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Preface

Quantum field theory is a set of ideas and tools that combines three of the
major themes of modern physics: the quantum theory, the field concept, and
the principle of relativity. Today, most working physicists need to know some
quantum field theory, and many others are curious about it. The theory un-
derlies modern elementary particle physics, and supplies essential tools to
nuclear physics, atomic physics, condensed matter physics, and astrophysics.
In addition, quantum field theory has led to new bridges between physics and
mathematics.

One might think that a subject of such power and widespread application
would be complex and difficult. In fact, the central concepts and techniques
of quantum field theory are quite simple and intuitive. This is especially true
of the many pictorial tools (Feynman diagrams, renormalization group flows,
and spaces of symmetry transformations) that are routinely used by quantum
field theorists. Admittedly, these tools take time to learn, and tying the subject
together with rigorous proofs can become extremely technical. Nevertheless,
we feel that the basic concepts and tools of quantum field theory can be made
accessible to all physicists, not just an elite group of experts.

A number of earlier books have succeeded in making parts of this subject
accessible to students. The best known of these is the two-volume text written
in the 1960s by our Stanford colleagues Bjorken and Drell. In our opinion, their
text contains an ideal mixture of abstract formalism, intuitive explanations,
and practical calculations, all presented with great care and clarity. Since the
1960s, however, the subject of quantum field theory has developed enormously,
both in its conceptual framework (the renormalization group, new types of
symmetries) and in its areas of application (critical exponents in condensed
matter systems, the standard model of elementary particle physics). It is long
overdue that a textbook of quantum field theory should appear that provides
a complete survey of the subject, including these newer developments, yet still
offers the same accessibility and depth of treatment as Bjorken and Drell. We
have written this book with that goal in mind.

xi
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An Outline of the Book

This textbook is composed of three major sections. The first is mainly con-
cerned with the quantum theory of electromagnetism, which provided the first
example of a quantum field theory with direct experimental applications. The
third part of the book is mainly concerned with the particular quantum field
theories that appear in the standard model of particle interactions. The sec-
ond part of the book is a bridge between these two subjects; it is intended to
introduce some of the very deep concepts of quantum field theory in a context
that is as straightforward as possible.

Part I begins with the study of fields with linear equations of motion, that
is, fields without interactions. Here we explore the combined implications of
quantum mechanics and special relativity, and we learn how particles arise
as the quantized excitations of fields. We then introduce interactions among
these particles and develop a systématic method of accounting for their effects.
After this introduction, we carry out explicit computations in the quantum
theory of electromagnetism. These illustrate both the special features of the
behavior of electrons and photons and some general aspects of the behavior
of interacting quantum fields.

In several of the calculations in Part I, naive methods lead to infinite re-
sults. The appearance of infinities is a well-known feature of quantum field the-
ory. At times, it has been offered as evidence for the inconsistency of quantum
field theory (though a similar argument could be made against the classical
electrodynamics of point particles). For a long time, it was thought sufficient
to organize calculations in such a way that no infinities appear in quantities
that can be compared directly to experiment. However, one of the major in-
sights of the more recent developments is that these formal infinities actually
contain important information that can be used to predict the qualitative be-
havior of a system. In Part II of the book, we develop this theory of infinities
systematically. The development makes use of an analogy between quantum-
mechanical and thermal fluctuations, which thus becomes a bridge between -
quantum field theory and statistical mechanics. At the end of Part IT we dis-
cuss applications of quantum field theory to the theory of phase transitions
in condensed matter systems.

Part III deals with the generalizations of quantum electrodynamics that
have led to successful models of the forces between elementary particles. To
derive these generalizations, we first analyze and generalize the fundamental
symmetry of electrodynamics, then work out the consequences of quantizing
a theory with this generalized symmetry. This analysis leads to intricate and
quite nontrivial applications of the concepts introduced earlier. We conclude
Part III with a presentation of the standard model of particle physics and a
discussion of some of its experimental tests.

The Epilogue to the book discusses qualitatively the frontier areas of
research in quantum field theory and gives references that can guide a student
to the next level of study.
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Where a choice of viewpoints is possible, we have generally chosen to ex-
plain ideas in language appropriate to the applications to elementary particle
physics. This choice reflects our background and research interests. It also
reflects our strongly held opinion, even in this age of intellectual relativism,
that there is something special about unraveling the behavior of Nature at the
deepest possible level. We are proud to take as our subject the structure of the
fundamental interactions, and we hope to convey to the reader the grandeur
and continuing vitality of this pursuit.

How to Use This Book

This book is an introduction to quantum field theory. By this we mean, first
and foremost, that we assume no prior knowledge of the subject on the part
of the reader. The level of this book should be appropriate for students tak-
ing their first course in quantum field theory, typically during the second
year of graduate school at universities in the United States. We assume that
the student has completed graduate-level courses in classical mechanics, clas-
sical electrodynamics, and quantum mechanics. In Part II we also assume
some knowledge of statistical mechanics. It is not necessary to have mastered
every topic covered in these courses, however. Crucially important prerequi-
sites include the Lagrangian and Hamiltonian formulations of dynamics, the
relativistic formulation of electromagnetism using tensor notation, the quan-
tization of the harmonic oscillator using ladder operators, and the theory of
scattering in nonrelativistic quantum mechanics. Mathematical prerequisites
include an understanding of the rotation group as applied to the quantum
mechanics of spin, and some facility with contour integration in the complex
plane.

Despite being an “introduction”, this book is rather lengthy. To some
extent, this is due to the large number of explicit calculations and worked
examples in the text. We must admit, however, that the total number of
topics covered is also quite large. Even students specializing in elementary
particle theory will find that their first research projects require only a part
of this material, together with additional, specialized topics that must be
gleaned from the research literature. Still, we feel that students who want
to become experts in elementary particle theory, and to fully understand its
unified view of the fundamental interactions, should master every topic in this
book. Students whose main interest is in other fields of physics, or in particle
experimentation, may opt for a much shorter “introduction”, omitting several
chapters.

The senior author of this book once did succeed in “covering” 90% of
its content in a one-year lecture course at Stanford University. But this was
a mistake; at such a pace, there is not enough time for students of average
preparation to absorb the material. Our saner colleagues have found it more
reasonable to cover about one Part of the book per semester. Thus, in planning
a one-year course in quantum field theory, they have chosen either to reserve
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Part III for study at a more advanced level or to select about half of the
material from Parts II and III, leaving the rest for students to read on their
own.

We have designed the book so that it can be followed from cover to cover,
introducing all of the major ideas in the field systematically. Alternatively,
one can follow an accelerated track that emphasizes the less formal applica-
tions to elementary particle physics and is sufficient to prepare students for
experimental or phenomenological research in that field. Sections that can be
omitted from this accelerated track are marked with an asterisk in the Table
of Contents; none of the unmarked sections depend on this more advanced
material. Among the unmarked sections, the order could also be varied some-
what: Chapter 10 does not depend on Chapters 8 and 9; Section 11.1 is not
needed until just before Chapter 20; and Chapters 20 and 21 are independent
of Chapter 17.

Those who wish to study some, but not all, of the more advanced sections
should note the following table of dependencies:

Before reading . . . one should read all of . . .
Chapter 13 Chapters 11, 12
Section 16.6 Chapter 11
Chapter 18 Sections 12.4, 12.5, 16.5
Chapter 19 Sections 9.6, 15.3
Section 19.5 Section 16.6
Section 20.3 Sections 19.1-19.4
Section 21.3 Chapter 11

Within each chapter, the sections marked with an asterisk should be read
sequentially, except that Sections 16.5 and 16.6 do not depend on 16.4.

A student whose main interest is in statistical mechanics would want
to read the book sequentially, confronting the deep formal issues of Part II
but ignoring most of Part III, which is mainly of significance to high-energy
phenomena. (However, the material in Chapters 15 and 19, and in Section
20.1, does have beautiful applications in condensed matter physics.)

We emphasize to all students the importance of working actively with the
material while studying. It probably is not possible to understand any section
of this book without carefully working out the intermediate steps of every
derivation. In addition, the problems at the end of each chapter illustrate the
general ideas and often apply them in nontrivial, realistic contexts. However,
the most illustrative exercises in quantum field theory are too long for ordinary
homework problems, being closer to the scale of small research projects. We
have provided one of these lengthy problems, broken up into segments with
hints and guidance, at the end of each of the three Parts of the book. The
volume of time and paper that these problems require will be well invested.

At the beginning of each Part we have included a brief “Invitation” chap-
ter, which previews some of the upcoming ideas and applications. Since these
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chapters are somewhat easier than the rest of the book, we urge all students
to read them.

What This Book is Not

Although we hope that this book will provide a thorough grounding in quan-
tum field theory, it is in no sense a complete education. A dedicated student of
physics will want to supplement our treatment in many areas. We summarize
the most important of these here.

First of all, this is a book about theoretical methods, not a review of
observed phenomena. We do not review the crucial experiments that led to
the standard model of elementary particle physics or discuss in detail the
more recent experiments that have confirmed its predictions. Similarly, in
the chapters that deal with applications to statistical mechanics, we do not
discuss the beautiful and varied experiments on phase transitions that led to
the confirmation of field theory models. We strongly encourage the student
to read, in parallel with this text, a modern presentation of the experimental
development of each of these fields.

Although we present the elementary aspects of quantum field theory in
full detail, we state some of the more advanced results without proof. For
example, it is known rigorously, to all orders in the standard expansion of
quantum electrodynamics, that formal infinities can be removed from all ex-
perimental predictions. This result, known as renormalizability, has important
consequences, which we explore in Part II. We do not present the general proof
of renormalizability. However, we do demonstrate renormalizability explicitly
in illustrative, low-order computations, we discuss intuitively the issues that
arise in the complete proof, and we give references to a more complete demon-
stration. More generally, we have tried to motivate the most important results
(usually through explicit examples) while omitting lengthy, purely technical
derivations.

Any introductory survey must classify some topics as beyond its scope.
Our philosophy has been to include what can be learned about quantum
field theory by considering weakly interacting particles and fields, using series
expansions in the strength of the interaction. It is amazing how much insight
one can obtain in this way. However, this definition of our subject leaves out
the theory of bound states, and also phenomena associated with nontrivial
solutions to nonlinear field equations. We give a more complete listing of such
advanced topics in the Epilogue.

Finally, we have not attempted in this book to give an accurate record of
the history of quantum field theory. Students of physics do need to understand
the history of physics, for a number of reasons. The most important is to
acquire a precise understanding of the experimental basis of the subject. A
second important reason is to gain an idea of how science progresses as a
human endeavor, how ideas develop as small steps taken by individuals to
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become the major achievements of the community as a whole.*

In this book we have not addressed either of these needs. Rather, we have
included only the kind of mythological history whose purpose is to motivate
new ideas and assign names to them. A principle of physics usually has a
name that has been assigned according to the community’s consensus on who
deserves credit for its development. Usually the real credit is only partial, and
the true historical development is quite complex. But the clear assignment of
names is essential if physicists are to communicate with one another.

Here is one example. In Section 17.5 we discuss a set of equations govern-
ing the structure of the proton, which are generally known as the Altarelli-
Parisi equations. Our derivation uses a method due to Gribov and Lipatov
(GL). The original results of GL were rederived in a more abstract language
by Christ, Hasslacher, and Mueller (CHM). After the discovery of the cor-
rect fundamental theory of the strong interactions (QCD), Georgi, Politzer,
Gross, and Wilczek (GPGW) used the technique of CHM to derive formal
equations for the variation of the proton structure. Parisi gave the first of a
number of independent derivations that converted these equations into a use-
ful form. The combination of his work with that of GPGW gives the derivation
of the equations that we present in Section 18.5. Dokhshitzer later obtained
these equations more simply by direct application of the method of GL. Some-
time later, but independently, Altarelli and Parisi obtained these equations
again by the same route. These last authors also popularized the technique,
explaining it very clearly, encouraging experimentalists to use the equations
in interpreting their data, and prodding theorists to compute the systematic
higher-order corrections to this picture. In Section 17.5 we have presented the
shortest path to the end of this convoluted historical road and hung the name
‘Altarelli-Parisi’ on the final result.

There is a fourth reason for students to read the history of physics: Often
the original breakthrough papers, though lacking a textbook’s advantages of
hindsight, are filled with marvelous personal insights. We strongly encourage
students to go back to the original literature whenever possible and see what
the creators of the field had in mind. We have tried to aid such students
with references provided in footnotes. Though occasionally we refer to papers
merely to give credit, most of the references are included because we feel the
reader should not miss the special points of view that the authors put forward.

*The history of the development of quantum field theory and particle physics has
recently been reviewed and debated in a series of conference volumes: The Birth of
Particle Physics, L. M. Brown and L. Hoddeson, eds. (Cambridge University Press,
1983); Pions to Quarks, L. M. Brown, M. Dresden, and L. Hoddeson, eds. (Cambridge
University Press, 1989); and The Rise of the Standard Model, L. M. Brown, M. Dres-
den, L. Hoddeson, and M. Riordan, eds. (Cambridge University Press, 1995). The early
history of quantum electrodynamics is recounted in a fascinating book by Schweber
(1994).
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Notations and Conventions

Units
We will work in “God-given” units, where
h=c=1.

In this system,

[length] = [time] = [energy] ™' = [mass] ™.

The mass (m) of a particle is therefore equal to its rest energy (mc?), and
also to its inverse Compton wavelength (mc/h). For example,

Metectron = 9.109 x 10728 g = 0.511 MeV = (3.862 x 10~ cm) ™.

A selection of other useful numbers and conversion factors is given in the
Appendix.

Relativity and Tensors

Our conventions for relativity follow Jackson (1975), Bjorken and Drell (1964,
1965), and nearly all recent field theory texts. We use the metric tensor

1000
w0100
G =9 =109 0-1 0 |°

00 0-1

with Greek indices running over 0, 1, 2, 3 or ¢, x, y, 2. Roman indices—
i, j, etc.—denote only the three spatial components. Repeated indices are
summed in all cases. Four-vectors, like ordinary numbers, are denoted by light
italic type; three-vectors are denoted by boldface type; unit three-vectors are
denoted by a light italic label with a hat over it. For example,

0 x), Ty = g’ = (z°, —x);

= (z
p-z=gup'z’ =p’z° —p-x
A massive particle has

P’ =p'py = E* — [p|* = m®.
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Note that the displacement vector z* is “naturally raised”, while the derivative

operator
’ R V)
ST (8—xﬁ’ ’
is “naturally lowered”.
We define the totally antisymmetric tensor e#?? so that

€012 = 41.
Be careful, since this implies €g123 = —1 and €'23© = —1. (This convention
agrees with Jackson but not with Bjorken and Drell.)
Quantum Mechanics

We will often work with the Schrodinger wavefunctions of single quantum-
mechanical particles. We represent the energy and momentum operators act-
ing on such wavefunctions following the usual conventions:

0 )
E = Z@, P = —'LV.
These equations can be combined into
ph =9

raising the index on 0" conveniently accounts for the minus sign. The plane
wave e %' has momentum k*, since

ia“(e—ik'w) = kM e—tkT,

The notation ‘h.c.” denotes the Hermitian conjugate.

Discussions of spin in quantum mechanics make use of the Pauli sigma
matrices:

1_ (0 1 2 (0 —i 3 (1 0
7 _<1 0>’ 7 _(i 0)’ ’ _(0 -1)
Products of these matrices satisfy the identity
olo? = 69 4 iclikg*,

It is convenient to define the linear combinations 6% = (o' +40?); then
0 1 _ 0 0
+_ _
“=(50) -(0)

Fourier Transforms and Distributions

We will often make use of the Heaviside step function 6(z) and the Dirac delta
function é(x), defined as follows:

6(z) = {(1’ zs 8 §(z) = %0(1:).
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The delta function in n dimensions, denoted 6§ (x), is zero everywhere except
at x = 0 and satisfies
/d"a; s (x) = 1.

In Fourier transforms the factors of 27 will always appear with the mo-
mentum integral. For example, in four dimensions,

@) = [ e by

flk) = / d'z e f(z).

(In three-dimensional transforms the signs in the exponents will be + and —,
respectively.) The tilde on f(k) will sometimes be omitted when there is no
potential for confusion. The other important factors of 27 to remember appear
in the identity

/ dize*® = (21)*6@ (k).

Electrodynamics

We use the Heaviside-Lorentz conventions, in which the factors of 47 appear
in Coulomb’s law and the fine-structure constant rather than in Maxwell’s
equations. Thus the Coulomb potential of a point charge @ is

- 9@
4mr’

and the fine-structure constant is
e e 1
4m ~ 4mhe 13T
The symbol e stands for the charge of the electron, a negative quantity (al-
though the sign rarely matters). We generally work with the relativistic form
of Maxwell’s equations:

P, Fpy =0, O FM = ej”,

where
AP = (D, A), F,, =0,A, - 0,A,,

and we have extracted the e from the 4-vector current density j*.

Dirac Equation

Some of our conventions differ from those of Bjorken and Drell (1964, 1‘965)
and other texts: We use a chiral basis for Dirac matrices, and relativistic
normalization for Dirac spinors. These conventions are introduced in Sections
3.2 and 3.3, and are summarized in the Appendix.



Editor’s Foreword

The problem of communicating in a coherent fashion recent developments in the
most exciting and active fields of physics continues to be with us. The enormous
growth in the number of physicists has tended to make the familiar channels of
communication considerably less effective. It has become increasingly difficult for
experts in a given field to keep up with the current literature; the novice can only
be confused. What is needed is both a consistent account of a field and the pre-
sentation of a definite “point of view” concerning it. Formal monographs cannot
meet such a need in a rapidly developing field, while the review article seems to
have fallen into disfavor. Indeed, it would seem that the people most actively
engaged in developing a given field are the people least likely to write at length
about it.

Frontiers in Physics was conceived in 1961 in an effort to improve the sit-
uation in several ways. Leading physicists frequently give a series of lectures, a
graduate seminar, or a graduate course in their special fields of interest. Such lec-
tures serve to summarize the present status of a rapidly developing field and may
well constitute the only coherent account available at the time. Often, notes on
lectures exist (prepared by the lecturer, by graduate students, or by postdoctoral
fellows) and are distributed in photocopied form on a limited basis. One of the
principal purposes of the Frontiers in Physics series is to make such notes avail-
able to a wider audience of physicists.

As Frontiers in Physics has evolved, a second category of book, the infor-
mal text/monograph, an intermediate step between lecture notes and formal texts
or monographs, has played an increasingly important role in the series. In an infor-
mal text or monograph an author has reworked his/her lecture notes to the point
at which the manuscript represents a coherent summation of a newly developed
field, complete with references and problems, suitable for either classroom teach-
ing or individual study.

During the past two decades significant advances have been made in both
the conceptual framework of quantum field theory and its application to con-
densed matter physics and elementary particle physics. Given the fact that the
study of quantum field theory has become an essential part of the education of
graduate students in physics, a textbook which makes these recent developments
accessible to the novice, while not neglecting the basic concepts, is highly desir-
able. Michael Peskin and Daniel Schroeder have written just such a book, describ-
ing in lucid fashion quantum electrodynamics, renormalization, and non-Abelian
gauge theories while offering the reader a taste of what is to come. It is therefore
quite appropriate to include this very polished text/monograph in the Frontiers
in Physics series, and it gives me pleasure to welcome them to the ranks of its
authors.

Aspen, Colorado David Pines
August 1995
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and
Quantum Electrodynamics






Chapter 1

Invitation: Pair Production
in ete~ Annihilation

The main purpose of Part I of this book is to develop the basic calculational
method of quantum field theory, the formalism of Feynman diagrams. We will
then apply this formalism to computations in Quantum Electrodynamics, the
quantum theory of electrons and photons.

Quantum Electrodynamics (QED) is perhaps the best fundamental phys-
ical theory we have. The theory is formulated as a set of simple equations
(Maxwell’s equations and the Dirac equation) whose form is essentially deter-
mined by relativistic invariance. The quantum-mechanical solutions of these
equations give detailed predictions of electromagnetic phenomena from macro-
scopic distances down to regions several hundred times smaller than the pro-
ton.

Feynman diagrams provide for this elegant theory an equally elegant pro-
cedure for calculation: Imagine a process that can be carried out by electrons
and photons, draw a diagram, and then use the diagram to write the mathe-
matical form of the quantum-mechanical amplitude for that process to occur.

In this first part of the book we will develop both the theory of QED
and the method of Feynman diagrams from the basic principles of quantum
mechanics and relativity. Eventually, we will arrive at a point where we can
calculate observable quantities that are of great interest in the study of ele-
mentary particles. But to reach our goal of deriving this simple calculational
method, we must first, unfortunately, make a serious detour into formalism.
The three chapters that follow this one are almost completely formal, and
the reader might wonder, in the course of this development, where we are go-
ing. We would like to partially answer that question in advance by discussing
the physics of an especially simple QED process—one sufficiently simple that
many of its features follow directly from physical intuition. Of course, this
intuitive, bottom-up approach will contain many gaps. In Chapter 5 we will
return to this process with the full power of the Feynman diagram formalism.
Working from the top down, we will then see all of these difficulties swept
away.
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Figure 1.1. The annihilation reaction ete~ — u*u™, shown in the center-
of-mass frame.

The Simplest Situation

Since most particle physics experiments involve scattering, the most com-
monly calculated quantities in quantum field theory are scattering cross sec-
tions. We will now calculate the cross section for the simplest of all QED
processes: the annihilation of an electron with its antiparticle, a positron, to
form a pair of heavier leptons (such as muons). The existence of antiparticles
is actually a prediction of quantum field theory, as we will discuss in Chapters
2 and 3. For the moment, though, we take their existence as given.

An experiment to measure this annihilation probability would proceed by
firing a beam of electrons at a beam of positrons. The measurable quantity is
the cross section for the reaction ete™ — p* ™ as a function of the center-of-
mass energy and the relative angle § between the incoming electrons and the
outgoing muons. The process is illustrated in Fig. 1.1. For simplicity, we work
in the center-of-mass (CM) frame where the momenta satisfy p’ = —p and
k' = —k. We also assume that the beam energy E is much greater than either
the electron or the muon mass, so that |p| = |p’| = k| = |kK'| = E = Ecn /2.
(We use boldface type to denote 3-vectors and ordinary italic type to denote
4-vectors.)

Since both the electron and the muon have spin 1/2, we must specify their
spin orientations. It is useful to take the axis that defines the spin quantization
of each particle to be in the direction of its motion; each particle can then
have its spin polarized parallel or antiparallel to this axis. In practice, electron
and positron beams are often unpolarized, and muon detectors are normally
blind to the muon polarization. Hence we should average the cross section
over electron and positron spin orientations, and sum the cross section over
muon spin orientations.

For any given set of spin orientations, it is conventional to write the
differential cross section for our process, with the p~ produced into a solid
angle d€Q, as

do 1

2
a 647r2E§m’|MI ' (1)
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The factor E_2 provides the correct dimensions for a cross section, since in
our units (energy) 2 ~ (length)?. The quantity M is therefore dimensionless;
it is the quantum-mechanical amplitude for the process to occur (analogous
to the scattering amplitude f in nonrelativistic quantum mechanics), and
we must now address the question of how to compute it from fundamental
theory. The other factors in the expression are purely a matter of convention.
Equation (1.1) is actually a special case, valid for CM scattering when the
final state contains two massless particles, of a more general formula (whose
form cannot be deduced from dimensional analysis) which we will derive in
Section 4.5.

Now comes some bad news and some good news.

The bad news is that even for this simplest of QED processes, the exact
expression for M is not known. Actually this fact should come as no sur-
prise, since even in nonrelativistic quantum mechanics, scattering problems
can rarely be solved exactly. The best we can do is obtain a formal expres-
sion for M as a perturbation series in the strength of the electromagnetic
interaction, and evaluate the first few terms in this series.

