of all (5, y) E M X N with f(z) = y. Show that I' is a smooth 

Exercises 

manifold and that the tangent space 

T r ( z , v ,  c T K  x T N ,  
is equal to the graph of the linear map df,. 
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PROBLEM 10. Given M C Rk, show that the tangent bundle space 

TAI = {(x, U )  E AI X Rk 1 v E Tillz) 

is also a smooth manifold. Show that any smooth map f : M -+ N 
gives rise to a smooth map 

df : TM -+ TN 
where 

d(identity) = identity, d(g 0 f )  = (dg) o ( d f ) .  
PROBLEM 11. Similarly show that the normal bundle space 

E =  ( ( ~ , ~ ~ ) r n I X R k ~ ~ ~ T T n I , )  
is a smooth manifold. If M is compact and boundaryless, show that 
the correspondence 

( x , 4  H z + 
from E to  Rk maps the E-neighborhood of M X 0 in E diffeomorphically 
onto the eneighborhood N ,  of M in Rk. (Compare the Product Neighbor- 
hood Theorem in $7.) 

PROBLEM 12. Define r : N ,  -+ M by r ( x  + v )  = 2. Show that r(z + v) 
is closer to x + U than any other point of M .  Using this retraction r, 
prove the analogue of Problem 4 in which the sphere S" is replaced 
by a manifold M .  

PROBLEM 13. Given disjoint manifolds M ,  N c R'", the linking map 

X : M X N - +  Sk 

is defined by X(z, y) = (x - y)/llx - yII. If M and N are compact, 
oriented, and boundaryless, with total dimension m + n = k, then 
the degree of X is called the linking number l ( M ,  N ) .  Prove that 

l ( N ,  M )  = (-l)(m+l)(n+l) w1 NI.  
If M bounds a n  oriented manifold X disjoint from N ,  prove that 
Z(M, N )  = 0. Define the linking number for disjoint manifolds in 
the sphere X"+"". 
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PROBLEM 14, THE HOPF INVARIANT. If y # z are regular values for a 
map f : S”-’ 4 S”, then the manifolds f-’(y), f - ’ ( z )  can be oriented 
as in $5; hence the linking number l ( f -’(y) ,  f-’(z)) is defined. 

a) Prove that this linking number is locally constant as a function 

b) If y and z are regular values of g also, where 
of y.  

Ilf(4 - 9(”)1/ < IIY  - 41 

K f 1 ( Y ) ,  f-’(zN = V g - l ( Y ) ,  f-’W = G ’ ( Y ) ,  g - ‘ (4 ) .  
for all x, prove that 

c) Prove that l ( f - ’ (y ) ,  f - ’ ( z ) )  depends only on the honlotopy class 

This integer H(f) = l ( f -’(y) ,  f - ’ ( z ) )  is called the Hopf invariant of f. 

PROBLEM 15. If the dimension p is odd, prove that H(f) = 0. For 

of f ,  and does not depend on the choice of y and z. 

(Reference [15].) 

a composition 

S 2 P - l  1, 8” 4 8” 

prove that H ( g  0 f )  is equal to H ( f )  multiplied by the square of the 
degree of g .  

The Hopf Jibration a : S3 --+ S2 is defined by 

a(z l ,  2 2 ,  2 . 3 ,  2,) = h-’((.cl + i x2 ) / (x3  + i d )  
where h denotes stereographic projection to the complex plane. Prove 
that H ( a )  = 1. 

PROBLEM 16. Two submanifolds N and N‘ of A f  are said to  intersect 
transversally if, for each x E N f l  N’, the subspaces T N ,  and T N J  
together generate TM,.  (If n + n’ < in this means that N f l  N’ = @.) 
If N is a framed submanifold, prove that it can be deformed slightly 
so as to intersect a given N‘ transversally. Prove that the resulting 
intersection is a smooth manifold. 

PROBLEM 17. Let IIp(M) denote the set of all framed cobordism 
classes of codimension p in M. Use the transverse intersection operation 
to define a correspondence 

rIP(M) x rI*(M) 3 rI”+“(M). 

If p 2 inz + 1, use the disjoint union operation to make nP(M) into 
an abelian group. (Compare p. 50.) 
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APPENDIX 

CLASSIFYING 1 -MAN1 FO LD S 

WE WILL prove the following result, which has been assumed in the 
text. A brief discussion of the classification problem for higher dimen- 
sional manifolds will also be given. 