The good news is that Feynman has invented a beautiful way to orga-
nize and visualize the perturbation series: the method of Feynman diagrams.
Roughly speaking, the diagrams display the flow of electrons and photons dur-
ing the scattering process. For our particular calculation, the lowest-order term
in the perturbation series can be represented by a single diagram, shown in
Fig. 1.2. The diagram is made up of three types of components: external lines
(representing the four incoming and outgoing particles), internal lines (repre-
senting “virtual” particles, in this case one virtual photon), and vertices. It is
conventional to use straight lines for fermions and wavy lines for photons. The
arrows on the straight lines denote the direction of negative charge flow, not
momentum. We assign a 4-momentum vector to each external line, as shown.
In this diagram, the momentum ¢ of the one internal line is determined by
momentum conservation at either of the vertices: ¢q = p+p' = k + k'. We
must also associate a spin state (either “up” or “down”) with each external
fermion.

According to the Feynman rules, each diagram can be translated directly
into a contribution to M. The rules assign a short algebraic factor to each el-
ement of a diagram, and the product of these factors gives the value of the
corresponding term in the, perturbation series. Getting the resulting expres-
sion for M into a form that is usable, however, can still be nontrivial. We
will develop much useful technology for doing such calculations in subsequent
chapters. But we do not have that technology yet, so to get an answer to our
particular problem we will use some heuristic arguments instead of the actual
Feynman rules.

Recall that in quantum-mechanical perturbation theory, a transition am-
plitude can be computed, to first order, as an expression of the form

(final state| Hy |initial state) , (1.2)
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Figure 1.2. Feynman diagram for the lowest-order term in the ete™ —
wtu~ cross section. At this order the only possible intermediate state is a
photon (7).

where H; is the “interaction” part of the Hamiltonian. In our case the initial
state is |eTe™) and the final state is (u*p~|. But our interaction Hamiltonian
couples electrons to muons only through the electromagnetic field (that is,
photons), not directly. So the first-order result (1.2) vanishes, and we must go
to the second-order expression

M~ <N+[L—|HI|')/>“ <’)’|H]|€+€—>u. (13)

This is a heuristic way of writing the contribution to M from the diagram in
Fig. 1.2. The external electron lines correspond to the factor |eTe™); the ex-
ternal muon lines correspond to (u*pu~|. The vertices correspond to Hy, and
the internal photon line corresponds to the operator |y) (y|. We have added
vector indices (u) because the photon is a vector particle with four compo-
nents. There are four possible intermediate states, one for each component,
and according to the rules of perturbation theory we must sum over interme-
diate states. Note that since the sum in (1.3) takes the form of a 4-vector dot
product, the amplitude M will be a Lorentz-invariant scalar as long as each
half of (1.3) is a 4-vector.

Let us try to guess the form of the vector (y| Hy le*e™) . Since Hy cou-
ples electrons to photons with a strength e (the electron charge), the matrix
element should be proportional to e. Now consider one particular set of initial
and final spin orientations, shown in Fig. 1.3. The electron and muon have
spins parallel to their directions of motion; they are “right-handed”. The an-
tiparticles, similarly, are “left-handed”. The electron and positron spins add
up to one unit of angular momentum in the 4z direction. Since H; should
conserve angular momentum, the photon to which these particles couple must
‘have the correct polarization vector to give it this same angular momentum:
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s

Figure 1.3. One possible set of spin orientations. The electron and the neg-
ative muon are right-handed, while the positron and the positive muon are
left-handed.

e =(0,1,4,0). Thus we have
(7| HrleTe )" oce(0,1,4,0). (1.4)

The muon matrix element should, similarly, have a polarization corre-
sponding to one unit of angular momentum along the direction of the u~
momentum k. To obtain the correct vector, rotate (1.4) through an angle 6
in the zz-plane:

(7| Hr |ptpm) o e(0,cos 6, i, —sin 6). (1.5)

To compute the amplitude M, we complex-conjugate this vector and dot it
into (1.4). Thus we find, for this set of spin orientations,

M(RL — RL) = —€? (1 + cosf) . (1.6)

Of course we cannot determine the overall factor by this method, but in (1.6)
it happens to be correct, thanks to the conventions adopted in (1.1). Note
that the amplitude vanishes for § = 180°, just as one would expect: A state
whose angular momentum is in the +z direction has no overlap with a state
whose angular momentum is in the —z direction.

Next consider the case in which the electron and positron are both right-
handed. Now their total spin angular momentum is zero, and the argument is
more subtle. We might expect to obtain a longitudinally polarized photon with
a Clebsch-Gordan coefficient of 1/1/2, just as when we add angular momenta
in three dimensions, |1]) = (1/v2)(|j = 1, = 0) + |j = 0,m = 0)). But we
are really adding angular momenta in the four-dimensional Lorentz group,
so we must take into account not only spin (the transformation properties of
states under rotations), but also the transformation properties of states under
boosts. It turns out, as we shall discuss in Chapter 3, that the Clebsch-Gordan
coefficient that couples a 4-vector to the state |ezef,) of massless fermions is
zero. (For the record, the state is a superposition of scalar and antisymmetric
tensor pieces.) Thus the amplitude M(RR — RL) is zero, as are the eleven
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other amplitudes in which either the initial or final state has zero total angular
momentum.

The remaining nonzero amplitudes can be found in the same way that we
found the first one. They are

M(RL — LR) = —€* (1 — cosf),
M(LR — RL) = —¢* (1 — cosf), (1.7)
M(LR — LR) = —¢* (1 + cosf).

Inserting these expressions into (1.1), averaging over the four initial-state spin
orientations, and summing over the four final-state spin orientations, we find

do a2 2

— = —(1 ), 1.8

@ = gz, (1 Feesd) (18)
where a = e?/4r ~ 1/137. Integrating over the angular variables § and ¢
gives the total cross section,

4o’

W. (1.9)

Ototal =
Results (1.8) and (1.9) agree with experiments to about 10%; almost all of
the discrepancy is accounted for by the next term in the perturbation series,
corresponding to the diagrams shown in Fig. 1.4. The qualitative features
of these expressions—the angular dependence and the sharp decrease with
energy—are obvious in the actual data. (The properties of these results are
discussed in detail in Section 5.1.)

Embellishments and Questions

We obtained the angular distribution predicted by Quantum Electrodynamics
for the reaction ete™ — pu*tu~ by applying angular momentum arguments,
with little appeal to the underlying formalism. However, we used the simpli-
fying features of the high-energy limit and the center-of-mass frame in a very
strong way. The analysis we have presented will break down when we relax
any of our simplifying assumptions. So how does one perform general QED
calculations? To answer that question we must return to the Feynman rules.

As mentioned above, the Feynman rules tell us to draw the diagram(s) for
the process we are considering, and to associate a short algebraic factor with
each piece of each diagram. Figure 1.5 shows the diagram for our reaction,
with the various assignments indicated.

For the internal photon line we write —ig,, /q?, where g,, is the usual
Minkowski metric tensor and q is the 4-momentum of the virtual photon. This
factor corresponds to the operator |y) (7| in our heuristic expression (1.3).

For each vertex we write —iey*, corresponding to Hy in (1.3). The objects
~# are a set of four 4 x 4 constant matrices. They do the “addition of angular
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Figure 1.4. Feynman diagrams that contribute to the o® term in the
ete™ — puTu~ cross section.

Figure 1.5. Diagram of Fig. 1.2, with expressions corresponding to each
vertex, internal line, and external line.

momentum” for us, coupling a state of two spin-1/2 particles to a vector
particle.

The external lines carry expressions for four-component column-spinors
u, v, or row-spinors %, 0. These are essentially'the momentum-space wavefunc-
tions of the initial and final particles, and correspond to [ete™) and (utu~|
n (1.3). The indices s, s/, r, and r’ denote the spin state, either up or down.
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We can now write down an expression for M, reading everything straight
off the diagram:

M =5 (p) (—iex* )u® (p) (ﬁ%) ar (k) (—iey”)v" (k)
2 1 (1.10)
=7 (@ )7 u* () (@ (k)Y

It is instructive to compare this in detail with Eq. (1.3).

To derive the cross section (1.8) from (1.10), we could return to the an-
gular momentum arguments used above, supplemented with some concrete
knowledge about v matrices and Dirac spinors. We will do the calculation
in this manner in Section 5.2. There are, however, a number of useful tricks
that can be employed to manipulate expressions like (1.10), especially when
one wants to compute only the unpolarized cross section. Using this “Feyn-
man trace technology” (so-called because one must evaluate traces of prod-
ucts of y-matrices), it isn’t even necessary to have explicit expressions for
the y-matrices and Dirac spinors. The calculation becomes almost completely
mindless, and the answer (1.8) is obtained after less than a page of algebra.
But since the Feynman rules and trace technology are so powerful, we can
also relax some of our simplifying assumptions. To conclude this section, let
us discuss several ways in which our calculation could have been more difficult.

The easiest restriction to relax is that the muons be massless. If the beam
energy is not much greater than the mass of the muon, all of our predic-
tions should depend on the ratio m,/E.m. (Since the electron is 200 times
lighter than the muon, it can be considered massless whenever the beam en-
ergy is large enough to create muons.) Using Feynman trace technology, it is
extremely easy to restore the muon mass to our calculation. The amount of
algebra is increased by about fifty percent, and the relation (1.1) between the
amplitude and the cross section must be modified slightly, but the answer is
worth the effort. We do this calculation in detail in Section 5.1.

Working in a different reference frame is also easy; the only modification
is in the relation (1.1) between the amplitude and the cross section. Or one
can simply perform a Lorentz transformation on the CM result, boosting it
to a different frame.

When the spin states of the initial and/or final particles are known and
we still wish to retain the muon mass, the calculation becomes somewhat
cumbersome but no more difficult in principle. The trace technology can be
generalized to this case, but it is often easier to evaluate expression (1.10)
directly, using the explicit values of the spinors u and v.

Next one could compute cross sections for different processes. The process
ete™ — eTe™, known as Bhabha scattering, is more difficult because there is
a second allowed diagram (see Fig. 1.6). The amplitudes for the two diagrams
must first be added, then squared.

Other processes contain photons in the initial and/or final states. The
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Figure 1.6. The two lowest-order diagrams for Bhabha scattering, ete™ —
+ —_
eTe .
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Figure 1.7. The two lowest-order diagrams for Compton scattering.

paradigm example is Compton scattering, for which the two lowest-order di-
agrams are shown in Fig. 1.7. The Feynman rules for external photon lines
and for internal electron lines are no more complicated than those we have
already seen. We discuss Compton scattering in detail in Section 5.5.

Finally we could compute higher-order terms in the perturbation series.
Thanks to Feynman, the diagrams are at least easy to draw; we have seen
those that contribute to the next term in the ete™ — pTu~ cross section in
Fig. 1.4. Remarkably, the algorithm that assigns algebraic factors to pieces
of the diagrams holds for all higher-order contributions, and allows one to
evaluate such diagrams in a straightforward, if tedious, way. The computation
of the full set of nine diagrams is a serious chore, at the level of a research
paper.

In this book, starting in Chapter 6, we will analyze much of the physics
that arises from higher-order Feynman diagrams such as those in Fig. 1.4.
We will see that the last four of these diagrams, which involve an additional
photon in the final state, are necessary because no detector is sensitive enough
to notice the presence of extremely low-energy photons. Thus a final state
containing such a photon cannot be distinguished from our desired final state
of just a muon pair.
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The other five diagrams in Fig. 1.4 involve intermediate states of several
virtual particles rather than just a single virtual photon. In each of these di-
agrams there will be one virtual particle whose momentum is not determined
by conservation of momentum at the vertices. Since perturbation theory re-
quires us to sum over all possible intermediate states, we must integrate over
all possible values of this momentum. At this step, however, a new difficulty
appears: The loop-momentum integrals in the first three diagrams, when per-
formed naively, turn out to be infinite. We will provide a fix for this problem,
so that we get finite results, by the end of Part I. But the question of the
physical origin of these divergences cannot be dismissed so lightly; that will
be the main subject of Part IT of this book.

We have discussed Feynman diagrams as an algorithm for performing
computations. The chapters that follow should amply illustrate the power of
this tool. As we expose more applications of the diagrams, though, they be-
gin to take on a life and significance of their own. They indicate unsuspected
relations between different physical processes, and they suggest intuitive ar-
guments that might later be verified by calculation. We hope that this book
will enable you, the reader, to take up this tool and apply it in novel and
enlightening ways.



Chapter 2

The Klein-Gordon Field

2.1 The Necessity of the Field Viewpoint

Quantum field theory is the application of quantum mechanics to dynamical
systems of fields, in the same sense that the basic course in quantum mechanics
is concerned mainly with the quantization of dynamical systems of particles.
It is a subject that is absolutely essential for understanding the current state
of elementary particle physics. With some modification, the methods we will
discuss also play a crucial role in the most active areas of atomic, nuclear,
and condensed-matter physics. In Part I of this book, however, our primary
concern will be with elementary particles, and hence relativistic fields.

Given that we wish to understand processes that occur at very small
(quantum-mechanical) scales and very large (relativistic) energies, one might
still ask why we must study the quantization of fields. Why can’t we just
quantize relativistic particles the way we quantized nonrelativistic particles?

This question can be answered on a number of levels. Perhaps the best
approach is to write down a single-particle relativistic wave equation (such as
the Klein-Gordon equation or the Dirac equation) and see that it gives rise to
negative-energy states and other inconsistencies. Since this discussion usually
takes place near the end of a graduate-level quantum mechanics course, we will
not repeat it here. It is easy, however, to understand why such an approach
cannot work. We have no right to assume that any relativistic process can be
explained in terms of a single particle, since the Einstein relation E = mc?
allows for the creation of particle-antiparticle pairs. Even when there is not
enough energy for pair creation, multiparticle states appear, for example, as
intermediate states in second-order perturbation theory. We can think of such
states as existing only for a very short time, according to the uncertainty
principle AFE - At = h. As we go to higher orders in perturbation theory,
arbitrarily many such “virtual” particles can be created.

The necessity of having a multiparticle theory also arises in a less obvious
way, from considerations of causality. Consider the amplitude for a free particle
to propagate from xg to x:

U(t) = (x| e " |xq) .

13
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In nonrelativistic quantum mechanics we have E = p?/2m, so

U(t) = (x| e ®"/2m)t |x,)
d3p —i(p2/2m
= /W (x|e (p"/2m)t Ip) (P|Xo0)

1 2 .
(271.)3 /d3pe i(p°/2m)t etP (x—x0)
_ (ﬂ)” ? jimix—x0)?/2¢

2mit
This expression is nonzero for all z and ¢, indicating that a particle can prop-
agate between any two points in an arbitrarily short time. In a relativistic
theory, this conclusion would signal a violation of causality. One might hope
that using the relativistic expression E = /p? + m? would help, but it does
not. In analogy with the nonrelativistic case, we have

U(t) = (x| e VP |xp)

m

oo
1 .
ohfﬂwsm@k—xdkﬂ“””m7
0

- 2m2|x — x

This integral can be evaluated explicitly in terms of Bessel functions.* We
will content ourselves with looking at its asymptotic behavior for z2 > t?
(well outside the light-cone), using the method of stationary phase. The phase
function px—t1/p? + m? has a stationary point at p = imz/vz? — t2. We may
freely push the contour upward so that it goes through this point. Plugging
in this value for p, we find that, up to a rational function of z and ¢,

U(t) ~ e™Vo =2

Thus the propagation amplitude is small but nonzero outside the light-cone,
and causality is still violated.

Quantum field theory solves the causality problem in a miraculous way,
which we will discuss in Section 2.4. We will find that, in the multiparticle
field theory, the propagation of a particle across a spacelike interval is indis-
tinguishable from the propagation of an antiparticle in the opposite direction
(see Fig. 2.1). When we ask whether an observation made at point zy can
affect an observation made at point z, we will find that the amplitudes for
particle and antiparticle propagation exactly cancel—so causality is preserved.

Quantum field theory provides a natural way to handle not only multipar-
ticle states, but also transitions between states of different particle number.
It solves the causality problem by introducing antiparticles, then goes on to

*See Gradshteyn and Ryzhik (1980), #3.914.
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boost

Figure 2.1. Propagation from zo to z in one frame looks like propagation
from x to zg in another frame.

explain the relation between spin and statistics. But most important, it pro-
vides the tools necessary to calculate innumerable scattering cross sections,
particle lifetimes, and other observable quantities. The experimental confir-
mation of these predictions, often to an unprecedented level of accuracy, is
our real reason for studying quantum field theory.

2.2 Elements of Classical Field Theory

In this section we review some of the formalism of classical field theory that
will be necessary in our subsequent discussion of quantum field theory.

Lagrangian Field Theory

The fundamental quantity of classical mechanics is the action, S, the time
integral of the Lagrangian, L. In a local field theory the Lagrangian can be
written as the spatial integral of a Lagrangian density, denoted by £, which is
a function of one or more fields ¢(z) and their derivatives d,,¢. Thus we have

S = /Ldt = /£(¢, 0,¢) d*z. (2.1)

Since this is a book on field theory, we will refer to £ simply as the Lagrangian.

The principle of least action states that when a system evolves from one
given configuration to another between times t; and t3, it does so along the
“path” in configuration space for which S is an extremum (normally a mini-
mum). We can write this condition as

0=146S

- /d“a: {%&ﬁ + %5(@@)}

- /d4z {%&p — 8, (a(g—f@) 86+ 0, (%‘ZS)M) } . (22)

The last term can be turned into a surface integral over the boundary of the
four-dimensional spacetime region of integration. Since the initial and final
field configurations are assumed given, §¢ is zero at the temporal beginning
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and end of this region. If we restrict our consideration to deformations §¢ that
vanish on the spatial boundary of the region as well, then the surface term is
zero. Factoring out the 6¢ from the first two terms, we note that, since the
integral must vanish for arbitrary d¢, the quantity that multiplies 6¢ must
vanish at all points. Thus we arrive at the Euler-Lagrange equation of motion

for a field, 5 or
L
o, ——) - —=0. 2.3
(5,07 ~ 5 (23)

If the Lagrangian contains more than one field, there is one such equation for
each.

Hamiltonian Field Theory

The Lagrangian formulation of field theory is particularly suited to relativistic
dynamics because all expressions are explicitly Lorentz invariant. Nevertheless
we will use the Hamiltonian formulation throughout the first part of this
book, since it will make the transition to quantum mechanics easier. Recall
that for a discrete system one can define a conjugate momentum p = dL/9q
(where ¢ = 9q/0t) for each dynamical variable ¢g. The Hamiltonian is then
H =3 p¢— L. The generalization to a continuous system is best understood
by pretending that the spatial points x are discretely spaced. We can define
p(x) = oL 0

= 0 _-— r ’ . d3
Op(x) 3¢(x)/ (¢(Y) ¢(Y)) Y

F) .
~—N"¢ , d?
5300) 2 (o(y), d(y))d’y

= n(x)d*z,

where

oL
0¢(x)

is called the momentum density conjugate to ¢(x). Thus the Hamiltonian can

be written )
H=Y p(x)p(x) - L.

m(x) =

(2.4)

Passing to the continuum, this becomes

H= /d3x [ﬂ(x)qﬁ(x) - L] = /d3a: H. (2.5)

We will rederive this expression for the Hamiltonian density H near the end
of this section, using a different method.
As a simple example, consider the theory of a single field ¢(z), governed
by the Lagrangian ) )
£=18 - 1)~ dm%

_1(H 4\2 _ 1,22 (2.6)
3(0u®)” — sm 9.
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For now we take ¢ to be a real-valued field. The quantity m will be interpreted
as a mass in Section 2.3, but for now just think of it as a parameter. From
this Lagrangian the usual procedure gives the equation of motion
62 2 2 | 2

<@—V +m>¢=0 or  (0*8,+m*)¢ =0, (2.7)
which is the well-known Klein-Gordon equation. (In this context it is a classi-
cal field equation, like Maxwell’s equations—not a quantum-mechanical wave
equation.) Noting that the canonical momentum density conjugate to ¢(z) is
m(x) = ¢(x), we can also construct the Hamiltonian:

H= /d%H = /d% [37% + L(V¢)? + Fm?¢7]. (2.8)

We can think of the three terms, respectively, as the energy cost of “moving”
in time, the energy cost of “shearing” in space, and the energy cost of having
the field around at all. We will investigate this Hamiltonian much further in
Sections 2.3 and 2.4.

Noether’s Theorem

Next let us discuss the relationship between symmetries and conservation
laws in classical field theory, summarized in Noether’s theorem. This theorem
concerns continuous transformations on the fields ¢, which in infinitesimal
form can be written

o(z) = ¢'(2) = d(z) + ald(z), (2.9)

where « is an infinitesimal parameter and A¢ is some deformation of the field
configuration. We call this transformation a symmetry if it leaves the equa-
tions of motion invariant. This is insured if the action is invariant under (2.9).
More generally, we can allow the action to change by a surface term, since the
presence of such a term would not affect our derivation of the Euler-Lagrange
equations of motion (2.3). The Lagrangian, therefore, must be invariant un-
der (2.9) up to a 4-divergence:

L(z) — L(z) + a0, T"(x), (2.10)

for some J*. Let us compare this expectation for AL to the result obtained
by varying the fields:

QAL = g—g(am) + (8(2—2@) 9. (aAo) -
b ) '
- (o) oo (3 oo
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The second term vanishes by the Euler-Lagrange equation (2.3). We set the
remaining term equal to ad,J* and find

Oug*(z) =0, for j#(z) = _oL A — TH. (2.12)

9(8,9)
(If the symmetry involves more than one field, the first term of this expression
for j*(z) should be replaced by a sum of such terms, one for each field.)
This result states that the current j*(z) is conserved. For each continuous
symmetry of £, we have such a conservation law.
The conservation law can also be expressed by saying that the charge

Q= / P d (213)
all space

is a constant in time. Note, however, that the formulation of field theory in
terms of a local Lagrangian density leads directly to the local form of the
conservation law, Eq. (2.12).

The easiest example of such a conservation law arises from a Lagrangian
with only a kinetic term: £ = %(8u¢)2. The transformation ¢ — ¢+ a, where
a is a constant, leaves £ unchanged, so we conclude that the current j# = 9*¢
is conserved. As a less trivial example, consider the Lagrangian

L = 0.0 - m?|¢l?, (2.14)

where ¢ is now a complez-valued field. You can easily show that the equation
of motion for this Lagrangian is again the Klein-Gordon equation, (2.7). This
Lagrangian is invariant under the transformation ¢ — e!®@; for an infinitesi-
mal transformation we have

al¢ = iag; aA¢* = —iag*. (2.15)

(We treat ¢ and ¢* as independent fields. Alternatively, we could work with
the real and imaginary parts of ¢.) It is now a simple matter to show that the
conserved Noether current is

= i[(0"¢") — ¢"(9*9)). (2.16)
(The overall constant has been chosen arbitrarily.) You can check directly that
the divergence of this current vanishes by using the Klein-Gordon equation.
Later we will add terms to this Lagrangian that couple ¢ to an electromagnetic
field. We will then interpret j* as the electromagnetic current density carried
by the field, and the spatial integral of j° as its electric charge.
Noether’s theorem can also be applied to spacetime transformations such
as translations and rotations. We can describe the infinitesimal translation

¥ — ¥ —a*
alternatively as a transformation of the field configuration

o(z) = é(z + a) = ¢(z) + "0, ¢(x).
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The Lagrangian is also a scalar, so it must transform in the same way:
L— L+ad.L=L+a",(6"L).

Comparing this equation to (2.10), we see that we now have a nonzero J*.
Taking this into account, we can apply the theorem to obtain four separately
conserved currents: ac

b, = ——0,¢6— LO,. 2.17

v 8(6#(15) V¢) v ( )
This is precisely the stress-energy tensor, also called the energy-momentum
tensor, of the field ¢. The conserved charge associated with time translations
is the Hamiltonian:

H= /TOO 3z = /Hd%. (2.18)

By computing this quantity for the Klein-Gordon field, one can recover the
result (2.8). The conserved charges associated with spatial translations are

P = / TY B3z = — / ;¢ dx, (2.19)

and we naturally interpret this as the (physical) momentum carried by the
field (not to be confused with the canonical momentum).

2.3 The Klein-Gordon Field as Harmonic Oscillators

We begin our discussion of quantum field theory with a rather formal treat-
ment of the simplest type of field: the real Klein-Gordon field. The idea is to
start with a classical field theory (the theory of a classical scalar field gov-
erned by the Lagrangian (2.6)) and then “quantize” it, that is, reinterpret the
dynamical variables as operators that obey canonical commutation relations.t
We will then “solve” the theory by finding the eigenvalues and eigenstates of
the Hamiltonian, using the harmonic oscillator as an analogy.

The classical theory of the real Klein-Gordon field was discussed briefly
(but sufficiently) in the previous section; the relevant expressions are given in
Egs. (2.6), (2.7), and (2.8). To quantize the theory, we follow the same pro-
cedure as for any other dynamical system: We promote ¢ and 7 to operators,
and impose suitable commutation relations. Recall that for a discrete system
of one or more particles the commutation relations are

(4i,pj] = 16353
[qi7qj] = [Pupj] =0.

TThis procedure is sometimes called second quantization, to distinguish the re-
sulting Klein-Gordon equation (in which ¢ is an operator) from the old one-particle
Klein-Gordon equation (in which ¢ was a wavefunction). In this book we never adopt
the latter point of view; we start with a classical equation (in which ¢ is a classical
field) and quantize it exactly once.
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For a continuous system the generalization is quite natural; since 7(x) is the
momentum density, we get a Dirac delta function instead of a Kronecker delta:

[p(x),7(y)] = i6® (x - y);
[6(x), ¢(y)] = [7(x),7(y)] = 0.

(For now we work in the Schrodinger picture where ¢ and 7 do not depend
on time. When we switch to the Heisenberg picture in the next section, these
“equal time” commutation relations will still hold provided that both opera-
tors are considered at the same time.)

The Hamiltonian, being a function of ¢ and 7, also becomes an operator.
Our next task is to find the spectrum from the Hamiltonian. Since there is
no obvious way to do this, let us seek guidance by writing the Klein-Gordon
equation in Fourier space. If we expand the classical Klein-Gordon field as

3
o) = [ e atp.0)

(with ¢*(p) = ¢(—p) so that ¢(x) is real), the Klein-Gordon equation (2.7)
becomes

(2.20)

62
[ + (B +) | o(p.0) =0 (221)

This is the same as the equation of motion for a simple harmonic oscillator

with frequency
wp = V[p[> +m?. (2.22)

The simple harmonic oscillator is a system whose spectrum we already
know how to find. Let us briefly recall how it is done. We write the Hamiltonian
as

Hsno = 3p° + 3w’¢.

To find the eigenvalues of Hsgo, we write ¢ and p in terms of ladder operators:

1 w
- Y. - U
= a+a'); = —1 a—a'). 2.23
¢ %( ) p V3¢ ) (2.23)
The canonical commutation relation [¢, p] = i is equivalent to

[a,a'] = 1. (2.24)
The Hamiltonian can now be rewritten
Hspo = w(a'a + %)

The state |0) such that a|0) = 0 is an eigenstate of H with eigenvalue tw,
the zero-point energy. Furthermore, the commutators

[Hsno, a'] = wal, [Hsno,a] = —wa
make it easy to verify that the states

n) = (a")" |0)
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are eigenstates of Hgno with eigenvalues (n + %)w These states exhaust the
spectrum.

We can find the spectrum of the Klein-Gordon Hamiltonian using the
same trick, but now each Fourier mode of the field is treated as an independent
oscillator with its own a and af. In analogy with (2.23) we write

d(x) = /% \/%_p (apeip'x + a;‘,e_ip"‘); (2.25)
m(x) = /(;;I))?’ (—17) w—; (apeip'x - a;f,e'ip"‘). (2.26)

The inverse expressions for ap and a;f, in terms of ¢ and 7 are easy to derive
but rarely needed. In the calculations below we will find it useful to rearrange
(2.25) and (2.26) as follows:

d3p 1 A ip
= == — P, 2
(x) /wﬁ2%%+%k’ (2.27)
7r(x) = /_dsi (—'Z) w_p(a —af )eip~x (2 28)
(2m)3 2 VPP ’ ’
The commutation relation (2.24) becomes
[ap, af,] = (2m)°6) (p — p'), (2:29)

from which you can verify that the commutator of ¢ and 7 works out correctly:

d3 d3 /o ; ) ,
600,700)) = [ B 3 2 ([al o) = [apual 1)t

=i6®) (x — x). (2.30)

(If computations such as this one and the next are unfamiliar to you, please
work them out carefully; they are quite easy after a little practice, and are
fundamental to the formalism of the next two chapters.)

We are now ready to express the Hamiltonian in terms of ladder operators.
Starting from its expression (2.8) in terms of ¢ and 7, we have

H = d%/Mei(pﬂf)x _ Ve
(2m)® 4

-p-p +m? (
4+ /wpwp

(ap - aip) (ap’ - a‘T—p’)

+ ap +aly) (ap + aT_p/)}
d3p

= W(ﬂp (aLap —+ %‘ [ap,aL]). (231)

The second term is proportional to §(0), an infinite c-number. It is simply
the sum over all modes of the zero-point energies wp/2, so its presence is
completely expected, if somewhat disturbing. Fortunately, this infinite energy
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shift cannot be detected experimentally, since experiments measure only en-
ergy differences from the ground state of H. We will therefore ignore this
infinite constant term in all of our calculations. It is possible that this en-
ergy shift of the ground state could create a problem at a deeper level in the
theory; we will discuss this matter in the Epilogue.

Using this expression for the Hamiltonian in terms of ap and aL, it is easy
to evaluate the commutators

[H, a;',] = wpa;‘); [H,ap| = —wpap. (2.32)

We can now write down the spectrum of the theory, just as for the harmonic
oscillator. The state |0) such that ap |0) = 0 for all p is the ground state or
vacuum, and has E = 0 after we drop the infinite constant in (2.31). All other
energy eigenstates can be built by acting on |0) with creation operators. In
general, the state a;f,af] --- |0} is an eigenstate of H with energy wp +wq+ - - -.
These states exhaust the spectrum.

Having found the spectrum of the Hamiltonian, let us try to interpret its
eigenstates. From (2.19) and a calculation similar to (2.31) we can write down
the total momentum operator,

d3

P=- /daa: T(x)Vo(x) = /# pa‘;,ap. (2.33)
So the operator a;f, creates momentum p and energy wp = 4/|p|? + m2. Sim-
ilarly, the state a;',ag -++]0) has momentum p + q + - - -. It is quite natural to
call these excitations particles, since they are discrete entities that have the
proper relativistic energy-momentum relation. (By a particle we do not mean
something that must be localized in space; aL creates particles in momentum
eigenstates.) From now on we will refer to wp as Ep (or simply E), since it
really is the energy of a particle. Note, by the way, that the energy is always
positive: Ep = +4/|p|? + m2.

This formalism also allows us to determine the statistics of our particles.
Consider the two-particle state af,af, |0). Since af, and af, commute, this state
is identical to the state a:flal, |0) in which the two particles are interchanged.
Moreover, a single mode p can contain arbitrarily many particles (just as a
simple harmonic oscillator can be excited to arbitrarily high levels). Thus we
conclude that Klein-Gordon particles obey Bose-FEinstein statistics.

We naturally choose to normalize the vacuum state so that (0|0) = 1.
The one-particle states |p) oc af, |0) will also appear quite often, and it is
worthwhile to adopt a convention for their normalization. The simplest nor-
malization (p|q) = (27)36®®)(p — q) (which many books use) is not Lorentz
invariant, as we can demonstrate by considering the effect of a boost in the
3-direction. Under such a boost we have py = v(p3 + BE), E' = v(E + (p3).
Using the delta function identity

6(f(z) = f(wo0)) = |f’(1_xo)|6(x — o), | (2.34)
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we can compute

d /
6@ (p—aq) =63 (n —q). P3
(P—aq) (P’ —d) dps

dE
= (3) ' o _
6 (p q)7(1+ﬂdp3)

= 60 (p' — q') L (E + Bps)
El
— 6(3) r_ =
(P’ —d)7
The problem is that volumes are not invariant under boosts; a box whose
volume is V' in its rest frame has volume V/~v in a boosted frame, due to

Lorentz contraction. But from the above calculation, we see that the quantity
E,6®) (p — q) is Lorentz invariant. We therefore define

Ip) = v/2Epal, |0), (2.35)
so that
(pla) = 2Ep(2m)%6® (p — q). (2.36)

(The factor of 2 is unnecessary, but is convenient because of the factor of 2 in
Eq. (2.25).)

On the Hilbert space of quantum states, a Lorentz transformation A will
be implemented as some unitary operator U(A). Our normalization condition
(2.35) then implies that

U(A)|p) = |Ap) .- (2.37)

If we prefer to think of this transformation as acting on the operator a'lt,, we
can also write

UA) af, UL (A) = (| 228 o (2.38)

With this normalization we must divide by 2Ey in other places. For ex-
ample, the completeness relation for the one-particle states is

3
(1)1—particle = /(;l—:))g |p> ﬁ <p| ’ (239)

where the operator on the left is simply the identity within the subspace of
one-particle states, and zero in the rest of the Hilbert space. Integrals of this
form will occur quite often; in fact, the integral

d3p 1 d*
(27(’)’3 o / (27:)’4 (21)8(p% — m?) o (2.40)

is a Lorentz-invariant 3-momentum integral, in the sense that if f(p) is
Lorentz-invariant, so is [ d®p f(p)/(2Ep). The integration can be thought of
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p° > 0 branch

p° < 0 branch

Figure 2.2. The Lorentz-invariant 3-momentum integral is over the upper
branch of the hyperboloid p? = m2.

as being over the p® > 0 branch of the hyperboloid p? = m? in 4-momentum
space (see Fig. 2.2).

Finally let us consider the interpretation of the state ¢(x) |0). From the
expansion (2.25) we see that

_ [ 1o
6010 = [ - F e Ip) (241)
is a linear superposition of single-particle states that have well-defined mo-
mentum. Except for the factor 1/2Ey, this is the same as the familiar nonrel-
ativistic expression for the eigenstate of position |x); in fact the extra factor
is nearly constant for small (nonrelativistic) p. We will therefore put forward
the same interpretation, and claim that the operator ¢(x), acting on the vac-
uum, creates a particle at position x. This interpretation is further confirmed
when we compute

d3p, 1 in’x _ip’x
0196 p) = (0] [ 5 s (0w ™ + ol %) VB, o}
p/
= e'Px (2.42)

We can interpret this as the position-space representation of the single-particle
wavefunction of the state |p), just as in nonrelativistic quantum mechanics
(x|p) o e"P* is the wavefunction of the state |p).
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2.4 The Klein-Gordon Field in Space-Time

In the previous section we quantized the Klein-Gordon field in the Schrédinger
picture, and interpreted the resulting theory in terms of relativistic particles.
In this section we will switch to the Heisenberg picture, where it will be easier
to discuss time-dependent quantities and questions of causality. After a few
preliminaries, we will return to the question of acausal propagation raised in
Section 2.1. We will also derive an expression for the Klein-Gordon propagator,
a crucial part of the Feynman rules to be developed in Chapter 4.

In the Heisenberg picture, we make the operators ¢ and 7 time-dependent
in the usual way:

b(x) = ¢(x,t) = ' g(x)e ", (2.43)
and similarly for 7(z) = w(x,t). The Heisenberg equation of motion,
0
Y 0= 2.44

allows us to compute the time dependence of ¢ and 7
.0 '
ig00et) = [90c,0), [ da{3r20,0) + §(Tox',0)” + dm*? )}
= / d3z’ (i5(3) (x — x')m(x', t))

= in(x,t);

= / d3x'(—z‘5<3>(x —x)(-=V? +m?)o(x, t))
= —i(=V? + m?)$(x, t).

Combining the two results gives

62 2 2
5p¢ = (V2 -m%)e, (2.45)

which is just the Klein-Gordon equation.
We can better understand the time dependence of ¢(z) and 7(z) by writ-
ing them in terms of creation and annihilation operators. First note that

Hap = ap(H - Ep),

and hence

H"ap = ap(H — Ep)",
for any n. A similar relation (with — replaced by +) holds for al,. Thus we
have derived the identities

éHt  —iHt _  —iEpt iHt t ,—iHt _ f ,iEpt
e lape = ape” P, e a;‘)e = aje""P’, (2.46)
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which we can use on expression (2.25) for ¢(x) to find the desired expression
for the Heisenberg operator ¢(z), according to (2.43). (We will always use the
symbols ap and a;f) to represent the time-independent, Schrédinger-picture
ladder operators.) The result is

3 X .
o(x,t) = / i (ape"”‘"’ + aLe”’")

@2r) \/2E,
m(x,t) = %(j}(x, t).

It is worth mentioning that we can perform the same manipulations with
P instead of H to relate ¢(x) to ¢(0). In analogy with (2.46), one can show

e—iP~xapeiP~x = al')e—ip-x, (2.48)

>
pOZEp

(2.47)

_ ip-X —iPx_ 1 iP-x
= apeé s e ape

and therefore ' ,
¢($) — ez(Ht—P-x)¢(0)e—z(Ht—P~x)

— eiP':c(ﬁ(O)e—iPAa:’

where P* = (H,P). (The notation here is confusing but standard. Remember
that P is the momentum operator, whose eigenvalue is the total momentum of
the system. On the other hand, p is the momentum of a single Fourier mode
of the field, which we interpret as the momentum of a particle in that mode.
For a one-particle state of well-defined momentum, p is the eigenvalue of P.)

Equation (2.47) makes explicit the dual particle and wave interpretations
of the quantum field ¢(z). On the one hand, ¢(z) is written as a Hilbert space
operator, which creates and destroys the particles that are the quanta of field
excitation. On the other hand, ¢(z) is written as a linear combination of solu-
tions (e?”"* and e~*P?) of the Klein-Gordon equation. Both signs of the time
dependence in the exponential appear: We find both e~’t and e*®’t, al-
though p° is always positive. If these were single-particle wavefunctions, they
would correspond to states of positive and negative energy; let us refer to
them more generally as positive- and negative-frequency modes. The connec-
tion between the particle creation operators and the waveforms displayed here
is always valid for free quantum fields: A positive-frequency solution of the
field equation has as its coeflicient the operator that destroys a particle in
that single-particle wavefunction. A negative-frequency solution of the field
equation, being the Hermitian conjugate of a positive-frequency solution, has
as its coefficient the operator that creates a particle in that positive-energy
single-particle wavefunction. In this way, the fact that relativistic wave equa-
tions have both positive- and negative-frequency solutions is reconciled with
the requirement that a sensible quantum theory contain only positive excita-
tion energies.

(2.49)
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Causality

Now let us return to the question of causality raised at the beginning of this
chapter. In our present formalism, still working in the Heisenberg picture, the
amplitude for a particle to propagate from y to z is (0] #(z)¢(y) |0). We will
call this quantity D(z — y). Each operator ¢ is a sum of a and a' operators,
but only the term (0] apa, |0) = (2r)36® (p — q) survives in this expression.
It is easy to check that we are left with

D(z—y) = (0] p(z)¢(y) |0) = / %i;

e~ @y), (2.50)
We have already argued in (2.40) that integrals of this form are Lorentz in-
variant. Let us now evaluate this integral for some particular values of x — y.

First consider the case where the difference x — y is purely in the time-
direction: z° —y° = t, x —y = 0. (If the interval from y to z is timelike, there
is always a frame in which this is the case.) Then we have

oo}
D(z — 47r3 / dp e iVPP Mt
271’) ] p +m2
o
i [ap V= (251
/[
~ e—imt
t—oo ’

Next consider the case where z—1v is purely spatial: z°—3° =0, x—y =r.
The amplitude is then

dp 1
Dz —y)= | 2 £~ gipr
(=) /(27f)3 2E, ‘

oo . .
omr p2 eiPr _ g—ipT
= 3 dp -
(27) ) 2E, ipr

S .

e /dp—pelpr

T 2(27)2r N 2
( ) s P+ m

The integrand, considered as a complex function of p, has branch cuts on the
imaginary axis starting at tim (see Fig. 2.3). To evaluate the integral we
push the contour up to wrap around the upper branch cut. Defining p = —ip,
we obtain

ood pe —mr (2.52)
47727‘/ P32 0 & )
m P m =
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im

t »
push
—im contour

Figure 2.3. Contour for evaluating propagation amplitude D(x — y) over a
spacelike interval.

So again we find that outside the light-cone, the propagation amplitude is
exponentially vanishing but nonzero.

To really discuss causality, however, we should ask not whether particles
can propagate over spacelike intervals, but whether a measurement performed
at one point can affect a measurement at another point whose separation from
the first is spacelike. The simplest thing we could try to measure is the field
¢(x), so we should compute the commutator [¢(z), #(y)]; if this commutator
vanishes, one measurement cannot affect the other. In fact, if the commu-
tator vanishes for (z — y)? < 0, causality is preserved quite generally, since
commutators involving any function of ¢(z), including w(z) = d¢/dt, would
also have to vanish. Of course we know from Eq. (2.20) that the commutator
vanishes for 2° = y°; now let’s do the more general computation:

[6(x), ¢(y)] =

[ o [

X [(ape_”"z + ape”"z), (aqe_iq‘y + ageiq'y)}

d3p 1 —ip(z— in-(z—
= /(27r)3 _2Ep (e p(z—y) _ pip-(z y))

=D(z —y) - D(y — ). (2.53)

When (z — y)? < 0, we can perform a Lorentz transformation on the second
term (since each term is separately Lorentz invariant), taking (z —y) —
—(x —y), as shown in Fig. 2.4. The two terms are therefore equal and cancel
to give zero; causality is preserved. Note that if (z — y)? > 0 there is no
continuous Lorentz transformation that takes (z—y) — —(z—y). In this case,
by Eq. (2.51), the amplitude is (fortunately) nonzero, roughly (e~"™t — e'™)
for the special case x —y = 0. Thus we conclude that no measurement in the
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Figure 2.4. When z — y is spacelike, a continuous Lorentz transformation
can take (z — y) to —(z — y).

Klein-Gordon theory can affect another measurement outside the light-cone.
Causality is maintained in the Klein-Gordon theory just as suggested at
the end of Section 2.1. To understand this mechanism properly, however, we
should broaden the context of our discussion to include a complex Klein-
Gordon field, which has distinct particle and antiparticle excitations. As was
mentioned in the discussion of Eq. (2.15), we can add a conserved charge to
the Klein-Gordon theory by considering the field ¢(z) to be complex- rather
than real-valued. When the complex scalar field theory is quantized (see Prob-
lem 2.2), ¢(x) will create positively charged particles and destroy negatively
charged ones, while ¢ (z) will perform the opposite operations. Then the com-
mutator [¢(z), ¢! (y)] will have nonzero contributions, which must delicately
cancel outside the light-cone to preserve causality. The two contributions have
the spacetime interpretation of the two terms in (2.53), but with charges at-
tached. The first term will represent the propagation of a negatively charged
particle from y to x. The second term will represent the propagation of a
positively charged particle from z to y. In order for these two processes to
be present and give canceling amplitudes, both of these particles must exist,
and they must have the same mass. In quantum field theory, then, causality
requires that every particle have a corresponding antiparticle with the same
mass and opposite quantum numbers (in this case electric charge). For the
real-valued Klein-Gordon field, the particle is its own antiparticle.

The Klein-Gordon Propagator

Let us study the commutator [¢(z),¢(y)] a little further. Since it is a
c-number, we can write [¢(z), #(y)] = (0| [#(x), #(y)] |0). This can be rewritten
as a four-dimensional integral as follows, assuming for now that z° > 3°:

dp 1

(01 [¢(2), 6] 10) = | 535 25,

(e—izr(as—y) _ eip-(r—y))
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_ / ﬂ{Le—mu—y)
(2m)3 | 2Ep

pO=Ep
1 —ip-(z—y)
+ —2Epe p():_Ep
@p dp® 1 —ip-(z—y)
w°>=y° / (2m)3 / 2mi p? — m2® . (2.54)

In the last step the p° integral is to be performed along the following contour:

~

~Ep +E,

For 20 > ¢° we can close the contour below, picking up both poles to obtain
the previous line of (2.54). For z° < y° we may close the contour above,
giving zero. Thus the last line of (2.54), together with the prescription for
going around the poles, is an expression for what we will call

Dpg(z —y) = 6(z° — ¢°) (0] [¢(z), ()] [0) - (2.55)

To understand this quantity better, let’s do another computation:

(0% +m*)Dr(z —y) = (8%6(° — y°)) (0| [¢(x), $(y)] 0)
+2(8,6(2° — y°)) (9" (0] [(=), 6()] |0))
+6(2° - °) (8% +m?) (0] [¢(2), ¢(y)] |0)
= —6(z® — y°) (0] [7(2), &(»)] |0)
+26(” — y°) (0] [ (2), (y)] |0) + 0
= —i6@W(z —y). (2.56)
This says that Dr(z — y) is a Green’s function of the Klein-Gordon operator.
Since it vanishes for z° < ¢, it is the retarded Green’s function.

If we had not already derived expression (2.54), we could find it by Fourier
transformation. Writing

4 ~
Da(z —y) = / (ZT’; @) D (p), (2.57)

we obtain an algebraic expression for D r(p):
(—p* +m?)Dg(p) = —i.
Thus we immediately arrive at the result
d*p i

DR((I,' - y) = W m 6_ip'(m—y). (258)
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The p°-integral of (2.58) can be evaluated according to four different con-
tours, of which that used in (2.54) is only one. In Chapter 4 we will find that
a different pole prescription,

S
T

is extremely useful; it is called the Feynman prescription. A convenient way
to remember it is to write

4 .
Dp(z—y) = d'p : e~ (==Y (2.59)
F —J (2m)* p?2 —m? +ie ’

Y

since the poles are then at p® = +(Ep—ie), displaced properly above and below
the real axis. When z° > ¢° we can perform the p® integral by closing the
contour below, obtaining exactly the propagation amplitude D(x — y) (2.50).
When z° < y° we close the contour above, obtaining the same expression but
with z and y interchanged. Thus we have

v _[D(@—y) forz®>y°
Dr(= y)_{D(y—x) for 20 < 0

= 0(z" — 3°) (0] 6(2)(y) [0) + (5" — 2°) (0] () ¥() [0)
= (0[To(z)o(y) |0) . (2.60)

The last line defines the “time-ordering” symbol T, which instructs us to
place the operators that follow in order with the latest to the left. By applying
(02 +m?) to the last line, you can verify directly that D is a Green’s function
of the Klein-Gordon operator.

Equations (2.59) and (2.60) are, from a practical point of view, the most
important results of this chapter. The Green’s function Dp(x — y) is called
the Feynman propagator for a Klein-Gordon particle, since it is, after all, a
propagation amplitude. Indeed, the Feynman propagator will turn out to be
part of the Feynman rules: Dp(z—y) (or Dr(p)) is the expression that we will
attach to internal lines of Feynman diagrams, representing the propagation of
virtual particles.

Nevertheless we are still a long way from being able to do any real calcu-
lations, since so far we have talked only about the free Klein-Gordon theory,
where the field equation is linear and there are no interactions. Individual par-
ticles live in their isolated modes, oblivious to each others’ existence and to
the existence of any other species of particles. In such a theory there is no hope
of making any observations, by scattering or any other means. On the other
hand, the formalism we have developed is extremely important, since the free
theory forms the basis for doing perturbative calculations in the interacting
theory.
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Particle Creation by a Classical Source

There is one type of interaction, however, that we are already equipped to
handle. Consider a Klein-Gordon field coupled to an external, classical source
field j(x). That is, consider the field equation

(0 +m?)¢(z) = j(2), (2.61)

where j(z) is some fixed, known function of space and time that is nonzero
only for a finite time interval. If we start in the vacuum state, what will we
find after j(x) has been turned on and off again?