Theorem. A n y  smooth, connected 1-dimensional manifold i s  difeo- 
morphic either to the circle S‘ or to some interval of real numbers. 

(An interval is a connected subset of R which is not a point. It may 

Since any interval is diffeomorphic* either to [0, 11, (0, 11, or (0, 1), 

The proof will make use of the concept of “arc-length.” Let I be an 

be finite or infinite; closed, open, or half-open.) 

it follows that there are only four distinct connected 1-manifolds. 

interval. 

DEFINITION. A map f : I 4 M is a parametrization by arc-length if f 
maps I difleomorphically onto an open subset t of M ,  and if the “velocity 
vector” d f , ( l )  E TM,,,, has unit length, for each s E I .  

Any given local parametrization I’ -+ M can be transformed into 
a parametrization by arc-length by a straightforward change of variables. 

Lemma. Let f : I --f M and g : J --$ M be parametrizations by arc-length. 
Then f(I) A g ( J )  has at most two components. If i t  has only one component, 
then f can be extended to a parametrization by arc-length of the union 
f(I) U g ( J ) .  If i t  has two components, then M must be diffeomorphic to X’. 

* For example, use a diffeomorphism of the form 

f(t) = a tanh ( t )  + b. 

t Thus I can have boundary points only if M has boundary points. 
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PROOF. Clearly 9-l 0 f maps some relatively open subset of I diffeomor- 
phically onto a relatively open subset of J .  Furthermore the derivative 
of g-' o f is equal to i l  everywhere. 

Consider the graph r C I x J ,  consisting of all (s, t )  with f(s) = g( t ) .  
Then J? is a closed subset of I X J made up of line segments of slope f 1. 
Since r is closed and 9-l 0 f is locally a diffeoniorphism, these line 
segments cannot end in the interior of I x J ,  but must extend to the 
boundary. Since g-' o f is one-one and single valued, there can be a t  
most one of these segments ending on each of the four edges of the 
rectangle I x J .  Hence has a t  most two components. (See Figure 19.) 
Furthermore, if there are two components, the two must have the same 
slope. 

8 - I  A U 

Figure 19. Three of the possibilities for r 

If r is connected, then g-l o f extends to a linear map L : R -+ R. 
Now f and g o L piece together to yield the required extension 

F : I U L-'(J) + f ( I )  U g ( J ) .  

has two components, with slope say + 1, they must be arranged as 
in the left-hand rectangle of Figure 19. Translating the interval 
J = (y, p )  if necessary, we may assume that y = c and 6 = d, so that 

a < b l c  < d < a  < p .  

If 

Now setting 8 = 2?rt/(a - a) ,  the required difieomorphism 

h : S ' - + M  

is defined by the formula 

h(cos 0, sin 0) = f(t) for a < t < d ,  

= g( t )  for c < t < 8. 

'1 

i 
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The image h(S') ,  being compact and open in AI, must be the entire 
manifold M .  This proves the lemma. 

PROOF OF CLASSIFICATION THEOREM. Any parametrization by arc- 
length can be extended to one 

f : I + M  

which is maximal in the sense that f cannot be extended over any 
larger interval as a parametrization by arc-length: it is only necessary 
to extend f as far as possible to the left and then as far as possible to 
the right. 

If M is not diffeoniorphic to A", we will prove that f is onto, and 
hence is a diffeoniorphism. For if the open set f ( I )  were not all of M ,  
there would be a limit point z of f ( I )  in M - f ( I ) .  Parametrizing a 
neighborhood of x by arc-length and applying the lemma, we would 
see that f can be extended over a larger interval. This contradicts the 
assumption that f is maximal and hence completes the proof. 

REMAHKS. For manifolds of higher dimension the classification 
problem becomes quite formidable. For 2-dimensional manifolds, a 
thorough exposition has been given by KerBkjArtb [17]. The study of 
%dimensional manifolds is very much a topic of current research. 
(See l'apakyrialtopoulos [as].) lcor coinpact nianifolds of dimension 2 4 
the classification problem is actually unsolvable.* But for high dimen- 
sional simply connected manifolds there has been much progress in 
recent years, as exemplified by the work of Smale [31] and Wall [37]. 

* See Markov [19]; and also a forthcoming paper by Boone, Haken, and Poknaru 
in Fundamenta Mathematicae. 
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