The field equation (2.61) follows from the Lagrangian

L=1(0.0)% — §m®¢* + j(z)p(x). (2.62)

But if j(z) is turned on for only a finite time, it is easiest to solve the problem
using the field equation directly. Before j(z) is turned on, ¢(z) has the form

dp 1
(27)3 /2 E,
If there were no source, this would be the solution for all time. With a source,

the solution of the equation of motion can be constructed using the retarded
Green’s function:

wm=¢dm+g/#yDMz—wﬂw

—|—z/d4 /< 32E 0(z° — 4°)

x (e7# (@Y _ P @=V)j(y).  (2.63)

$o(z) =

(apofz_ip’I + aLei”"”).

If we wait until all of j is in the past, the theta function equals 1 in the whole
domain of integration. Then ¢(z) involves only the Fourier transform of j,

i) = [ dyeri),
evaluated at 4-momenta p such that p? = m?2. It is natural to group the

positive-frequency terms together with ap and the negative-frequency terms
with a“ this yields the expression

#(z) = /(2(137’;3\/2;7,, { (ap + \/%ij(p))e—ip-z + h-C-}- (2.64)

You can now guess (or compute) the form of the Hamiltonian after j(z)
has acted: Just replace ap with (ap +4j(p)//2Ep) to obtain

H= / 32 o —;E—pj*(p))(ap+ﬁi(l)))-
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The energy of the system after the source has been turned off is

<0|H|o>=/(d’)’ Liw)P, (2.65)

where |0) still denotes the ground state of the free theory. We can interpret
these results in terms of particles by identifying |7(p)|?/2Ep as the probability
density for creating a particle in the mode p. Then the total number of particles

produced is
/dN / )32E )2 (2.66)

Only those Fourier components of j(z) that are in resonance with on-mass-
shell (i.e., p* = m?) Klein-Gordon waves are effective at creating particles.

We will return to this subject in Problem 4.1. In Chapter 6 we will study
the analogous problem of photon creation by an accelerated electron (brems-
strahlung).

Problems

2.1 Classical electromagnetism (with no sources) follows from the action
= / diz (—iF,,,,FW), where F,, = 8,4, — 8,A,

(a) Derive Maxwell’s equations as the Euler-Lagrange equations of this action, treat-
ing the components A, (z) as the dynamical variables. Write the equations in
standard form by identifying E¢ = —F% and ¢/ BF = —FiJ,

(b) Construct the energy-momentum tensor for this theory. Note that the usual
procedure does not result in a symmetric tensor. To remedy that, we can add to
THY a term of the form 9y K ¥, where K ¥ is antisymmetric in its first two
indices. Such an object is automatically divergenceless, so

TH = TH 4 9\ K

is an equally good energy-momentum tensor with the same globally conserved
energy and momentum. Show that this construction, with

K)\uu — F“’\A'j,

leads to an energy-momentum tensor T that is symmetric and yields the standard
formulae for the electromagnetic energy and momentum densities:

£=13(E*+B?; S=ExB.

2.2 The complex scalar field. Consider the field theory of a complex-valued scalar
field obeying the Klein-Gordon equation. The action of this theory is

S = /d4z (8u0* "¢ — m2p* o).
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It is easiest to analyze this theory by considering ¢(z) and ¢*(z), rather than the real
and imaginary parts of ¢(x), as the basic dynamical variables.

(a) Find the conjugate momenta to ¢(x) and ¢*(z) and the canonical commutation
relations. Show that the Hamiltonian is

H= /d?’x ("7 + V¢* - Vo +m?¢*¢).

Compute the Heisenberg equation of motion for ¢(z) and show that it is indeed
the Klein-Gordon equation.

(b) Diagonalize H by introducing creation and annihilation operators. Show that
the theory contains two sets of particles of mass m.

(c) Rewrite the conserved charge

Q= /d3z %(¢*ﬂ* — )

in terms of creation and annihilation operators, and evaluate the charge of the
particles of each type.

(d) Consider the case of two complex Klein-Gordon fields with the same mass. Label
the fields as ¢4 (x), where a = 1,2. Show that there are now four conserved

charges, one given by the generalization of part (c), and the other three given
by

) i ) . .
Q' = [ @2 (610 =~ malo ),
where o° are the Pauli sigma matrices. Show that these three charges have the

commutation relations of angular momentum (SU(2)). Generalize these results
to the case of n identical complex scalar fields.t

2.3 Evaluate the function

(01 6(2)6() 10 = D(z —g) = [ LB L c-ipa—y)
(27)3 2E, ,
for (z — y) spacelike so that (z — y)? = —r2, explicitly in terms of Bessel functions.

tWith some additional work you can show that there are actually six conserved
charges in the case of two complex fields, and n(2n — 1) in the case of n fields, corre-
sponding to the generators of the rotation group in four and 2n dimensions, respec-
tively. The extra symmetries often do not survive when nonlinear interactions of the
fields are included.




Chapter 3

The Dirac Field

Having exhaustively treated the simplest relativistic field equation, we now
move on to the second simplest, the Dirac equation. You may already be
familiar with the Dirac equation in its original incarnation, that is, as a single-
particle quantum-mechanical wave equation.* In this chapter our viewpoint
will be quite different. First we will rederive the Dirac equation as a classical
relativistic field equation, with special emphasis on its relativistic invariance.
Then, in Section 3.5, we will quantize the Dirac field in a manner similar to
that used for the Klein-Gordon field.

3.1 Lorentz Invariance in Wave Equations

First we must address a question that we swept over in Chapter 2: What do
we mean when we say that an equation is “relativistically invariant”? A rea-
sonable definition is the following: If ¢ is a field or collection of fields and D
is some differential operator, then the statement “D¢ = 0 is relativistically
invariant” means that if ¢(z) satisfies this equation, and we perform a rota-
tion or boost to a different frame of reference, then the transformed field, in
the new frame of reference, satisfies the same equation. Equivalently, we can
imagine physically rotating or boosting all particles or fields by a common
angle or velocity; again, the equation D¢ = 0 should be true after the trans-
formation. We will adopt this “active” point of view toward transformations
in the following analysis.

The Lagrangian formulation of field theory makes it especially easy to
discuss Lorentz invariance. An equation of motion is automatically Lorentz
invariant by the above definition if it follows from a Lagrangian that is a
Lorentz scalar. This is an immediate consequence of the principle of least
action: If boosts leave the Lagrangian unchanged, the boost of an extremum
in the action will be another extremum.

*This subject is covered, for example, in Schiff (1968), Chapter 13; Baym (1969),
Chapter 23; Sakurai (1967), Chapter 3. Although the present chapter is self-contained,
we recommend that you also study the single-particle Dirac equation at some point.

35
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As an example, consider the Klein-Gordon theory. We can write an arbi-
trary Lorentz transformation as

zh — 2t = ARz, (3.1)

for some 4 x 4 matrix A. What happens to the Klein-Gordon field ¢(z) under
this transformation? Think of the field ¢ as measuring the local value of some
quantity that is distributed through space. If there is an accumulation of this
quantity at ¢ = zg, ¢(x) will have a maximum at xy. If we now transform the
original distribution by a boost, the new distribution will have a maximum at
x = Axg. This is illustrated in Fig. 3.1(a). The corresponding transformation
of the field is

¢(z) — ¢'(z) = (A ). (3.2)
That is, the transformed field, evaluated at the boosted point, gives the same
value as the original field evaluated at the point before boosting.
We should check that this transformation leaves the form of the Klein-
Gordon Lagrangian unchanged. According to (3.2), the mass term im?¢?(z)
is simply shifted to the point (A™z). The transformation of 8,¢(z) is

Oud(z) — 8, (A 7)) = (A1)"(8,9) (A ). (3.3)

Since the metric tensor g*¥ is Lorentz invariant, the matrices A~ obey the
identity
(A2 (A7, g = g*°. (3.4)

Using this relation, we can compute the transformation law of the kinetic term
of the Klein-Gordon Lagrangian:

(0ud(2))? — g (0.9 (2)) (8u¢' ()
=g [(A_l)puap¢’] [(A_l)auaa¢] (A—lz)
= 977 (0,0) (850) (A" )
= (0u0)* (A ).
Thus, the whole Lagrangian is simply transformed as a scalar:
L(z) — L(A ). (3.5)

The action S, formed by integrating L over spacetime, is Lorentz invariant.
A similar calculation shows that the equation of motion is invariant:
(0 +m?)¢'(x) = [(A™)"u0, (A1), +m?] ¢(A7 )
= (8"70,0, + m*) (A" )
=0.
The transformation law (3.2) used for ¢ is the simplest possible transfor-
mation law for a field. It is the only possibility for a field that has just one

component. But we know examples of multiple-component fields that trans-
form in more complicated ways. The most familiar case is that of a vector field,
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.
D

(a) scalar field (b) vector field

Figure 3.1. When a rotation is performed on a vector field, it affects the
orientation of the vector as well as the location of the region containing the
configuration.

such as the 4-current density j*(x) or the vector potential A#(z). In this case,
the quantity that is distributed in spacetime also carries an orientation, which
must be rotated or boosted. As shown in Fig. 3.1(b), the orientation must be
rotated forward as the point of evaluation of the field is changed:

under 3-dimensional rotations, Vi(z) —» RYVI(R '),

under Lorentz transformations, VH(z) — AL VY (A ).

Tensors of arbitrary rank can be built out of vectors by adding more indices,
with correspondingly more factors of A in the transformation law. Using such
vector and tensor fields we can write a variety of Lorentz-invariant equations,
for example, Maxwell’s equations,

O*F, =0 or 09*A,-08,0/)A, =0, (3.6)
which follow from the Lagrangian
EMaxwell = —le(F;u/)2 = —%(BMA,, - 8VAM)2' (37)

In general, any equation in which each term has the same set of uncontracted
Lorentz indices will naturally be invariant under Lorentz transformations.
This method of tensor notation yields a large class of Lorentz-invariant
equations, but it turns out that there are still more. How do we find them?
We could try to systematically find all possible transformation laws for a field.
Then it would not be hard to write invariant Lagrangians. For simplicity, we
will restrict our attention to linear transformations, so that, if ®, is an n
component multiplet, the Lorentz transformation law is given by an n x n
matrix M(A):
(ba(w) - ab(A)q)b(Aﬁlx)' (38)
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It can be shown that the most general nonlinear transformation laws can be
built from these linear transformations, so there is no advantage in considering
transformations more general than (3.8). In the following discussion, we will
suppress the change in the field argument and write the transformation (3.8)
in the form

® — M(A)®. (3.9)

What are the possible allowed forms for the matrices M (A)? The basic
restriction on M (A) is found by imagining two successive transformations, A
and A’. The net result must be a new Lorentz transformation A”; that is,
the Lorentz transformations form a group. This gives a consistency condition
that must be satisfied by the matrices M(A): Under the sequence of two
transformations,

& — M(A)M(A)® = M(A")®, (3.10)

for A” = A’A. Thus the correspondence between the matrices M and the
transformations A must be preserved under multiplication. In mathematical
language, we say that the matrices M must form an n-dimensional represen-
tation of the Lorentz group. So our question now is rephrased in mathemati-
cal language: What are the (finite-dimensional) matrix representations of the
Lorentz group?

Before answering this question for the Lorentz group, let us consider a sim-
pler group, the rotation group in three dimensions. This group has representa-
tions of every dimensionality n, familiar in quantum mechanics as the matrices
that rotate the n-component wavefunctions of particles of different spins. The
dimensionality is related to the spin quantum number s by n = 2s + 1. The
most important nontrivial representation is the two-dimensional representa-
tion, corresponding to spin 1/2. The matrices of this representation are the
2 x 2 unitary matrices with determinant 1, which can be expressed as

U=ei00/2 (3.11)

where @ are three arbitrary parameters and o® are the Pauli sigma matrices.
For any continuous group, the transformations that lie infinitesimally close
to the identity define a vector space, called the Lie algebra of the group.
The basis vectors for this vector space are called the generators of the Lie
algebra, or of the group. For the rotation group, the generators are the angular
momentum operators J*, which satisfy the commutation relations

[T, J7] = ie7* J*. (3.12)

The finite rotation operations are formed by exponentiating these operators:
In quantum mechanics, the operator

R= exp[—iOiJi] (3.13)

gives the rotation by an angle |f| about the axis g. The commutation rela-
tions of the operators J determine the multiplication laws of these rotation
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operators. Thus, a set of matrices satisfying the commutation relations (3.12)
produces, through exponentiation as in (3.13), a representation of the rotation
group. In the example given in the previous paragraph, the representation of
the angular momentum operators

J'— = (3.14)

2

produces the representation of the rotation group given in Eq. (3.11). It is
generally true that one can find matrix representations of a continuous group
by finding matrix representations of the generators of the group (which must
satisfy the proper commutation relations), then exponentiating these infinites-
imal transformations.

For our present problem, we need to know the commutation relations
of the generators of the group of Lorentz transformations. For the rotation
group, one can work out the commutation relations by writing the generators
as differential operators; from the expression

J=xxp=xx(-iV), (3.15)

the angular momentum commutation relations (3.12) follow straightforwardly.
The use of the cross product in (3.15) is special to the case of three dimensions.
However, we can also write the operators as an antisymmetric tensor,

J9 = —i(z'VI — &IV),

so that J3 = J'2 and so on. The generalization to four-dimensional Lorentz
transformations is now quite natural:

JH = i(zhd” — z¥OM). (3.16)

We will soon see that these six operators generate the three boosts and three
rotations of the Lorentz group.

To determine the commutation rules of the Lorentz algebra, we can now
simply compute the commutators of the differential operators (3.16). The
result is

[JH, JP7) = i(g"PJHT — gHPJ¥T — gUO JHP 4 gh JU). (3.17)

Any matrices that are to represent this algebra must obey these same com-
mutation rules.

Just to see that we have this right, let us look at one particular represen-
tation (which we will simply pull out of a hat). Consider the 4 x 4 matrices

(TH)ap = (826" — 8¥56%). (3.18)

(Here p and v label which of the six matrices we want, while o and 3 la-
bel components of the matrices.) You can easily verify that these matrices
satisfy the commutation relations (3.17). In fact, they are nothing but the
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matrices that act on ordinary Lorentz 4-vectors. To see this, parametrize an
infinitesimal transformation as follows:

Ve o (8% — %w,w(jﬂ")aﬁ)vﬁ, (3.19)
where V is a 4-vector and w,,, an antisymmetric tensor, gives the infinites-
imal angles. For example, consider the case wis = —wa1 = 6, with all other
components of w equal to zero. Then Eq. (3.19) becomes

1 0 00
01 -60

V - 06 1 0 Vv, (3.20)
00 01

which is just an infinitesimal rotation in the zy-plane. You can also verify
that setting wo1 = —wig = B gives

1 800
V- gé‘igv, (3.21)
00 0 1

an infinitesimal boost in the z-direction. The other components of w generate
the remaining boosts and rotations in a similar manner.

3.2 The Dirac Equation

Now that we have seen one finite-dimensional representation of the Lorentz
group, the logical next step would be to develop the formalism for finding
all other representations. Although this is not very difficult to do (see Prob-
lem 3.1), it is hardly necessary for our purposes, since we are mainly interested
in the representation(s) corresponding to spin 1/2.

We can find such a representation using a trick due to Dirac: Suppose
that we had a set of four n x n matrices v* satisfying the anticommutation
relations

{v*, 7"} = 9" + 4 * = 2" X Loxn (Dirac algebra). (3.22)

Then we could immediately write down an n-dimensional representation of
the Lorentz algebra. Here it is:

)
SH = Z [k 7], 3.23
7] (3.23)
By repeated use of (3.22), it is easy to verify that these matrices satisfy the
commutation relations (3.17).

This computation goes through in any dimensionality, with Lorentz or
Euclidean metric. In particular, it should work in three-dimensional Euclidean
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space, and in fact we can simply write
v/ =i0?  (Pauli sigma matrices),
so that (v, 77} = —264.

The factor of  in the first line and the minus sign in the second line are purely
conventional. The matrices representing the Lorentz algebra are then

S = Leiikgk, (3.24)

which we recognize as the two-dimensional representation of the rotation
group.

Now let us find Dirac matrices v* for four-dimensional Minkowski space.
It turns out that these matrices must be at least 4 x 4. (There is no fourth
2 x 2 matrix, for example, that anticommutes with the three Pauli sigma
matrices.) Further, all 4 x 4 representations of the Dirac algebra are unitarily
equivalent.! We thus need only write one explicit realization of the Dirac
algebra. One representation, in 2 x 2 block form, is

o_ (0 1Y, i 0 ot
=9 5) =(29) (3.25)

This representation is called the Weyl or chiral representation. We will find
it an especially convenient choice, and we will use it exclusively throughout
this book. (Be careful, however, since many field theory textbooks choose a
different representation, in which 4 is diagonal. Furthermore, books that use
chiral representations often make a different choice of sign conventions.)

In our representation, the boost and rotation generators are

g ) i (ot 0
SO‘L — Zl_[,yo’,y"] — —5 ( 0 _02> s (326)
and
. P 1 .. k 1 ..
§7 = 1] = 3¢ (ao fk) =5 (3.27)

A four-component field v that transforms under boosts and rotations accord-
ing to (3.26) and (3.27) is called a Dirac spinor. Note that the rotation gen-
erator S is just the three-dimensional spinor transformation matrix (3.24)
replicated twice. The boost generators S% are not Hermitian, and thus our
implementation of boosts is not unitary (this was also true of the vector rep-
resentation (3.18)). In fact the Lorentz group, being “noncompact”, has no
faithful, finite-dimensional representations that are unitary. But that does not
matter to us, since ¢ is not a wavefunction; it is a classical field.

TThis statement and the preceding one follow from the general theory of the
representations of the Lorentz group derived in Problem 3.1.
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Now that we have the transformation law for 1, we should look for an
appropriate field equation. One possibility is simply the Klein-Gordon equa-
tion:

(0% + m?)y = 0. (3.28)
This works because the spinor transformation matrices (3.26) and (3.27) op-
erate only in the “internal” space; they go right through the differential oper-
ator. But it is possible to write a stronger, first-order equation, which implies
(3.28) but contains additional information. To do this we need to know one

more property of the v matrices. With a short computation you can verify
that

[v*, 8271 = (T*)"A",
or equivalently,
(1+ 3w SP7) (1 = §wpoS77) = (1 = §wpe T*) 7"
This equation is just the infinitesimal form of
ATyAy = ARy, (3.29)
where

Ay = exp(—%w#VS”") (3.30)

is the spinor representation of the Lorentz transformation A (compare (3.19)).
Equation (3.29) says that the v matrices are invariant under simultaneous
rotations of their vector and spinor indices (just like the o! under spatial
rotations). In other words, we can “take the vector index u on v* seriously,”
and dot v* into J, to form a Lorentz-invariant differential operator.

We are now ready to write down the Dirac equation. Here it is:

(14" — m)y(z) = 0. (3.31)

To show that it is Lorentz invariant, write down the Lorentz-transformed
version of the left-hand side and calculate:

[iv"0, — m]y(z) — [iv*(A™1)".0, — m]A%w(A"lx)
= Ay AT [iv* (A7)0, — m] Ay (A7)
= Ay [iAT7*AL (A7)0, — m]P(A )
= Ay [iMor7 (A7)0, — m] (A z)
=A; [iv78, — m]y(A ' z)
=0.




3.2 The Dirac Equation 43

To see that the Dirac equation implies the Klein-Gordon equation, act on the
left with (—iv*0, —m):
0= (—iv*0u — m)(iv" 0, — m)y
= (77" 0,0, +m?)y
= (3{1*,7"}8,0, + m*)y
= (0" + m*)y.

To write down a Lagrangian for the Dirac theory, we must figure out how
to multiply two Dirac spinors to form a Lorentz scalar. The obvious guess,
1y, does not work. Under a Lorentz boost this becomes szAT2A 9; if the
boost matrix were unitary, we would have AT = A} 1 and everything “would be

fine. But A1 is not unitary, because the generators (3.26) are not Hermitian.
The solution is to define

¥ = yia0. (3.32)
Under an infinitesimal Lorentz transformation parametrized by w,,, we have
¥ — T (1+ 2w (S#)1)4°. The sum over p and v has six distinct nonzero
terms. In the rotation terms, where y and v are both nonzero, (S#)f = S#
and S#” commutes with 4°. In the boost terms, where p or v is 0, (S**) =
—(S#) but S*¥ anticommutes with 4°. Passing the 79 to the left therefore
removes the dagger from S#”, yielding the transformation law

¥ — YAT, (3.33)
and therefore the quantity Tp_«p is a Lorentz scalar. Similarly you can show
(with the aid of (3.29)) that 1y*1 is a Lorentz vector.

The correct, Lorentz-invariant Dirac Lagrangian is therefore
Lbirac = "7’(7:'7#8/1 - m)lﬁ (3'34)

The Euler-Lagrange equation for 3 (or 1) immediately yields the Dirac equa-
tion in the form (3.31); the Euler-Lagrange equation for 1 gives the same
equation, in Hermitian-conjugate form:

—i8, Py — my = 0. (3.35)

Weyl Spinors

From the block-diagonal form of the generators (3.26) and (3.27), it is apparent
that the Dirac representation of the Lorentz group is reducible.! We can form
two 2-dimensional representations by considering each block separately, and

writing .
(YL
P = (?DR)' (3.36)

4If we had used a different representation of the gamma matrices, the reducibility
would not be manifest; this is essentially the reason for using the chiral representation.
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The two-component objects ¥y and g are called left-handed and right-
handed Weyl spinors. You can easily verify that their transformation laws,
under infinitesimal rotations @ and boosts 3, are

Y — (1—i0-5 — B )L
Yp—(1-10-%+ 8- 5)Yr.

These transformation laws are connected by complex conjugation; using the
identity

(3.37)

o?0* = —00?, (3.38)

it is not hard to show that the quantity o2+} transforms like a right-handed
spinor.
In terms of ¥;, and g, the Dirac equation is
nn B -m (8o +0-V) 3 _
("0, —m)y = (i(@o 0V o on 0. (3.39)
The two Lorentz group representations ¢y, and g are mixed by the mass
term in the Dirac equation. But if we set m = 0, the equations for i1, and ¢¥g
decouple:
(0o —o - V)L =0;
(0o + o - V)Yr =0.
These are called the Weyl equations; they are especially important when treat-

ing neutrinos and the theory of weak interactions.
It is possible to clean up this notation slightly. Define

ot =(1,0), o' =(1,-o), (3.41)

= ((_foﬂ "0“) , (3.42)

(The bar on & has absolutely nothing to do with the bar on 1).) Then the
Dirac equation can be written

[

and the Weyl equations become

i5-0¢p =0;  io-0yYr=0. (3.44)

(3.40)

so that
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3.3 Free-Particle Solutions of the Dirac Equation

To get some feel for the physics of the Dirac equation, let us now discuss its
plane-wave solutions. Since a Dirac field ¥ obeys the Klein-Gordon equation,
we know immediately that it can be written as a linear combination of plane
waves:

Y(z) = u(p)e™*,  where p?> = m?. (3.45)

For the moment we will concentrate on solutions with positive frequency, that
is, p° > 0. The column vector u(p) must obey an additional constraint, found
by plugging (3.45) into the Dirac equation:

(7*Pu — m)u(p) = 0. (3.46)

It is easiest to analyze this equation in the rest frame, where p = pg = (m, 0);
the solution for general p can then be found by boosting with A 1 In the rest
frame, Eq. (3.46) becomes

(mr® = myutom) = ()} ) ulom) =0,

and the solutions are

u(po) = vVm (g) , (3.47)

for any numerical two-component spinor £. We conventionally normalize £ so
that £7¢ = 1; the factor \/m has been inserted for future convenience. We can
interpret the spinor £ by looking at the rotation generator (3.27): € transforms
under rotations as an ordinary two-component spinor of the rotation group,
and therefore determines the spin orientation of the Dirac solution in the
usual way. For example, when £ = ((1)), the particle has spin up along the
3-direction.

Notice that after applying the Dirac equation, we are free to choose only
two of the four components of u(p). This is just what we want, since a spin-1/2
particle has only two physical states—spin up and spin down. (Of course we
are being a bit premature in talking about particles and spin. We will prove
that the spin angular momentum of a Dirac particle is /2 when we quantize
the Dirac theory in Section 3.5; for now, just notice that there are two possible
solutions u(p) for any momentum p.)

Now that we have the general form of u(p) in the rest frame, we can obtain
u(p) in any other frame by boosting. Consider a boost along the 3-direction.
First we should remind ourselves of what the boost does to the 4-momentum
vector. In infinitesimal form,

() =L (5 o) (B)
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where 7 is some infinitesimal parameter. For finite 7 we must write

E\ 01 m
p) P 1 o) \o
= [coshn(é (1)) +sinhn((1) (1))] (T;) (3.48)
_ (mcoshn
~ \msinhn /"
The parameter 7 is called the rapidity. It is the quantity that is additive under

successive boosts.
Now apply the same boost to u(p). According to Egs. (3.26) and (3.30),

-l (% ) ()
[ 1) (5 2] ()

(D )

[VEF7(5) + VE= ()
[VETP () + VE- P ()
The last line can be simplified to give

u(p) = (\/ﬁg)

- (3.50)
VP 5¢)’

where it is understood that in taking the square root of a matrix, we take
the positive root of each eigenvalue. This expression for u(p) is not only more
compact, but is also valid for an arbitrary direction of p. When working with
expressions of this form, it is often useful to know the identity

(p-0)(p-5) =p* =m’. (3.51)

You can then verify directly that (3.50) is a solution of the Dirac equation in
the form of (3.43).

In practice it is often convenient to work with specific spinors £. A useful

choice here would be eigenstates of o3. For example, if £ = (é) (spin up along
the 3-axis), we get

0= (V) i B ()} 0
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while for £ = (0) (spin down along the 3-axis) we have

VE+p() s )
u(p) B ( /E _P3 (?)) larg—e_bt)ost 2E( 0 ) (353)
In the limit 7 — oo the states degenerate into the two-component spinors of
a massless particle. (We now see the reason for the factor of /m in (3.47): It
keeps the spinor expressions finite in the massless limit.)
The solutions (3.52) and (3.53) are eigenstates of the helicity operator,

. 1, (ot 0
h:p's_ﬁpi(o ai)' (3.54)
A particle with h = +1/2 is called right-handed, while one with h = —1/2 is
called left-handed. The helicity of a massive particle depends on the frame of
reference, since one can always boost to a frame in which its momentum is
in the opposite direction (but its spin is unchanged). For a massless particle,
which travels at the speed of light, one cannot perform such a boost.

The extremely simple form of u(p) for a massless particle in a helicity
eigenstate makes the behavior of such a particle easy to understand. In Chap-
ter 1, it enabled us to guess the form of the ete™ — ptu™ cross section in the
massless limit. In subsequent chapters we will often do a mindless calculation
first, then look at helicity eigenstates in the high-energy limit to understand
what we have done.

Incidentally, we are now ready to understand the origin of the notation
¥y and Yg for Weyl spinors. The solutions of the Weyl equations are states of
definite helicity, corresponding to left- and right-handed particles, respectively.
The Lorentz invariance of helicity (for a massless particle) is manifest in the
notation of Weyl spinors, since 11, and ¥ g live in different representations of
the Lorentz group.

It is convenient to write the normalization condition for u(p) in a Lorentz-
invariant way. We saw above that 1T+ is not Lorentz invariant. Similarly,

ulu= (€'vp-o, €Mvp3) - (ﬁ’—"g)

VP G5¢ (3.55)
= 2EL¢T¢.
To make a Lorentz scalar we define
a(p) = ul(p)y". (3.56)
Then by an almost identical calculation,
au = 2meTe. (3.57)

This will be our normalization condition, once we also require that the two-

component spinor £ be normalized as usual: ¢T¢ = 1. It is also conventional to

choose basis spinors ¢' and €2 (such as (j) and (0)) that are orthogonal. For
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a massless particle Eq. (3.57) is trivial, so we must write the normalization
condition in the form of (3.55).

Let us summarize our discussion so far. The general solution of the Dirac
equation can be written as a linear combination of plane waves. The positive-
frequency waves are of the form

¥(z) = u(p)e™P*, p? =m?, p° > 0. (3.58)
There are two linearly independent solutions for u(p),
u®(p) = (%ﬁ) s=1,2 (3.59)
which we normalize according to
" (p)u’(p) = 2mé"* or  uT(p)u(p) = 2Ep6". (3.60)
In exactly the same way, we can find the negative-frequency solutions:
Y(z) =v(p)et™?e,  p?=m?,  p’>0. (3.61)

(Note that we have chosen to put the + sign into the exponential, rather than
having p° < 0.) There are two linearly independent solutions for v(p),

- s

v (p) = ( VP 97 > s=1,2 (3.62)
—VPE”

where n° is another basis of two-component spinors. These solutions are nor-

malized according to

" (p)vi(p) = —2mé"® or v (p)v®(p) = +2Ep6"". (3.63)
The u’s and v’s are also orthogonal to each other:
u’ (p)v*(p) = 0" (p)u’(p) = 0. (3.64)
Be careful, since u"f(p)v*(p) # 0 and v"f(p)u®(p) # 0. However, note that
u"(p)v*(—p) = v (~p)u’(p) =0, (3.65)

where we have changed the sign of the 3-momentum in one factor of each
spinor product.

Spin Sums

In evaluating Feynman diagrams, we will often wish to sum over the polar-
ization states of a fermion. We can derive the relevant completeness relations
with a simple calculation:

Z u®(p)u’(p) = 2 ( p~c7§s> (&'Vp -5, &'V o)

s=1,2 s "p‘a.é-s
=(\/P'U\/P‘5’ \/P'U\/p‘ff)
Vp-o\yp-G P O\Vp-O
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_ m p-o
T \p-d m )’
In the second line we have used
1 0
sest 1
266 —1_(0 1)'
s=1,2

Thus we arrive at the desired formula,
> ut(p)ut(p) =y p+m. (3.66)
S

Similarly,
> v (ppi(p) =v-p—m. (3.67)

The combination ~y-p occurs so often that Feynman introduced the notation
¥ = v*p,. We will use this notation frequently from now on.

3.4 Dirac Matrices and Dirac Field Bilinears

We saw in Section 3.2 that the quantity Y1) is a Lorentz scalar. It is also
easy to show that ¥y#1 is a 4-vector—we used this fact in writing down the
Dirac Lagrangian (3.34). Now let us ask a more general question: Consider the
expression Y'Y, where I is any 4 x 4 constant matrix. Can we decompose this
expression into terms that have definite transformation properties under the
Lorentz group? The answer is yes, if we write I' in terms of the following basis
of sixteen 4 x 4 matrices, defined as antisymmetric combinations of y-matrices:

1 1 of these
AP 4 of these
A = %[7#’7'/] R I 6 of these
AP = 7[;17"79] 4 of these
PO — Ll o] 1 of these

16  total

The Lorentz-transformation properties of these matrices are easy to deter-
mine. For example,

Py — (VA7) (30" v*]) (Mg 9)
= ANy — KA AT
= A\ Ny *Py.

Each set of matrices transforms as an antisymmetric tensor of successively
higher rank.



50 Chapter 3  The Dirac Field

The last two sets of matrices can be simplified by introducing an addi-
tional gamma matrix,

. b wpo
7P = iy0y1y243 = -—Ee’“’” VYo Yo Yo (3.68)
Then y#/P7 = —jetP75 and yHP = 44e#P7~,~5. The matrix 4> has the

following properties, all of which can be verified using (3.68) and the anti-
commutation relations (3.22):

() =% (3.69)
(V)2 = 1; (3.70)
{v*,7*} =0. (3.71)

This last property implies that [y®, S#*] = 0. Thus the Dirac representation
must be reducible, since eigenvectors of 5 whose eigenvalues are different
transform without mixing (this criterion for reducibility is known as Schur’s

lemma). In our basis,
s (-1 0
o —< 0 1 (3.72)

in block-diagonal form. So a Dirac spinor with only left- (right-) handed com-
ponents is an eigenstate of ¥5 with eigenvalue —1 (+1), and indeed these
spinors do transform without mixing, as we saw explicitly in Section 3.2.

Let us now rewrite our table of 4 x4 matrices, and introduce some standard
terminology:

1 scalar 1

yH vector 4

o = L[k, v tensor 6
yHy8 pseudo-vector 4

8 pseudo-scalar 1

16

The terms pseudo-vector and pseudo-scalar arise from the fact that these
quantities transform as a vector and scalar, respectively, under continuous
Lorentz transformations, but with an additional sign change under parity
transformations (as we will discuss in Section 3.6).

From the vector and pseudo-vector matrices we can form two currents out
of Dirac field bilinears:

(@) = Pleyy ), () = Play* (). (3.73)

Let us compute the divergences of these currents, assuming that i satisfies
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the Dirac equation:
" = (Bu)V* b + Py O
= (ima)y + P(—imyp) (3.74)
=0.

Thus j* is always conserved if 9(z) satisfies the Dirac equation. When we
couple the Dirac field to the electromagnetic field, 7# will become the electric
current density. Similarly, one can compute

0" = 2imabySep. (3.75)

If m = 0, this current (often called the azial vector current) is also conserved.
It is then useful to form the linear combinations

= a1 A s

it = w( 5 )¢, Jg =v7" (T)¢ (3.76)
When m = 0, these are the electric current densities of left-handed and right-
handed particles, respectively, and are separately conserved.

The two currents j#(z) and j#°(z) are the Noether currents corresponding
to the two transformations

P(@) = ep(z)  and  P(z) — €27 ().

The first of these is a symmetry of the Dirac Lagrangian (3.34). The second,
called a chiral transformation, is a symmetry of the derivative term in £ but
not the mass term; thus, Noether’s theorem confirms that the axial vector
current is conserved only if m = 0.

Products of Dirac bilinears obey interchange relations, known as Fierz
identities. We will discuss only the simplest of these, which will be needed
several times later in the book. This simplest identity is most easily written
in terms of the two-component Weyl spinors introduced in Eq. (3.36).

The core of the relation is the identity for the 2 x 2 matrices o* defined
in Eq. (3.41):

(Uu)a,@(aﬂ)’yé = 260/76,@6- (377)
(Here a, B, etc. are spinor indices, and e is the antisymmetric symbol.) One
can understand this relation by noting that the indices , v transform in the
Lorentz representation of vy, while 3, é transform in the separate representa-
tion of ¥R, and the whole quantity must be a Lorentz invariant. Alternatively,
one can just verify the 16 components of (3.77) explicitly.
By sandwiching identity (3.77) between the right-handed portions (i.e.,
lower half) of Dirac spinors uy, ug, us, u4, we find the identity

(W1 ro*u2R)(U3ROLULR) = 2€ayU1 RaU3RYEBSU2RAUARS (3.78)

= — (W ro*u4r)(UsROLU2R)-

This nontrivial relation says that the product of bilinears in (3.78) is anti-
symmetric under the interchange of the labels 2 and 4, and also under the
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interchange of 1 and 3. Identity (3.77) also holds for *, and so we also find
(ﬂlLa‘”UQL)(ﬂgL&”'LL‘;L) = —(E1L5MU4L)(17,3L5#U2L). (3.79)

It is sometimes useful to combine the Fierz identity (3.78) with the iden-
tity linking o* and a*:

€ap(0™)gy = (3" )apepy- (3.80)

This relation is also straightforward to verify explicitly. By the use of (3.80),
(3.79), and the relation
o, =4, (3.81)

we can, for example, simplify horrible products of bilinears such as
(’TL]L&“O'V(—J_"\UQL)(ﬂgLa'uU,,a',\’U,‘;L) = 2€a71—l/1La'I_//3L’y€ﬁ6(UVE'A’UQL)[)(UVC_T/\UALL)6
= 2€aU1LaU3LyEpsU2L6(0° 5 0, T AULL)s
=2-(4)® €ayli1LalsLyEgsUaLBUALS
= 16(ﬂ1L5”u2L)(’U,3L5MU4L). (3.82)

There are also Fierz rearrangement identities for 4-component Dirac
spinors and 4 x 4 Dirac matrices. To derive these, however, it is useful to
take a more systematic approach. Problem 3.6 presents a general method and
gives some examples of its application.

3.5 Quantization of the Dirac Field

We are now ready to construct the quantum theory of the free Dirac field.
From the Lagrangian

L = (g — m)yyp = P(ir" 0y — m)y, (3.83)

we see that the canonical momentum conjugate to v is 3!, and thus the
Hamiltonian is

H= /d%zz(—z’-y -V 4+m)y = /d% Y —ivy - V+my%ly.  (3.84)

If we define a = 7%, 8 = 7°, you may recognize the quantity in brackets as
the Dirac Hamiltonian of one-particle quantum mechanics:

hp = —ia- V +mB. (3.85)

How Not to Quantize the Dirac Field:
A Lesson in Spin and Statistics

To quantize the Dirac field in analogy with the Klein-Gordon field we would
impose the canonical commutation relations

[Ya(x), 9} (y)] = 6@ (x — y)bap,  (equal times) (3.86)
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where a and b denote the spinor components of ¢. This already looks peculiar:
If ¢(x) were real-valued, the left-hand side would be antisymmetric under
x <y, while the right-hand side is symmetric. But % is complex, so we
do not have a contradiction yet. In fact, we will soon find that much worse
problems arise when we impose commutation relations on the Dirac field. But
it is instructive to see how far we can get, in order to better understand the
relation between spin and statistics. So let us press on; just remember that
the next few pages will eventually turn out to be a blind alley.

Our first task is to find a representation of the commutation relations in
terms of creation and annihilation operators that diagonalizes H. From the
form of the Hamiltonian (3.84), it will clearly be helpful to expand () in a
basis of eigenfunctions of hp. We know these eigenfunctions already from our
calculations in Section 3.3. There we found that

[i’yoc')o +iy-V — m] u®(p)e” T =0,

so u®(p)e’P™ are eigenfunctions of hp with eigenvalues Ey. Similarly, the
functions v*(p)e~P* (or equivalently, v¥(—p)et®PX) are eigenfunctions of
hp with eigenvalues —Ey. These form a complete set of eigenfunctions, since
for any p there are two u’s and two v’s, giving us four eigenvectors of the 4 x 4
matrix hp.

Expanding v in this basis, we obtain

d3p 1 ip-X s,.S s .8
¥ = [ G ™ T (@ i), @8

s=1,2

where aj, and by, are operator coefficients. (For now we work in the Schrédinger
picture, where 1 does not depend on time.) Postulate the commutation rela-
tions

[ap, agl] = [b5, b51] = (21)*6®) (p - q)6™. (3.88)
It is then easy to verify the commutation relations (3.86) for + and vT:

d3pdq 1

[w(X)ﬂl’T(Y)]:/ (2m)6 \/W
xz(a agf o (@)at@) + [, b2 L]0 (-p)-a) )

i(px—qy)

dp 1
(@) 2E,

X [('yOEP—'y~p+m)+(7°Ep+'y'p—m)]7°

=60 (x —y) X 14x4. (3.89)

P (x=y)

In the second step we have used the spin sum completeness relations (3.66)
and (3.67).
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We are now ready to write H in terms of the a’s and b’s. After another
short calculation (making use of the orthogonality relations (3.60), (3.63), and
(3.65)), we find

H= / o 32 Epaglay - Epbylb ). (3.90)

Something is terribly wrong with the second term: By creating more and
more particles with b, we can lower the energy indefinitely. (It would not
have helped to rename b « b', since doing so would ruin the commutation
relation (3.89).)

We seem to be in rather deep trouble, but again let’s press on, and inves-
tigate the causality of this theory. To do this we should compute [1(x), ¥ (y)]
(or more conveniently, [¢(z),%(y)]) at non-equal times and hope to get zero
outside the light-cone. First we must switch to the Heisenberg picture and
restore the time-dependence of ¢ and . Using the relations

iHt s .—iHt __ s _—iEpt iHtys —iHt __ 1s +iEpt
e"“age = ape” P, e hge = bpe™ P, (3.91)

we immediately have

v = Z( put(p)e” " + b;m(p)eip'z);

27r
) ( \/2E_ | o
V= (27r \/ﬁ > (@ @) + byfo e ).

We can now calculate the general commutator:

— 3 ) '
[Va(), ¥s(v)] = / (gﬂl))gﬁ (us ()i (p)e v +v2(p)fz§(p)e”"(’”‘y))

¢y 1
(2m)3 2E,

. d3p 1 —ip-(x— ip-(x—y
=(Zaz+m)ab/WE(e (@0 — giwle=)
= (i3, +m) , [o(z), 6(y)]-

Since [¢(z),d(y)] (the commutator of a real Klein-Gordon field) vanishes
outside the light-cone, this quantity does also.

There is something odd, however, about this selution to the causality
problem. Let |0) be the state that is annihilated by all the a, and b3: ag, |0) =
b5 |0) = 0. Then

[wa(z)a@b(y)] = <Ol [wa(m)aﬂ)b(y)] |0>
= (0] %a(@)P(y) 10) — (0] Y6 (y)¥a(2) |0) ,

((ﬁ'l' m)abe_ip.(z_y) + (lj—' m)abeip.(z_y))
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just as for the Klein-Gordon field. But in the Klein-Gordon case, we got one
term of the commutator from each of these two pieces: the propagation of
a particle from y to z was canceled by the propagation of an antiparticle
from z to y outside the light-cone. Here both terms come from the first piece,
(0] ¥ (x)®(y) |0), since the second piece is zero. The cancellation is between
positive-energy particles and negative-energy particles, both propagating from
y to x.

This observation can actually lead us to a resolution of the negative-
energy problem. One of the assumptions we made in quantizing the Dirac
theory must have been incorrect. Let us therefore forget about the postulated
commutation relations (3.86) and (3.88), and see whether we can find a way
for positive-energy particles to propagate in both directions. We will also have
to drop our definition of the vacuum |0) as the state that is annihilated by all
ay, and by,. We will, however, retain the expressions (3.92) for ¢(x) and ¥(z)
as Heisenberg operators, since if ¢(z) and (z) solve the Dirac equation, they
must be decomposable into such plane-wave solutions.

First consider the propagation amplitude (0| % (z)%(y) |0), which is to rep-
resent a positive-energy particle propagating from y to z. In this case we
want the (Heisenberg) state 1(y)|0) to be made up of only positive-energy,
or negative-frequency components (since a Heisenberg state ¥y = etH0 ).
Thus only the asT term of (y) can contribute, which means that b‘*Jr must
annihilate the vacuum Similarly (0] (x) can contain only posmve-frequency
components. Thus we have

—-zpz

013 0) = 0] [ 22 ﬁE_za

3

We can say something about the matrix element (0| a;af; |0) even without
knowing how to interchange af, and af;f, by using translational and rotational
invariance. If the ground state |0) is to be invariant under translations, we
must have |0) = e*F*|0). Furthermore, since agf creates momentum q, we
can use Eq. (2.48) to compute

(3.93)

(0] apag! |0) = (0| apagfe™ > [0)
= eilP— q) * (0| 'LP-xa;aflT |0)

= ¢ip—a) <0| r <81T |0>

This says that if (0] a;af; |0) is to be nonzero, p must equal q. Similarly, it
can be shown that rotational invariance of |0) implies r = s. (This should be
intuitively clear, and can be checked after we discuss the angular momentum
operator later in this section.) From these considerations we conclude that
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the matrix element can be written

(0lagag! 10) = (2m)°6™ (p — q)6™ - A(p),

where A(p) is so far undetermined. Note, however, that if the norm of a state
is always positive (as it should be in any self-respecting Hilbert space), A(p)
must be greater than zero. We can now go back to (3.93), and write

(0] (x)y ( )10) = /(g p3 25, Zus(p)us(p)A(p) ~ip(z—y)

3p .
= [ e W m)Am)e .

This expression is properly invariant under boosts only if A(p) is a Lorentz
scalar, i.e., A(p)=A(p?). Since p?> = m?, A must be a constant. So finally we
obtain

T I e

e P@EY) 4, (3.94)

Similarly, in the amplitude (0]%(y)¢(z)|0), we want the only contri-
butions to be from the positive-frequency terms of ¥ (y) and the negative-
frequency terms of ¢)(z). So aj, still annihilates the vacuum, but by, does not.
Then by arguments identical to those given above, we have

dpl

e?*=Y) . B,
2m)5 2E (3.95)

O Tuwbe(@) 0) = (it +m),, [ 35
where B is another positive constant. The minus sign is important; it comes
from the completeness relation (3.67) for Y vo and the sign of x in the ex-
ponential factor. It implies that we cannot have (0| [¢(z),%(y)]|0) = 0 out-
side the light-cone: The two terms (3.94) and (3.95) would indeed cancel if
A = —B, but this is impossible since A and B must both be positive.

The solution, however, is now at hand. By setting A = B = 1, it is easy
to obtain (outside the light-cone)

(0] 9a(@)96(y) 10) = — (0] 9y (y)va(2) |0) -

That is, the spinor fields anticommute at spacelike separation. This is enough
to preserve causality, since all reasonable observables (such as energy, charge,
and particle number) are built out of an even number of spinor fields; for any
such observables O; and Oz, we still have [O;(z), O2(y)] = 0 for (z —y)? < 0.

And remarkably, postulating anticommutation relations for the Dirac field

solves the negative energy problem. The equal-time anticommutation relations
will be

{ta(x), 9} (¥)} = 6P (x — y)bas;
{va(x),¥(y)} = {wl(x),wg(y)} =0.

|

(3.96)
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We can expand 9(x) in terms of aj, and b}, as before (Eq. (3.87)). The creation
and annihilation operators must now obey

{al, a5t} = {b}, 051} = (2m)36C) (p — q)6™ (3.97)

(with all other anticommutators equal to zero) in order that (3.96) be satisfied.
Another computation gives the Hamiltonian,

/ 3 Z pasT s _ g bsTbs)

which is the same as before; bf.,T still creates negative energy. However, the
relation {b7,, b5} = (27)%6®) (p — q)6™* is symmetric between b7, and bg'. So
let us simply redefine

by=0s b =05 (3.98)

These of course obey exactly the same anticommutation relations, but now
the second term in the Hamiltonian is

—prg‘b; = +EPB;T5; — (const).

If we choose |0) to be the state that is annihilated by a;, and B;, then all
excitations of |0) have positive energy.

What happened? To better understand this trick, let us abandon the field
theory for a moment and consider a theory with a single pair of b and bf
operators obeying {b,b'} = 1 and {b,b} = {b!,d'} = 0. Choose a state |0)
such that b|0) = 0. Then b' |0) is a new state; call it |1). This state satisfies
b|1) = |0) and bf |1) = 0. So b and b' act on a Hilbert space of only two states,
|0) and |1). We might say that |0) represents an “empty” state, and that bt
“fills” the state. But we could equally well call |1) the empty state and say
that b = bt fills it. The two descriptions are completely equivalent, until we
specify some observable that allows us to distinguish the states physically. In
our case the correct choice is to take the state of lower energy to be the empty
one. And it is less confusing to put the dagger on the operator that creates
positive energy. That is exactly what we have done.

Note, by the way, that since (b')2 = 0, the state cannot be filled twice.
More generally, the anticommutation relations imply that any multiparticle
state is antisymmetric under the interchange of two particles: al,a:g 0y =
—afa}, |0). Thus we conclude that if the ladder operators obey anticommuta-
tion relations, the corresponding particles obey Fermi-Dirac statistics.

We have just shown that in order to insure that the vacuum has only
positive-energy excitations, we must quantize the Dirac field with anticom-
mutation relations; under these conditions the particles associated with the
Dirac field obey Fermi-Dirac statistics. This conclusion is part of a more gen-
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eral result, first derived by Pauli*: Lorentz invariance, positive energies, pos-
itive norms, and causality together imply that particles of integer spin obey
Bose-Einstein statistics, while particles of half-odd-integer spin obey Fermi-
Dirac statistics.

The Quantized Dirac Field

Let us now summarize the results of the quantized Dirac theory in a systematic
way. Since the dust has settled, we should clean up our notation: From now
on we will write b, (the operator that lowers the energy of a state) simply
as bp, and BL as bL. All the expressions we will need in our later work are
listed below; corresponding expressions above, where they differ, should be
forgotten.

First we write the field operators:

Y(z) = / PE \/5173_ Z( e T 4 bf;’vs(p)e"”'z); (3.99)
- d3p
P(x) = / 2m) \/Q—E_ Z(bs S(p)e” P + as1L s(p)e”’“‘) (3.100)
The creation and annihilation operators obey the anticommutation rules
{af, a5t} = {b7, 051} = (2m)%6B) (p — q)6™, (3.101)

with all other anticommutators equal to zero. The equal-time anticommuta-
tion relations for 1 and v are then

{% 1/12(}’)} = 6(3) X - Y)‘Sab;

(3.102)
{#a(), o)} = {¥lx),¥(y)} =0.
The vacuum |0) is defined to be the state such that
ap, |0) = by, [0) = 0. (3.103)
The Hamiltonian can be written
d3p ST s stps
H—/WZS:EP( 5+ bibs ) (3.104)

where we have dropped the infinite constant term that comes from anticom-
muting by, and bif. From this we see that the vacuum is the state of lowest
energy, as desired. The momentum operator is

/d%zpf —iV ) = /d3 32 STa +b8*b8) (3.105)

*W. Pauli, Phys. Rev. 58, 716 (1940), reprinted in Schwinger (1958). A rigorous
treatment is given by R. F. Streater and A. S. Wightman, PCT, Spin and Statistics,
and All That (Benjamin/Cummings, Reading, Mass., 1964).
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Thus both af;f and bfj create particles with energy +FE, and momentum p.
We will refer to the particles created by a;T as fermions and to those created
by bil as antifermions.

The one-particle states

Ip, s) = /2Epail |0) (3.106)
are defined so that their inner product
(p,7la,s) = 2Ep(21)*6®) (p — q)6™ (3.107)

is Lorentz invariant. This implies that the operator U(A) that implements
Lorentz transformations on the states of the Hilbert space is unitary, even
though for boosts, A% is not unitary.

It will be reassuring to do a consistency check, to see that U(A) imple-
ments the right transformation on ¥ (z). So calculate

Uy(z)U™ = U/ \/ﬁ_ Z( u®(p)e ”"”+b§vs(p)ei”’”)U'1. (3.108)

We can concentrate on the first term; the second is completely analogous.
Equation (3.106) implies that a;, transforms according to

EAp

VW)U (8) = 422 o,

(3.109)

assuming that the axis of spin quantization is parallel to the boost or rotation
axis. To use this relation to evaluate (3.108), rewrite the integral as

dp 1 dp 1
= [ . /2E.a’.
/ @2r)? \E, P J (2r) 2E, pdp
The second factor is transformed in a simple way by U, and the first is a

Lorentz-invariant integral. Thus, if we apply (3.109) and make the substitution
p = Ap, Eq. (3.108) becomes

-1 dgﬁ 1 —1x s —ip-Azx
U W) = [ S Va7

But u*(A™1p) = A_%lus (p), so indeed we have

3 d3 D s _— Aa:
A U A A U, ip- ‘e
UMy (z)U(A) = (2n)? \/27;— D _Aju(Pape (3.110)
- A’%lw(Ax). "

This result says that the transformed field creates and destroys particles
at the point Az, as it must. Note, however, that this transformation appears
to be in the wrong direction compared to Eq. (3.2), where the transformed
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field ¢ was evaluated at A~'z. The difference is that in Section 3.1 we imag-
ined that we transformed a pre-existing field distribution that was measured
by ¢(z). Here, we are transforming the action of ¢(x) in creating or destroy-
ing particles. These two ways of implementing the Lorentz transformation
work in opposite directions. Notice, though, that the matrix acting on ¢ and
the transformation of the coordinate x have the correct relative orientation,
consistent with Eq. (3.8).

Next we should discuss the spin of a Dirac particle. We expect Dirac
fermions to have spin 1/2; now we can demonstrate this property from our
formalism. We have already shown that the particles created by agf and b;T
each come in two “spin” states: s = 1,2. But we haven’t proved yet that this
“spin” has anything to do with angular momentum. To do this, we must write
down the angular momentum operator.

Recall that we found the linear momentum operator in Section 2.2 by
looking for the conserved quantity associated with translational invariance.
We can find the angular momentum operator in a similar way as a consequence
of rotational invariance. Under a rotation (or any Lorentz transformation), the
Dirac field v transforms (in our original convention) according to

b(a) = ¥ (@) = Ayy(A ).

To apply Noether’s theorem we must compute the change in the field at a
fixed point, that is,

8y = ' (z) — ¢(z) = Ayy(A'z) — ¥(2).
Consider for definiteness an infinitesimal rotation of coordinates by an angle
0 about the z-axis. The parametrization of this transformation is given just |

below Eq. (3.19): wi2 = —w9; = . Using the same parameters in Eq. (3.30),
we find

A

R 1— twL S =1- 1053,

We can now compute
§y(z) = (1 — £653)y(t, z + Oy, y — Oz, 2) — ()
= —0(z8y — YO, + £33)9(z) = 0AY.
The time-component of the conserved Noether current is then

o 0L
T

Similar expressions hold for rotations about the z- and y-axes, so the angular
momentum operator is

A = —ipy° (28 — Yy, + £5°%) 9.

J= /d% P! (x x (—iV) + éz)w. (3.111)

For nonrelativistic fermions, the first term of (3.111) gives the orbital angular
momentum. The second term therefore gives the spin angular momentum.
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Unfortunately, the division of (3.111) into spin and orbital parts is not so
straightforward for relativistic fermions, so it is not simple to write a general
expression for this quantity in terms of ladder operators.

To prove that a Dirac particle has spin 1/2, however, it suffices to consider
particles at rest. We would like to apply J, to the state aOT |0) and show that
this state is an eigenvector. This is most easily done using a trick: Since
J, must annihilate the vacuum, J,a3! [0) = [J,,a3!]|0). The commutator is
nonzero only for the terms in J, that have annihiliation operators at p = 0.
For these terms, the orbital part of (3.111) does not contribute. To write the
spin term of (3.111) in terms of ladder operators, use expansions (3.99) and
(3.100), evaluated at t = 0:

3 3
J, = d3 d pd ' 1 e ip'~xeip-x
™% /2Ep2Ey

X Z( r T r T )+ br " T(—pl))%:i(a;ur(p) + bq,vr(—p)).

rr!

Taking the commutator with ag , the only nonzero term has the structure

[alfal, a a3l = (2m)36®) (p)alT67; the other three terms in the commutator
either vanish or annihilate the vacuum. Thus we find

Jeai 10 = g 3 (1O 5w )i 10 = (156 )i 0,

where we have used the explicit form (3.47) of u(0) to obtain the last expres-
sion. The sum over r is accomplished most easily by choosing the spinors £"
to be eigenstates of 2. We then find that for £° = (é), the one-particle state
is an eigenstate of J, with eigenvalue +1/2, while for £€* = (J), it is an eigen-
state of J, with eigenvalue —1/2. This result is exactly what we expect for
electrons.

An analogous calculation determines the spin of a zero-momentum an-
tifermion. But in this case, since the order of the b and bT terms in J, is
reversed, we get an extra minus sign from evaluating [b b“ bl ol = —[b;f_.,bp, bg].
Thus for positrons, the association between the spinors n° and the spin angular
momentum is reversed: (;) corresponds to spin —1/2, while () corresponds
to spin +1/2. This reversal of sign agrees with the prediction of Dirac hole
theory. From that viewpoint, a positron is the absence of a negative-energy
electron. If the missing electron had positive J,, its absence has negative J,.

In summary, the angular momentum of zero-momentum fermions is given
by

Lag 0) = £3a5"j0),  J.65T10) = F355110), (3.112)

where the upper sign is for £° = (1

4) and the lower sign is for & = (J).

1
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There is one more important conserved quantity in the Dirac theory. In
Section 3.4 we saw that the current j* = y*1 is conserved. The charge
associated with this current is

Q:/d3xw*(x)w(:c):/ dpsz( sta + b bsf)

or, if we ignore another infinite constant,

/ 2ﬂ)3 (aplap - byto;). (3.113)

So af;’ creates fermions with charge +1, while bf;f creates antifermions with
charge —1. When we couple the Dirac field to the electromagnetic field, we
will see that @ is none other than the electric charge (up to a constant factor
that depends on which type of particle we wish to describe; e.g., for electrons,
the electric charge is Qe).

In Quantum Electrodynamics we will use the spinor field ¥ to describe
electrons and positrons. The particles created by af,’f are electrons; they have
energy Ep, momentum p, spin 1/2 with polarization appropriate to £°, and
charge +1 (in units of e). The particles created by bfj are positrons; they have
energy Ep, momentum p, spin 1/2 with polarization opposite to that of £°,
and charge —1. The state 1) () |0) contains a positron at position x, whose
polarization corresponds to the spinor component chosen. Similarly, 1,—ba (z)10)
is a state of one electron at position z.

The Dirac Propagator

Calculating propagation amplitudes for the Dirac field is by now a straight-
forward exercise:

3 .
(0 9a(@)9hy(y) |0) = / (;1—55%; u (p)as (p)e” P (=)

. d3 P 1 e
= (z@w+m)ab/(2w)3 25, ¢ p@=y) - (3.114)

d3p Z ]
(2n)3 2E Z’“ (p)vi(p)e” P W)

dp 1
—(igd, +m /———e—“"(y—’”). (3.115)
( )ab (27’!’)3 2Ep

Just as we did for the Klein-Gordon equation, we can construct Green’s
functions for the Dirac equation obeying various boundary conditions. For
example, the retarded Green’s function is

St (@ —y) = 6(2° - y°) (0] {¥a(z), ¥u () } 10).- (3.116)

(0195 (y)¥a(x) |0)
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It is easy to verify that
Sr(z —y) = (iaw—km)DR(ac——y), (3.117)

since on the right-hand side the term involving 8y8(z° — y°) vanishes. Using
(3.117) and the fact that @@ = 02, we see that Sg is a Green’s function of
the Dirac operator:

(i@, —m) Sﬁ(-’v —y) =i6W(z —y)  Loxa. (3.118)

The Green’s function of the Dirac operator can also be found by Fourier
transformation. Expanding Sg(x —y) as a Fourier integral and acting on both
sides with (i@, — m), we find

9=y = [ <§4 53 (= m)e " I (p), (3.119)

and hence
i i(P+m)

§R(p):¢_m_p2_m2'

(3.120)

To obtain the retarded Green’s function, we must evaluate the p® integral in
(3.120) along the contour shown on page 30. For 20 > y° we close the contour
below, picking up both poles to obtain the sum of (3.114) and (3.115). For
2% < y° we close the contour above and get zero.

The Green’s function with Feynman boundary conditions is defined by
the contour shown on page 31:

d4p 'L(Z”/+m) —ip-(z—
Sp(z—y)z/(27r)4 PP —m?+ie Py

_ (0] ¢(x)(y) |0) for 2° > y° (close contour below)
— (0] ¥ (y)¥(x) |0) for 2° < y° (close contour above)

= (0] Ty (2)9(y) |0) , (3.121)

where we have chosen to define the time-ordered product of spinor fields with
an additional minus sign when the operators are interchanged. This minus
sign is extremely important in the quantum field theory of fermions; we will
meet it again in Section 4.7.

As with the Klein-Gordon theory, the expression (3.121) for the Feynman
propagator is the most useful result of this chapter. When we do perturbative
calculations with Feynman diagrams, we will associate the factor Sr(p) with
each internal fermion line.
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3.6 Discrete Symmetries of the Dirac Theory

In the last section we discussed the implementation of continuous Lorentz
transformations on the Hilbert space of the Dirac theory. We found that for
each transformation A there was a unitary operator U(A), which induced the
correct transformation on the fields:

UA)Y(z)U™ (A) = AT 9(Az). (3.122)

In this section we will discuss the analogous operators that implement various
discrete symmetries on the Dirac field.

In addition to continuous Lorentz transformations, there are two other
spacetime operations that are potential symmetries of the Lagrangian: par-
ity and time reversal. Parity, denoted by P, sends (t,x) — (t, —x), reversing
the handedness of space. Time reversal, denoted by T, sends (¢,x) — (—t,x%),
interchanging the forward and backward light-cones. Neither of these opera-
tions can be achieved by a continuous Lorentz transformation starting from
the identity. Both, however, preserve the Minkowski interval 2 = t2 — x2. In
standard terminology, the continuous Lorentz transformations are referred to
as the proper, orthochronous Lorentz group, LL. Then the full Lorentz group
breaks up into four disconnected subsets, as shown below.

LL L, L' = PLL “orthochronous”

T T
Lﬁ_ = TLTF — Ll_ = PTLL “nonorthochronous”
P

“proper” “improper”

At the same time that we discuss P and T, it will be convenient to discuss a
third (non-spacetime) discrete operation: charge conjugation, denoted by C.
Under this operation, particles and antiparticles are interchanged.

Although any relativistic field theory must be invariant under'LIL, it need
not be invariant under P, T, or C. What is the status of these symmetry op-
erations in the real world? From experiment, we know that three of the forces
of Nature— the gravitational, electromagnetic, and strong interactions—are
symmetric with respect to P, C, and T. The weak interactions violate C and
P separately, but preserve CP and T. But certain rare processes (all so far
observed involve neutral K mesons) also show CP and T violation. All obser-
vations indicate that the combination CPT is a perfect symmetry of Nature.

The currently accepted theoretical model of the weak interactions is the
Glashow-Weinberg-Salam gauge theory, described in Chapter 20. This theory
violates C and P in the strongest possible way. It is actually a surprise (though
not quite an accident) that C and P happen to be quite good symmetries in the
most readily observable processes. On the other hand, no one knows a really
beautiful theory that violates C'P. In the current theory, when there are three
(or more) fermion generations, there is room for a parameter that, if nonzero,
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causes C P violation. But the value of this parameter is no better understood
than the value of the electron mass; the physical origin of C'P violation remains
a mystery. We will discuss this question further in Section 20.3.

Parity

With this introduction, let us now discuss the action of P, T', and C on Dirac
particles and fields. First consider parity. The operator P should reverse the
momentum of a particle without flipping its spin:

1 mirror
: /

«—P—>

Mathematically, this means that P should be implemented by a unitary op-
erator (properly called U(P), but we’ll just call it P) which, for example,
transforms the state a3f [0) into a2 [0). In other words, we want

Pag, P = n,aZ, and Pb, P = npbZ,,, (3.123)

where 7, and 7, are possible phases. These phases are restricted by the con-
dition that two applications of the parity operator should return observables
to their original values. Since observables are built from an even number of
fermion operators, this requires 72, n? = £1.

Just as a continuous Lorentz transformation is implemented on the Dirac
field as the 4 x 4 constant matrix A 1 the parity transformation should also be
represented by a 4 x 4 constant matrix. To find this matrix, and to determine
N and 7, we compute the action of P on ¢(z). Using (3.123), we have

P’I,b(l‘)P / 27‘_)3 \/ﬁ Z(naa_pu —ipe + n;bf{,vs (p)ei’””) . (3124)

Now change variables to p = (p°, —p). Note that p-z = p - (¢, —x). Also
p-o=p-0and p-& = p-o. This allows us to write
vp‘oﬁ) (Vﬁ'ﬁf) 0, (=
ulp) = = = = =7 ulp);
0= (Vze) = (Vmae) =70

o) = (—%s) = (—%&) =@

So (3.124) becomes

5.0 s zﬁ(t,—x)

(27T \/Q—ETZ(WG p’Y u

- nbb?v v (p)e? ).

Py(z)P =
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This should equal some constant matrix times 1(t, —x), and indeed it works
if we make n; = —n,. This implies

NaMb = —TaTy = —1. (3.125)
Thus we have the parity transformation of ¥(z) in its final form,
Py(t,x)P = ngy°ih(t, —x). (3.126)

It will be very important (for example, in writing down Lagrangians) to
know how the various Dirac field bilinears transform under parity. Recall that
the five bilinears are

oY, ey, Wy e, e, iy (3.127)
The factors of ¢ have been chosen to make all these quantities Hermitian, as

you can easily verify. (Any new term that we add to a Lagrangian must be
real.) First we should compute

Pi(t,x)P = Pyl (t,x)Py° = (Py(t,x)P)'y° = iib(t, —x)7°.  (3.128)
Then the scalar bilinear transforms as
PnpP = |ng |2 (t, —x)7°7°9(t, —x) = +ib(t, —x), (3.129)

while for the vector we obtain

= = hyHap(t, —x) for p=0
PPy P = iy (t, —x) = { TL10(E ) 3.130
Note that the vector acquires the same minus sign on the spatial components
as does the vector z#. Similarly, the transformations of the pseudo-scalar and
pseudo-vector are

Piyy* P = ipy* v % (t, —x) = =iy (¢, —x); (3.131)
B  Ta0 50 s oy _ | =Ry for p=0,
PPy P =yt (t, —x) = {+W75w for p—12,3. (3.132)

Just as we anticipated in Section 3.4, the “pseudo” signifies an extra mi-
nus sign in the parity transformation. (The transformation properties of
iWp[y*, 7" = 2ot 1) are reserved for Problem 3.7.) Note that the transfor-
mation properties of fermion bilinears were independent of 7,, so there would
have been no loss of generality in setting 7, = —7, = 1 from the beginning.
However, the relative minus sign (3.125) between the parity transforma-
tions of a fermion and an antifermion has important consequences. Consider
a fermion-antifermion state, a;Tba/ t10). Applying P, we find P(afjbﬁ;f 0)) =
- (af;f,bf:lT |0)). Thus a state containing a fermion-antifermion pair gets an ex-
tra (—1) under parity. This information is most useful in the context of bound
states, in which the fermion and antifermion momenta are integrated with the
Schrédinger wavefunction to produce a system localized in space. We consider
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such states in detail in Section 5.3, but here we should remark that if the spa-
tial wavefunction is symmetric under x — —x, the state has odd parity, while
if it is antisymmetric under x — —x, the state has even parity. The L = 0
bound states, for example, have odd parity; the J = 0 state transforms as a
pseudo-scalar, while the three J = 1 states transform as the spatial compo-
nents of a vector. These properties show up in selection rules for decays of
positronium and quark-antiquark systems (see Problem 3.8).

Time Reversal

Now let us turn to the implementation of time reversal. We would like T' to
take the form of a unitary operator that sends ap to a_p (and similarly for
bp) and (t,x) to ¥(—t,x) (times some constant matrix). These properties,
however, are extremely difficult to achieve, since we saw above that sending
ap to a_p instead sends (¢, x) to (t, —x) in the expansion of 1. The difficulty is
even more apparent when we impose the constraint that time reversal should
be a symmetry of the free Dirac theory, [T, H] = 0. Then

P(t,x) = elyp(x)e ™ H
= TY(t,x)T = e [Ty(x)T] e H?
= Ty(t,x)T |0) = e [Ty (x)T] |0),

assuming that H |0) = 0. The right-hand side is a sum of negative-frequency
terms only. But if 7" is to reverse the time dependence of (¢, x), then the left-
hand side is (up to a constant matrix) ¥(—t,x)|0) = e~*#t(x) |0), which is
a sum of positive-frequency terms. Thus we have proved that T cannot be
implemented as a linear unitary operator.

What can we do? The way out is to retain the unitarity condition TT =
T-!, but have T act on c-numbers as well as operators, as follows:

T'(c-number) = (c-number)*T. (3.133)

Then even if [T, H] = 0, the time dependence of all exponential factors is
reversed: Tet*Ht = e~*HtT Since all time evolution in quantum mechanics is
performed with such exponential factors, this effectively changes the sign of ¢.
Note that the operation of complex conjugation is nonlinear; T is referred to
as an antilinear or antiunitary operator.

In addition to reversing the momentum of a particle, T' should also flip
the spin:

—0— - —O—

To quantify this, we must find a mathematical operation that flips a spinor &.

In the earlier parts of this chapter, we denoted the spin state of a fermion
by a label s = 1,2. In the remainder of this section, we will associate s with
the physical spin component of the fermion along a specific axis. If this axis
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has polar coordinates 6, ¢, the two-component spinors with spin up and spin
down along this axis are

cos & —e~®gin ¢
€N =(nze)s 0= ( con? )t

2
Let &5 = (£(1),£(])) for s = 1,2. Also define
£ = —io?(¢%)". (3.134)

This quantity is the flipped spinor; from the explicit formulae,
£° = (&(1), =€) (3.135)

The form of the spin reversal relation follows more generally from the identity
00? = 0%(—0o*). This equation implies that, if £ satisfies n-o¢ = +¢ for some
axis n, then

(n-0)(~io*¢") = ~io?(—n - 0)*¢" = ic®(¢") = —(~io¢").

Notice that, with this convention for the spin flip, two successive spin flips
return a spin to (—1) times the original state.

We now associate the various fermion spin states with these spinors. The
electron annihilation operator a;, destroys an electron whose spinor u’(p)
contains &*. The positron annihilation operator by, destroys a positron whose
spinor v®(p) contains £75:

Vp-o&?®
S(p) = . 3.136
0= (Ve (3150
As in Eq. (3.135), we define
o = (a2,—al), b = (82, —bL). (3.137)

We can now work out the relation between the Dirac spinors v and v and
their time reversals. Define p = (p°, —p). This vector satisfies the identity
VP -o0% = 0?/p- 0%, to prove this, expand the square root as in (3.49). For
some choice of spin and momentum, associated with the Dirac spinor u*®(p),
let u*(p) be the spinor with the reversed momentum and flipped spin. These
quantities are related by

() = (\/ﬂ(—ia%s*)) _ <~i02W§s*)
VP - T (-io2£5*) ~io2\/p- G £*
_ _(c* 0 S(m1* — _ 1308 (]
=iy 2 [w ()] ="’ (p)] .
Similarly, for v*(p), () = i [vs (p)] .

in this relation, v™* contains &%) = —¢5.
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Using the notation of Eq. (3.137), we define the time reversal transforma-
tion of fermion annihilation operators as follows:

TaT =a%,  THT =b5. (3.138)

(An additional overall phase would have no effect on the rest of our discussion

and is omitted for simplicity.) Relations (3.138) allow us to compute the action
of T on the fermion field ¥ (z):

3
T RT = [ e ST (a0 ) + )T
d? 1 . ‘ ive
= / ——(2;))3 —\/E ;(a:f, [us (p)] e’P* + b:‘;’,T [vs(p)] e )

3 ~
— (,71,73) / d p 1 Z (a—_su—-s (ﬁ)eiﬁ(t,—-){)
(277)3 \/ 2Ef, 5 P
+ b;;s]‘v—s (ﬁ)e—iﬁ(t,—x)>
= (v'7*)p(—t,%). (3.139)

In the last step we used p - (¢, —x) = —p - (—t,x). Just as for parity, we have
derived a simple transformation law for the fermion field ¢(z). The relative
minus sign in the transformation laws for particle and antiparticle is present
here as well, implicit in the twice-flipped spinor in v~°.

Now we can check the action of T" on the various bilinears. First we need

TYT = (TYT) (%) =1 (=, %) [v'9°]"1° = d(~t, %) [-v"7%].  (3.140)
Then the transformation of the scalar bilinear is
Tp(t, x)T = P(—7'7°) (V' 7°)(—t, %) = +(—t, ). (3.141)
The pseudo-scalar acquires an extra minus sign when T goes through the i:
Tipy* YT = ~ip(—v'7*)7° (V7)o = —ipy*w(~t, %).

For the vector, we must separately compute each of the four cases p = 0,1,2,3.
After a bit of work you should find

Ty T = P(—'v*) (v)* (v'+*)v
_ [ +yp(—t,x) for p=0;
B { _77’7”71’(—@ X) for w= 1, 2»3 (3142)

This is exactly the tranformation property we want for vectors such as the
current density. You can verify that the pseudo-vector transforms in exactly
the same way under time-reversal.
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Charge Conjugation

The last of the three discrete symmetries is the particle-antiparticle sym-
metry C. There will be no problem in implementing C as a unitary linear
operator. Charge conjugation is conventionally defined to take a fermion with
a given spin orientation into an antifermion with the same spin orientation.
Thus, a convenient choice for the transformation of fermion annihilation op-
erators is

CalC=1b%;  CHC=ap. (3.143)

Again, we ignore possible additional phases for simplicity.
Next we want to work out the action of C on ¥(z). First we need a relation
between v*(p) and u®(p). Using (3.136), and (3.134),

sy (VD o(=io%E )\ (o2 /p- 57" (0 —io?\(Vp o0&
o) = (acmen) = Corgee. ) = (i 5 )(Vse)
where £ stands for £°. That is,

w(p) = -’ (v'(P)", v (p) =—ir’ (v ()" (3.144)

If we substitute (3.144) into the expression for the fermion field operator, and
then transform this operator with C, we find

2E Z( 2’72bs s(p))*e ipT —Z’YZ(IST( S(p)) wz)

= —iﬁb (@) = —ir2 ()T = —i(9°4%)". (3.145)

Note that C' is a linear unitary operator, even though it takes ¢ — 3*.
Once again, we would like to know how C acts on fermion bilinears. First
we need

C(x)C = CPICY° = (—in?)T7° = (—in"7*¥)T. (3.146)

Working out the transformations of bilinears is a bit tricky, and it helps to
write in spinor indices. For the scalar,

CYpC = (—i°7* )" (—i7°7*) = =4V aV9eN
=+ Ve Ve = =7y (3.147)
=+,

(The minus sign in the third step is from fermion anticommutation.) The
pseudo-scalar is no more difficult:

Cipy*YC = i(—ir°y*9) Ty (=i °y*) T = iy (3.148)

We must do each component of the vector and pseudo-vector separately. Not-
ing that 4° and 2 are symmetric matrices while 4! and «* are antisymmetric,
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we eventually find

C"yC = =™y (3.149)

Cpyiy°YC = +yiy’ep. (3.150)

Although the operator C interchanges ¥ and 1, it does not actually change
the order of the creation and annihilation operators. Thus, if 7% is defined

to subtract the infinite constant noted above Eq. (3.113), this constant does
not reappear in the process of conjugation by C.

Summary of C, P, and T

The transformation properties of the various fermion bilinears under C, P, and
T are summarized in the table below. Here we use the shorthand (—1)* =1
forp=0and (-1)*=—-1for p=1,2,3.

Py WYY Py Pyt Yoty Ou
P 41 -1 (- —(-D* (D=1 (-D*
T +1 -1 (=D* (¥ —(=D¥-1)" —(-1)*
C +1 +1 -1 +1 -1 +1
CPT +1 +1 -1 -1 +1 -1

We have included the transformation properties of the tensor bilinear (see
Problem 3.7), and also of the derivative operator.

Notice first that the free Dirac Lagrangian Lo = 9 (iv*8, — m)¢ is in-
variant under C, P, and T separately. We can build more general quantum
systems that violate any of these symmetries by adding to £y some pertur-
bation 6L. But 6L must be a Lorentz scalar, and the last line of the table
shows that all Lorentz scalar combinations of ¢ and ¢ are invariant under the
combined symmetry CPT. Actually, it is quite generally true that one cannot
build a Lorentz-invariant quantum field theory with a Hermitian Hamiltonian
that violates CPT."

Problems
3.1 Lorentz group. Recall from Eq. (3.17) the Lorentz commutation relations,
[J}W, JPU] = i(gVPJMO _ gﬂPJVU _ gVUJ#P + gleVP)‘
a) Define the generators of rotations and boosts as
(a) g

Li — %eijk‘,ij:7 Ki — JOi,

tThis theorem and the spin-statistics theorem are proved with great care in
Streater and Wightman, op. cit.
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where 4,7,k = 1,2,3. An infinitesimal Lorentz transformation can then be writ-
ten
® - (1-i9-L-iB-K)®.

Write the commutation relations of these vector operators explicitly. (For exam-
ple, [L?, L7] = ie“’k L* ) Show that the combinations

Ji=1(L+iK) and J_ = 3}(L-iK)

commute with one another and separately satisfy the commutation relations of
angular momentum.

(b) The finite-dimensional representations of the rotation group correspond precisely
to the allowed values for angular momentum: integers or half-integers. The result
of part (a) implies that all finite-dimensional representations of the Lorentz group
correspond to pairs of integers or half integers, (j,7— ), corresponding to pairs of
representations of the rotation group. Using the fact that J = o/2 in the spin-
1/2 representation of angular momentum, write explicitly the transformation
laws of the 2-component objects transforming according to the (%, 0) and (0, %—)
representations of the Lorentz group. Show that these correspond precisely to
the transformations of ¢;, and g given in (3.37).

(c) The identity 6T = —o200? allows us to rewrite the 1, transformation in the
unitarily equivalent form

W oy (140 +8-7),

where 1’ = yT¢2. Using this law, we can represent the object that transforms

as (%, %) as a 2 X 2 matrix that has the g transformation law on the left and,
simultaneously, the transposed 15, transformation on the right. Parametrize this

matrix as
vo4v3 vi—iv?
vigiv? yo-_y3

Show that the object V# transforms as a 4-vector.

3.2 Derive the Gordon identity,

A ulp) = a(p) [”’” o, i"“u"”]u(p),

2m 2m
where ¢ = (p' — p). We will put this formula to use in Chapter 6.

3.3 Spinor products. (This problem, together with Problems 5.3 and 5.6, intro-
duces an efficient computational method for processes involving massless particles.)
Let kg , Ic’f be fixed 4-vectors satisfying k% =0, k% = —1, ko - k1 = 0. Define basic
spinors in the following way: Let uyg be the left-handed spinor for a fermion with
momentum kg. Let upg = ¥yuro. Then, for any p such that p is lightlike (p? = 0),

define
1

1
ur(p) = \/T—]COVURO ug(p) = ﬁﬂULO~

This set of conventions defines the phases of spinors unambiguously (except when p is
parallel to ko).

(a) Show that ¥yupgo = 0. Show that, for any lightlike p, pur (p) = pur(p) = 0.

and



(b)
(c)
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For the choices kg = (E,0,0,—FE), k1 = (0,1,0,0), construct urg, uro, ur(p),
and ug(p) explicitly.

Define the spinor products s(p1,p2) and t(p1, p2), for p1,p2 lightlike, by
s(p1,p2) = ur(p1)ur(p2),  t(p1,p2) = L (P1)ur(p2).

Using the explicit forms for the u) given in part (b), compute the spinor products

explicitly and show that ¢(p1,p2) = (s(p2,p1))* and s(p1,p2) = —s(p2,p1). In
addition, show that

2
s(p1,p2)|" = 2p1-pa.
Thus the spinor products are the square roots of 4-vector dot products.

Majorana fermions. Recall from Eq. (3.40) that one can write a relativistic

equation for a massless 2-component fermion field that transforms as the upper two
components of a Dirac spinor (1,). Call such a 2-component field x4 (z), a =1, 2.

(a)

(b)

Show that it is possible to write an equation for x(z) as a massive field in the
following way:
io - Ox —imo?x* =0.

That is, show, first, that this equation is relativistically invariant and, second,
that it implies the Klein-Gordon equation, (8% + m?)x = 0. This form of the
fermion mass is called a Majorana mass term.

Does the Majorana equation follow from a Lagrangian? The mass term would
seem to be the variation of (‘72)abXZXZ§ however, since 02 is antisymmetric, this
expression would vanish if x(x) were an ordinary c-number field. When we go to
quantum field theory, we know that x(z) will become an anticommuting quan-
tum field. Therefore, it makes sense to develop its classical theory by considering
x(x) as a classical anticommuting field, that is, as a field that takes as values
Grassmann numbers which satisfy

af = —fa for any «, (3.

Note that this relation implies that ® = 0. A Grassmann field £(z) can be
expanded in a basis of functions as

£(@) = andn(@),

where the ¢n(z) are orthogonal c-number functions and the ay are a set of
independent Grassmann numbers. Define the complex conjugate of a product of
Grassmann numbers to reverse the order:

(aB)* = f*a* = —a*f*.

This rule imitates the Hermitian conjugation of quantum fields. Show that the
classical action,

S = /d4a: [xfia SOx + %(xTcrzx - x*ozx*)] ,

(where xt = (x*)T) is real (S* = S), and that varying this S with respect to x
and x* yields the Majorana equation.
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Let us write a 4-component Dirac field as

(YL
W(w) = (W),

and recall that the lower components of i transform in a way equivalent by a
unitary transformation to the complex conjugate of the representation v¢r. In
this way, we can rewrite the 4-component Dirac field in terms of two 2-component
spinors:

Yr(x) =xi(z),  Yr(@) =ic’x3(@).

Rewrite the Dirac Lagrangian in terms of x; and x2 and note the form of the
mass term.

Show that the action of part (c) has a global symmetry. Compute the divergences
of the currents

Je=xtaryx, g =xletx - b,
for the theories of parts (b) and (c), respectively, and relate your results to the
symmetries of these theories. Construct a theory of N free massive 2-component
fermion fields with O(N) symmetry (that is, the symmetry of rotations in an
N-dimensional space).

Quantize the Majorana theory of parts (a) and (b). That is, promote x(z) to a
quantum field satisfying the canonical anticommutation relation

{Xa(), X} ()} = 6068 (x ~ ),

construct a Hermitian Hamiltonian, and find a representation of the canonical
commutation relations that diagonalizes the Hamiltonian in terms of a set of
creation and annihilation operators. (Hint: Compare x(z) to the top two com-
ponents of the quantized Dirac field.)

Supersymmetry. It is possible to write field theories with continuous symme-

tries linking fermions and bosons; such transformations are called supersymmetries.

(a)

(b)

The simplest example of a supersymmetric field theory is the theory of a free
complex boson and a free Weyl fermion, written in the form

L=08,0"0"¢+xTig-9x + F*F.

Here F is an auxiliary complex scalar field whose field equation is F' = 0. Show
that this Lagrangian is invariant (up to a total divergence) under the infinitesi-
mal tranformation

6 = —ieTazx,
bx = €F + 0 - 8poie*,
SF = —iefa - ax,

where the parameter ¢, is a 2-component spinor of Grassmann numbers.
Show that the term

AL = [m¢F + %imxTU2x] + (complex conjugate)
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is also left invariant by the transformation given in part (a). Eliminate F' from
the complete Lagrangian £ + AL by solving its field equation, and show that
the fermion and boson fields ¢ and x are given the same mass.

It is possible to write supersymmetric nonlinear field equations by adding cubic
and higher-order terms to the Lagrangian. Show that the following rather general
field theory, containing the field (¢;, x;), i = 1,...,n, is supersymmetric:

L =0,¢;0¢; +x,16 - Ox; + F'F;

OW[g]  i0°WIH] 1 o
+(FZ 5, +§a¢i8¢jxiax]+c.c.),

where W([¢] is an arbitrary function of the ¢;, called the superpotential. For the
simple case n = 1 and W = g¢° /3, write out the field equations for ¢ and x
(after elimination of F).

Fierz transformations. Let u;, ¢ = 1,...,4, be four 4-component Dirac

spinors. In the text, we proved the Fierz rearrangement formulae (3.78) and (3.79).
The first of these formulae can be written in 4-component notation as

_ 1+9°Y 1445 _ 14+95y 1445
u1’Y“( 3 )u2u3‘m( 27 )u4=—u1’7“( 27 )u4u3’m( 27 )uz‘

In fact, there are similar rearrangement formulae for any product

(@M up)(@sT Puy),

where I'4, T'B are any of the 16 combinations of Dirac matrices listed in Section 3.4.

()

(b)

(c)

3.7
(a)

(b)

To begin, normalize the 16 matrices I'? to the convention
tr[DATE] = 4648,

This gives ['4 = {1,70, i, ... }; write all 16 elements of this set.
Write the general Fierz identity as an equation

(BT us)(@sTPug) = D C4P0p (a1 Pus) (@31 Pu2),
C,D

with unknown coefficients C485 . Using the completeness of the 16 I'4 matri-
ces, show that .

C'ABCD = liﬁ tr[FCFAFDFB].

Work out explicitly the Fierz transformation laws for the products (%1 uz2)(u3us)
and (@1v%u2)(U3yuua).
This problem concerns the discrete symmetries P, C, and T

Compute the transformation properties under P, C, and T of the antisymmetric
tensor fermion bilinears, o*”1) , with o#¥ = %['y", 4¥]. This completes the table
of the transformation properties of bilinears at the end of the chapter.

Let ¢(z) be a complex-valued Klein-Gordon field, such as we considered in Prob-
lem 2.2. Find unitary operators P, C and an antiunitary operator T (all defined
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in terms of their action on the annihilation operators ap and bp for the Klein-
Gordon particles and antiparticles) that give the following tranformations of the

Klein-Gordon field:
P(t,x) P = ¢(t, —x);

To(t,x)T = ¢(—t,%);
Cé(t,x)C = ¢*(t,x).

Find the transformation properties of the components of the current
Jt =i(¢*oM¢ — 0" )

under P, C, and T.

Show that any Hermitian Lorentz-scalar local operator built from ¢(z), ¢(z),
and their conjugates has CPT = +1.

Bound states. Two spin-1/2 particles can combine to a state of total spin either

0 or 1. The wavefunctions for these states are odd and even, respectively, under the
interchange of the two spins.

(a)
(b)

Use this information to compute the quantum numbers under P and C of all
electron-positron bound states with S, P, or D wavefunctions.

Since the electron-photon coupling is given by the Hamiltonian
AH = /d3x eAug*,

where j# is the electric current, electrodynamics is invariant to P and C if
the components of the vector potential have the same P and C parity as the
corresponding components of j#. Show that this implies the following surprising
fact: The spin-0 ground state of positronium can decay to 2 photons, but the
spin-1 ground state must decay to 3 photons. Find the selection rules for the
annihilation of higher positronium states, and for 1-photon transitions between
positronium levels.
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Interacting Fields and Feynman Diagrams

4.1 Perturbation Theory—Philosophy and Examples

We have now discussed in some detail the quantization of two free field theories
that give approximate descriptions of many of the particles found in Nature.
Up to this point, however, free-particle states have been eigenstates of the
Hamiltonian; we have seen no interactions and no scattering. In order to obtain
a closer description of the real world, we must include new, nonlinear terms
in the Hamiltonian (or Lagrangian) that will couple different Fourier modes
(and the particles that occupy them) to one another. To preserve causality,
we insist that the new terms may involve only products of fields at the same
spacetime point: [¢(z)]* is fine, but ¢(x)p(y) is not allowed. Thus the terms
describing the interactions will be of the form

Hip = / d*z Hine[0(2)] = — / @3z Ling[d(2)].

For now we restrict ourselves to theories in which Hins (= —Lint) is a function
only of the fields, not of their derivatives.

In this chapter we will discuss three important examples of interacting
field theories. The first is “phi-fourth” theory,

1 1 A
L= 5(5u¢)2 - §m2¢2 - ﬂ(’b‘}’ (4.1)

where ) is a dimensionless coupling constant. (A ¢* interaction would be a bit
simpler, but then the energy would not be positive-definite unless we added
a higher even power of ¢ as well.) Although we are introducing this theory
now for purely pedagogical reasons (since it is the simplest of all interacting
quantum theories), models of the real world do contain ¢* interactions; the
most important example in particle physics is the self-interaction of the Higgs
field in the standard electroweak theory. In Part II, we will see that ¢* theory
also arises in statistical mechanics. The equation of motion for ¢* theory is

(@ +m)p=-24" (4.2

4
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which cannot be solved by Fourier analysis as the free Klein-Gordon equation
could. In the quantum theory we impose the equal-time commutation relations

[6(x), 7(y)] = 6 (x — ),

which are unaffected by Lin. (Note, however, that if Liy contained 0,¢, the
definition of 7(x) would change.) It is an easy exercise to write down the
Hamiltonian of this theory and find the Heisenberg equation of motion for
the operator ¢(x); the result is the same as the classical equation of motion
(4.2), just as it was in the free theory.

Our second example of an interacting field theory will be Quantum Elec-
trodynamics:

LQED = ‘CDirac + EMa.xwell + Eint
= 17’(’& —m)yp — %(F;WV - 6171'7“2/214“,

where A, is the electromagnetic vector potential, Fj,, = 0,4, — 0, A, is the
electromagnetic field tensor, and e = —|e| is the electron charge. (To describe
a fermion of charge Q, replace e with Q. If we wish to consider several species
of charged particles at once, we simply duplicate Lpirac and Ly, for each
additional species.) That such a simple Lagrangian can account for nearly
all observed phenomena from macroscopic scales down to 107'3 cm is rather
astonishing. In fact, the QED Lagrangian can be written even more simply:

(4.3)

ACQED = "7}(113 - m)d} - %(Fuu)2y (44)
where D, is the gauge covariant derivative,
D, =0, +ieA,(x). (4.5)

A crucial property of the QED Lagrangian is that it is invariant under the
gauge transformation

Y(@) = ECY@), Ay A~ D,0(), (4.6)

which is realized on the Dirac field as a local phase rotation. This invariance
under local phase rotations has a fundamental geometrical significance, which
motivates the term covariant derivative. For our present purposes, though, it
is sufficient just to recognize (4.6) as a symmetry of the theory.

The equations of motion follow from (4.3) by the canonical procedure.
The Euler-Lagrange equation for v is

(ip —m)y(x) =0, (4.7)

which is just the Dirac equation coupled to the electromagnetic field by the
minimal coupling prescription, & — D. The Euler-Lagrange equation for A,
is

B F = et = €. (48)
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These are the inhomogeneous Maxwell equations, with the current density
j¥ = ¢y¥y given by the conserved Dirac vector current (3.73). As with ¢*
theory, the equations of motion can also be obtained as the Heisenberg equa-
tions of motion for the operators ¢(x) and A,(x). This is easy to verify for
(z); we have not yet discussed the quantization of the electromagnetic field.

In fact, we will not discuss canonical quantization of the electromagnetic
field at all in this book. It is an awkward subject, essentially because of gauge
invariance. Note that since A° does not appear in the Lagrangian (4.3), the
momentum conjugate to A° is identically zero. This contradicts the canonical
commutation relation [A%(x),7%(y)] = i6(x — y). One solution is to quan-
tize in Coulomb gauge, where V- A = 0 and A° is a constrained, rather than
dynamical, variable; but then manifest Lorentz invariance is sacrificed. Alter-
natively, one can quantize the field in Lorentz gauge, 0,A* = 0. It is then
possible to modify the Lagrangian, adding an A° term. One obtains the com-
mutation relations [A*(x), A”(y)] = —ig"'6(x —y), essentially the same as
four Klein-Gordon fields. But the extra minus sign in [A°, A°] leads to another
(surmountable) difficulty: states created by agf have negative norm.*

The Feynman rules for calculating scattering amplitudes that involve pho-
tons are derived more easily in the functional integral formulation of field the-
ory, to be discussed in Chapter 9. That method has the added advantage of
generalizing readily to the case of non-Abelian gauge fields, as we will see
in Part III. In the present chapter we will simply guess the Feynman rules
for photons. This will actually be quite easy after we derive the rules for an
analogous but simpler theory, Yukaowa theory:

Lvukawa = Lbirac + LKlein-Gordon — g",_bd](b (49)

This will be our third example. It is similar to QED, but with the photon
replaced by a scalar particle ¢. The interaction term contains a dimensionless
coupling constant g, analogous to the electron charge e. Yukawa originally
invented this theory to describe nucleons (v) and pions (¢). In modern particle
theory, the Standard Model contains Yukawa interaction terms coupling the
scalar Higgs field to quarks and leptons; most of the free parameters in the
Standard Model are Yukawa coupling constants.

Having written down our three paradigm interactions, let us pause a mo-
ment to discuss what other interactions could be found in Nature. At first it
might seem that the list would be infinite; even for a scalar theory we could
write down interactions of the form ¢™ for any n. But remarkably, one simple
and reasonable axiom eliminates all but a few of the possible interactions. That
axiom is that the theory be renormalizable, and it arises as follows. Higher-
order terms in perturbation theory, as mentioned in Chapter 1, will involve

*Excellent treatments of both quantization procedures are readily available. For
Coulomb gauge quantization, see Bjorken and Drell (1965), Chapter 14; for Lorentz
gauge quantization, see Mand! and Shaw (1984), Chapter 5.
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integrals over the 4-momenta of intermediate (“virtual”) particles. These in-
tegrals are often formally divergent, and it is generally necessary to impose
some form of cut-off procedure; the simplest is just to cut off the integral at
some large but finite momentum A. At the end of the calculation one takes
the limit A — oo, and hopes that physical quantities turn out to be indepen-
dent of A. If this is indeed the case, the theory is said to be renormalizable.
Suppose, however, that the theory includes interactions whose coupling con-
stants have the dimensions of mass to some negative power. Then to obtain
a dimensionless scattering amplitude, this coupling constant must be multi-
plied by some quantity of positive mass dimension, and it turns out that this
quantity is none other than A. Such a term diverges as A — oo, so the theory
is not renormalizable.

We will discuss these matters in detail in Chapter 10. For now we merely
note that any theory containing a coupling constant with negative mass di-
mension is not renormalizable. A bit of dimensional analysis then allows us to
throw out nearly all candidate interactions. Since the action S = [ Ld*z is
dimensionless, £ must have dimension (mass)* (or simply dimension 4). From
the kinetic terms of the various free Lagrangians, we note that the scalar and
vector fields ¢ and A* have dimension 1, while the spinor field ¢ has dimension
3/2. We can now tabulate all of the allowed renormalizable interactions.

For theories involving only scalars, the allowed interaction terms are

ug® and Aot

The coupling constant u has dimension 1, while A is dimensionless. Terms of
the form ¢™ for n > 4 are not allowed, since their coupling constants would
have dimension 4 — n. Of course, more interesting theories can be obtained by
including several scalar fields, real or complex (see Problem 4.3).

Next we can add spinor fields. Spinor self-interactions. are not allowed,
since 3 (besides violating Lorentz invariance) already has dimension 9/2.
Thus the only allowable new interaction is the Yukawa term,

gYe,

although similar interactions can also be constructed out of Weyl and Majo-
rana spinors.

When we add vector fields, many new interactions are possible. The most
familiar is the vector-spinor interaction of QED,

617)7“7#14;1‘

Again it is easy to construct similar terms out of Weyl and Majorana spinors.
Less important is the scalar QED Lagrangian,

L =|D,¢> — m?|¢|?, which contains eA*$0,¢*, e*|4|*>A%.

This is our first example of a derivative interaction; quantization of this theory
will be much easier with the functional integral formalism, so we postpone its
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discussion until Chapter 9. Other possible Lorentz-invariant terms involving
vectors are

A%(9,AM) and A%

Although it is far from obvious, these terms lead to inconsistencies unless
their coupling constants are precisely chosen on the basis of a special type of
symmetry, which must involve several vector fields. This symmetry underlies
the non-Abelian gauge theories, which will be the main subject of Part III. A
mass term %mQA2 for vector fields is also inconsistent, except in the special
case where it is added to QED; in any case, it breaks (Abelian or non-Abelian)
gauge invariance.

This exhausts the list of possible Lagrangians involving scalar, spinor, and
vector particles. It is interesting to note that the currently accepted models
of the strong, weak, and electromagnetic interactions include all of the types
of interactions listed above. The three paradigm interactions to be studied in
this chapter cover nearly half of the possibilities; we will study the others in
detail later in this book.

The assumption that realistic theories must be renormalizable is cer-
tainly convenient, since a nonrenormalizable theory would have little pre-
dictive power. However, one might still ask why Nature has been so kind as to
use only renormalizable interactions. One might have expected that the true
theory of Nature would be a quantum theory of a much more general type.
But it can be shown that, however complicated a fundamental theory appears
at very high energies, the low-energy approximation to this theory that we
see in experiments should be a renormalizable quantum field theory. We will
demonstrate this in Section 12.1.

At a more practical level, the preceding analysis highlights a great dif-
ference in methodology between nonrelativistic quantum mechanics and rela-
tivistic quantum field theory. Since the potential V(r) that appears in the
Schrodinger equation is completely arbitrary, nonrelativistic quantum me-
chanics puts no limits on what interactions can be found in the real world. But
we have just seen that quantum field theory imposes very tight constraints
on Nature (or vice versa). Taken literally, our discussion implies that the only
tasks left for particle physicists are to enumerate the elementary particles that
exist and to measure their masses and coupling constants. While this view-
point is perhaps overly arrogant, the fact that it is even thinkable is surely
a sign that particle physicists are on the right track toward a fundamental
theory.

Given a set of particles and couplings, we must still work out the ex-
perimental consequences. How do we analyze the quantum mechanics of an
interacting field theory? It would be nice if we could explicitly solve at least
a few examples (that is, find the exact eigenvalues and eigenvectors as we did
for the free theories) to get a feel for the properties of interacting theories.
Unfortunately, this is easier said than done. No exactly solvable interacting
field theories are known in more than two spacetime dimensions, and even
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there the solvable models involve special symmetries and considerable tech-
nical complication.! Studying these theories would be interesting, but hardly
worth the effort at this stage. Instead we will fall back on a much simpler and
more generally applicable approach: Treat the interaction term Hj,; as a per-
turbation, compute its effects as far in perturbation theory as is practicable,
and hope that the coupling constant is small enough that this gives a reason-
able approximation to the exact answer. In fact, the perturbation series we
obtain will turn out to be very simple in structure; through the use of Feyn-
man diagrams it will be possible at least to visualize the effects of interactions
to arbitrarily high order.

This simplification of the perturbation series for relativistic field theories
was the great advance of Tomonaga, Schwinger, and Feynman. To achieve
this simplification, each, independently, found a way to reformulate quan-
tum mechanics to remove the special role of time, and then applied his new
viewpoint to recast each term of the perturbation expansion as a spacetime
process. We will develop quantum field theory from a spacetime viewpoint, us-
ing Feynman’s method of functional integration, in Chapter 9. In the present
chapter we follow a more pedestrian line of analysis, first developed by Dyson,
to derive the spacetime picture of perturbation theory from the conventional
machinery of quantum mechanics.?

4.2 Perturbation Expansion of Correlation Functions

Let us then begin the study of perturbation theory for interacting fields, aim-
ing toward a formalism that will allow us to visualize the perturbation series
as spacetime processes. Although we will not need to reformulate quantum
mechanics, we will rederive time-dependent perturbation theory in a form
that is convenient for our purposes. Ultimately, of course, we want to calcu-
late scattering cross sections and decay rates. For now, however, let us be less
ambitious and try to calculate a simpler (but more abstract) quantity, the
two-point correlation function, or two-point Green’s function,

QTo(z)d(y) 1), (4.10)

in ¢* theory. We introduce the notation |[Q2) to denote the ground state of the
interacting theory, which is generally different from [0), the ground state of
the free theory. The time-ordering symbol T is inserted for later convenience.
The correlation function can be interpreted physically as the amplitude for
propagation of a particle or excitation between y and z. In the free theory, it

T A brief survey of exactly solvable quantum field theories is given in the Epilogue.

For a historical account of the contributions of Tomonaga, Schwinger, Feynman,
and Dyson, see Schweber (1994).
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is simply the Feynman propagator:
d4p ie_ip'(l"_y)
2m)4 p2 — m? +ie

(01 T6()60) 10e = Drle =) = [ (411)
We would like to know how this expression changes in the interacting the-
ory. Once we have analyzed the two-point correlation function, it will be easy
to generalize our results to higher correlation functions in which more than
two field operators appear. In Sections 4.3 and 4.4 we will continue the anal-
ysis of correlation functions, eventually developing the formalism of Feynman
diagrams for evaluating them perturbatively. Then in Sections 4.5 and 4.6
we will learn how to calculate cross sections and decay rates using the same
techniques.
To attack this problem, we write the Hamiltonian of ¢* theory as
H=Hy+ Hint = HKlein—Gordon + /dSm %¢4 (X) (4'12)
We want an expression for the two-point correlation function (4.10) as a power
series in A. The interaction Hamiltonian Hjy, enters (4.10) in two places: first,
in the definition of the Heisenberg field,

¢(z) = eip(x)e™* (4.13)

and second, in the definition of |Q). We must express both ¢(z) and |Q) in
terms of quantities we know how to manipulate: free field operators and the
free theory vacuum |0).

It is easiest to begin with ¢(z). At any fixed time ¢y, we can of course
expand ¢ as before in terms of ladder operators:

dp 1 ) ~
to, Y il ip-x 1 -zp-X)‘
oltox) = | 553 V2B, (“Pe +ape

Then to obtain ¢(t,x) for t # tp, we just switch to the Heisenberg picture as
usual:

¢(t, x) — eiH(t—to)d)(tO, x)e—‘iH(t—t())'
For A =0, H becomes Hj and this reduces to
o(t, x)l/\=0 = etHo(t=to) g1 x)eHolt—t0) = ¢ (¢ x). (4.14)

When A is small, this expression will still give the most important part of
the time dependence of ¢(z), and thus it is convenient to give this quantity
a name: the interaction picture field, ¢,(t, x). Since we can diagonalize Hy, it
is easy to construct ¢, explicitly:

d3p 1 : .
— Pl —ip-x t ip-x 4.1
¢1(t7x) /(271‘)3 /——2Ep (ape + ape ) 20=t—to ( 5)

This is just the familiar expression for the free field from Chapter 2.
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The problem now is to express the full Heisenberg field ¢ in terms of ¢,.
Formally, it is just

B(t,x) = eiH(t—to)e—iHo(t—to)d)I(t7x)eiHo(t—to)e—iH(t_to)

; (4.16)
=U (ta t0)¢1 (t7 X)U(tv tO)’
where we have defined the unitary operator
U(t,tg) = eHolt=to)gmiH (t=t0) (4.17)

known as the interaction picture propagator or time-evolution operator. We
would like to express U(t,to) entirely in terms of ¢,, for which we have an
explicit expression in terms of ladder operators. To do this, we note that
U(t,t) is the unique solution, with initial condition U, tg) = 1, of a simple

differential equation (the Schrodinger equation):
9 iH, —iH(t—t
BtU(t to) = eHolt=to) (Ff — Fy)e=H(t=to)

— e’iHo(t—to) (H

lnt) —iH(t—to)

_ eiHo(t——to) (H

m

= Hi(t) U(t, to), (4.18)

t) -—’LHo(t to) 'LHo(t to)e—ZH(t to)

where
Hi(t) = eolto) (Hjp e Holi=to) = / &z —¢>4 (4.19)

is the interaction Hamiltonian written in the interaction picture. The so-
lution of this differential equation for U(t,#y) should look something like
U ~ exp(—iH t); this would be our desired formula for U in terms of ¢,.
Doing it more carefully, we will show that the actual solution is the following
power series in A:

(t to) =1 +( )/dtl H](tl) ( ) /dtl/dtz H[(tl)HI(tQ)

; (4.20)
—Z /dtl/dtQ/dtg H] tl VH; tz)H[(tg)
to

To verify this, just differentiate: Each term gives the previous one times
—iH(t). The initial condition U(t,tp) = 1 for ¢t = tg is obviously satisfied.
Note that the various factors of H; in (4.20) stand in time order, later
on the left. This allows us to simplify the expression considerably, using the
time-ordering symbol T. The H? term, for example, can be written

t t1

/dtl /dtz H](tl)HI(tz) =

to to

% / dt, / dty T{H;(t:)H (t2)}. (4.21)
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t ¢
to covers entire
A / dty / dt> square

to to

t +
t t1
-~ / dt, / dto
to to
covers only
toT lower triangle

f I > 1
to t

Figure 4.1. Geometric interpretation of Eq. (4.21).

The double integral on the right-hand side just counts everything twice, since
in the t1to-plane, the integrand T{H/(t1)H/(t2)} is symmetric about the line
t; = to (see Fig. 4.1).

A similar identity holds for the higher terms:

tn

/dtI/dtQ /dt Hi(ty) -+ Hy(t,) = /dtl “dtn, T{Hp(t1) - Hi(tn)}.

This case is a little harder to visualize, but it is not hard to convince oneself
that it is true. Using this identity, we can now write U(t,?y) in an extremely
compact form: .

t

(=)? |
Ut,ito) =1+ (—i)/dtl Hi(t1) + o1 /dt1 dty T{Hy(t1)Hr(t2)} + -

= T{exp[—i /t dt’ H,(i')] } (4.22)

to

where the time-ordering of the exponential is just defined as the Taylor series
with each term time-ordered. When we do real computations we will keep
only the first few terms of the series; the time-ordered exponential is just a
compact way of writing and remembering the correct expression.

We now have control over ¢(t,x); we have written it entirely in terms of
¢,, as desired. Before moving on to consider |Q2), however, it is convenient to
generalize the definition of U, allowing its second argument to take on values
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other than our “reference time” ty. The correct definition is quite natural:

Ut t) = T{exp[—i/tdt" H,(t”)] } (t>1t) (4.23)

Several properties follow from this definition, and it is necessary to verify
them. First, U(¢,t') satisfies the same differential equation (4.18),

i%U(t, t') = Hi(t)U(¢,t'), (4.24)

but now with the initial condition U = 1 for ¢ = t. From this equation you
can show that

U(t, t’) _ 6iH0(t—to)e-iH(t—t’)e-iHo(t'—to)’ (4.25)

which proves that U is unitary. Finally, U (¢, t') satisfies the following identities
(fOI‘ t1 2 tz Z t3)2
U(t17 tZ)U(t27 t3) = U(tl’ tS)a

Ut ts) [Ulta,ts)] T = Uty t2).

Now we can go on to discuss [{2). Since |Q) is the ground state of H,
we can isolate it by the following procedure. Imagine starting with |0), the
ground state of Hy, and evolving through time with H:

e T 0) =Y e T n) (n]0)

(4.26)

where E,, are the eigenvalues of H. We must assume that |Q2) has some overlap
with |0), that is, (©|0) # 0 (if this were not the case, H; would in no sense be
a small perturbation). Then the above series contains |€2), and we can write

e 1T 0) = e~ ET0) (Q10) + 3 e~ [n) nl0),
n#0
where Ey = (Q| H Q). (The zero of energy will be defined by Hy [0y = 0.)
Since E,, > E, for all n # 0, we can get rid of all the n # 0 terms in the series
by sending T to oo in a slightly imaginary direction: T' — oo(1 — i€). Then
the exponential factor e *F»T dies slowest for n = 0, and we have
Q)= lim  (e"*ET(Q[0)) e T |0). (4.27)

T—o0(1-i€)

Since T is now very large, we can shift it by a small constant:
10 = lir(n )(e’iEO(T+t°) Q] 0))_le_iH(T+t°) |0)
—oo(1-1ie
lim (e *Felto=(=T) () 0))_le_iH(to—(*T))e—iHo(—T—to) |0)

T —o0(1-1i€)

lim  (e""Eoto=(=T) Q| 0)) " U(to, ~T) |0) . (4.28)

T —oo(1-1ic)

Il
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In the second line we have used Hy |0) = 0. Ignoring the c-number factor in
front, this expression tells us that we can get |[Q2) by simply evolving |0) from
time —7T to time to with the operator U. Similarly, we can express (| as

Q= lim (0|U(T,to) (e *FoT=%) (0| Q)) " (4.29)

T—o0(1-1i€)

Let us put together the pieces of the two-point correlation function. For
the moment, assume that 20 > y° > ¢o. Then

(Qd(2)o() | =  lim (e FoT—%) (0] Q)™ (0| U(T, to)

T —o0(1-i€)

X [U("Eov tO)] T¢1 (x)U(mO, to) [U(yo, tO)] T(bz (y)U(yO’ tO)
x Ulto, =T)|0) (e~ (=T (] 0)) "

= lim (|(0]Q) 2 D)™

T —oo(1-ie€)
x (0| U(T,2°)¢,(2)U (2°,4°)¢,(»)U (4°, —T) |0) . (4.30)

This is starting to look simple, except for the awkward factor in front. To get
rid of it, divide by 1 in the form

1= (Q]Q) = (|(0]2) 2= =)™ (0] U(T, to)U (to, ~T) |0) .
Then our formula, still for z° > 4°, becomes
e 0T, 2%, (2)U(2°, %), (y)U (y°, ~T) |0)

Now note that all fields on both sides of this expression are in time order. If
we had considered the case y° > z° this would still be true. Thus we arrive
at our final expression, now valid for any z° and y°:

(01 T{,(2)¢, (y) exp[—i [ dt H(t)] } |0)
@ T{e@ow)} 1) = lim {8ty tE o
—roo(1-i0) (O|T{exp[—z f_TdtH,(t)]}m)

(4.31)
The virtue of considering the time-ordered product is clear: It allows us to
put everything inside one large T-operator. A similar formula holds for higher
correlation functions of arbitrarily many fields; for each extra factor of ¢ on
the left, put an extra factor of ¢, on the right. So far this expression is exact.
But it is ideally suited to doing perturbative calculations; we need only retain
as many terms as desired in the Taylor series expansions of the exponentials.
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4.3 Wick’s Theorem

We have now reduced the problem of calculating correlation functions to that
of evaluating expressions of the form

<0| T{¢I($1)¢I(IL‘2) o ¢1(mn)} |0> )

that is, vacuum expectation values of time-ordered products of finite (but
arbitrary) numbers of free field operators. For n = 2 this expression is just
the Feynman propagator. For higher n you could evaluate this object by brute
force, plugging in the expansion of ¢, in terms of ladder operators. In this
section and the next, however, we will see how to simplify such calculations
immensely.

Consider again the case of two fields, (0| T{¢,(z)¢,(y)} |0). We already
know how to calculate this quantity, but now we would like to rewrite it in
a form that is easy to evaluate and also generalizes to the case of more than
two fields. To do this we first decompose ¢,(z) into positive- and negative-
frequency parts:

¢,(z) = o7 (2) + ¢ (2), (4.32)
where
of (x) = /—di—l‘ ape P g7 (z) = / 1 al et
@rF V25, @ 2B,
This decomposition can be done for any free field. It is useful because
¢7(2)|0)=0 and  (0]¢; (z) =0.

For example, consider the case z° > y°. The time-ordered product of two
fields is then

To,(@)6: W) = , 91 @67 () + 67 (@)01 W) + 0 (@)1 (W) + ¢7 ()6 (v)

0

= &7 (2)¢] (v) + ¢1 (¥)¢] (z) + ¢1 (2)] (v) + 67 (2)¢f (v)
+ (07 (2), 67 (v)]- (4.33)

In every term except the commutator, all the ap’s are to the right of all the
al’s. Such a term (e.g., aalaia,) is said to be in normal order, and has
vanishing vacuum expectation value. Let us also define the normal ordering
symbol N() to place whatever operators it contains in normal order, for ex-
ample,

N(apafaq) = alapaq. (4.34)

The order of ap and aq on the right-hand side makes no difference since they
commute.*

*In the literature one often sees the notation : ¢1¢2: instead of N(é1¢2).
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If we had instead considered the case y° > z2°, we would get the same four
normal-ordered terms as in (4.33), but this time the final commutator would
be [¢7 (v), ¢7 (z)]. Let us therefore define one more quantity, the contraction
of two fields, as follows:

— +(z), ¢~ for 2° 0,
oot = { [T ol re 2 (439
This quantity is exactly the Feynman propagator:

1
#(z)p(y) = Dr(z —y). (4.36)

(From here on we will often drop the subscript I for convenience; contractions
will always involve interaction-picture fields.)

The relation between time-ordering and normal-ordering is now extremely
simple to express, at least for two fields:

T{¢(z)o(y)} = N{s(z)d(y) + p(z )¢>(y)} (4.37)

But now that we have all this new notation, the generalization to arbitrarily
many fields is also easy to write down:

T{¢(z1)(x2) - d(xm)}

(4.38)
= N{¢(x1)¢(x2) - - - ¢(z) + all possible contractions}.

This identity is known as Wick’s theorem, and we will prove it in a moment.
For m = 2 it is identical to (4.37). The phrase all possible contractions means
there will be one term for each possible way of contracting the m fields in
pairs. Thus for m = 4 we have (writing ¢(z,) as ¢, for brevity)

M
T{$1020304} = N{ 1028301 + d12¢301 + ¢|1¢2¢Ia¢4 + ¢Il¢2¢3¢|4

» », (4.39)
+ ¢192¢304 + ¢1¢2¢3¢4 + G102034
T [ ]
+ ¢1¢>2¢3¢4 + ¢1¢2¢3¢4 + P1P2P3ha ).

When the contraction symbol connects two operators that are not adjacent,
we still define it to give a factor of Dg. For example,

1
N{¢1¢2¢3¢4}  means  Dp(z; - x3) - N{¢p26}.

In the vacuum expectation value of (4.39), any term in which there remain
uncontracted operators gives zero (since (0| N(any operator) |[0) = 0). Only
the three fully contracted terms in the last line survive, and they are all c-
numbers, so we have

(0| T{p1¢203¢4} [0) = Dr(z1 — 22)Dp(x3 — 24)
+ Dp(z1 — z3)Dp(z2 — 74) (4.40)
+ DF(Jtl — .Z'4)DF($2 — .’1:3).
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Now let us prove Wick’s theorem. Naturally the proof is by induction
on m, the number of fields. We have already proved the case m = 2. So
assume the theorem is true for m — 1 fields, and let’s try to prove it for
m fields. Without loss of generality, we can restrict ourselves to the case
2§ > 29 > --- 20 ; if this is not the case we can just relabel the points, without
affecting either side of (4.38). Then applying Wick’s theorem to ¢g - - - ¢, We
have

T{$r-  bm} =61 bm
all contractions
=9 N{¢2 Pt (not involving ¢, ) }

— (¢ +¢7) N{¢72 b+ ( all contractions ) }'(4.41)

not involving ¢,

We want to move the ¢ and ¢; inside the N{}. For the ¢] term this is easy:
Just move it in, since (being on the left) it is already in normal order. The
term with ¢ must be put in normal order by commuting it to the right past
all the other ¢’s. Consider, for example, the term with no contractions:

TN (d2- dm) = N(d2- - bm)dT + [67,N(d2- - ém)]
=N(¢7 2 bm)
+ N([67,05103 - bm + G2[07 85104 Im + )

. —
=N(¢1’-¢2¢m+¢1¢2¢3(f)m+¢1¢2¢3_|_)

The first term in the last line combines with part of the ¢; term from (4.41) to
give N{¢1¢2 - dm}, so we now have the first term on the right-hand side of
Wick’s theorem, as well as all possible terms involving a single contraction of
¢1 with another field. Similarly, a term in (4.41) involving one contraction will
produce all possible terms involving both that contraction and a contraction
of ¢1 with one of the other fields. Doing this with all the terms of (4.41), we
eventually get all possible contractions of all the fields, including ¢;. Thus the
induction step is complete, and Wick’s theorem is proved.

4.4 Feynman Diagrams

Wick’s theorem allows us to turn any expression of the form

<0| T{¢I($1)¢,($2) e ¢1 (‘rn)} |0>

into a sum of products of Feynman propagators. Now we are ready to develop
a diagrammatic interpretation of such expressions. Consider first the case of
four fields, all at different spacetime points, which we worked out in Eq. (4.40).
Let us represent each of the points z; through z4 by a dot, and each factor
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Dp(z —y) by a line joining z to y. Then Eq. (4.40) can be represented as the
sum of three diagrams (called Feynman diagrams):

1 2 1 2 1 2
(0| T{p102¢3¢4} 0) = + + // (4.42)
3 4 3 4 3 4

Although this isn’t exactly a measurable quantity, the diagrams do suggest an
interpretation: Particles are created at two spacetime points, each propagates
to one of the other points, and then they are annihilated. This can happen in
three ways, corresponding to the three ways to connect the points in pairs, as
shown in the three diagrams. The total amplitude for the process is the sum
of the three diagrams.

Things get more interesting when the expression contains more than one
field at the same spacetime point. So let us now return to the evaluation of
the two-point function (Q| T{¢(z)é(y)} |Q), and put formula (4.31) to use. We
will ignore the denominator until the very end of this section. The numerator,
with the exponential expanded as a power series, is

OT{8(@)o) + oo~ [@H®)] +-}0.  (@43)

The first term gives the free-field result, (0| T{é(z)#(y)} |0) = Dr(z—y). The
second term, in ¢* theory, is

0|T{¢ $(y) (= /dt/d3 ¢4 o)
= O T{p)(0) (2 /d4z¢z>¢ H2)9(2)}10).

Now apply Wick’s theorem. We get one term for every way of contracting the
six ¢ operators with each other in pairs. There are 15 ways to do this, but
(fortunately) only two of them are really different. If we contract ¢(z) with
o(y), then there are three ways to contract the four ¢(z)’s with each other,
and all three give identical expressions. The other possibility is to contract
¢(x) with one of the ¢(z)’s (four choices), ¢(y) with one of the others (three
choices), and the remaining two ¢(z)’s with each other (one choice). There
are twelve ways to do this, and all give identical expressions. Thus we have

07 {s@0) (1) [a (a2 56} 0
=3. ( )\)Dp(x— )/d4sz(z—z)Dp(z—z) (4.44)

+ 12- ;—Z‘) /d4z Dp(xz — 2)Dp(y — 2)Dp(z — 2).
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We can understand this expression better if we represent each term as a
Feynman diagram. Again we draw each contraction Dp as a line, and each
point as a dot. But this time we must distinguish between the “external”
points,  and y, and the “internal” point z; each internal point is associated
with a factor of (—i)) [d*z. We will worry about the constant factors in a
moment. Using these rules, we see that the above expression (4.44) is equal
to the sum of two diagrams:

— Q) 9

x y ' z Y

We refer to the lines in these diagrams as propagators, since they represent the
propagation amplitude Dp. Internal points, where four lines meet, are called
vertices. Since Dp(z — y) is the amplitude for a free Klein-Gordon particle
to propagate between z and y, the diagrams actually interpret the analytic
formula as a process of particle creation, propagation, and annihilation which
takes place in spacetime.

Now let’s try a more complicated contraction, from the A3 term in the
expansion of the correlation function:

0 ¢ y) & (52)° fdz ¢¢¢¢ Jd'w ¢¢¢¢ Jdtu ¢¢>¢¢ |0)

(2
= _ (4—> d4zd4wd4u Dp(z — 2)Dp(z — 2)Dp(z — w)

x Dp(w — y)D%(w — u)Dp(u — u). (4.45)
The number of “different” contractions that give this same expression is large:

3 x 4.3 x 4.3.2 x 43 x 1/2
~~ ~~ e ~~ =~

interchange placement of placement of placement of interchange
of vertices contractions _contractions contractions of w-u
into z vertex into w vertex into u vertex contractions

The product of these combinatoric factors is 10,368, roughly 1/13 of the total
of 135,135 possible full contractions of the 14 operators. The structure of this
particular contraction can be represented by the following “cactus” diagram:

0 ¢

It is conventional, for obvious reasons, to let this one diagram represent the
sum of all 10,368 identical terms.

T
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In practice one always draws the diagram first, using it as a mnemonic
device for writing down the analytic expression. But then the question arises,
What is the overall constant? We could, of course, work it out as above: We
could associate a factor [ d*z(—i\/4!) with each vertex, put in the 1/n! from
the Taylor series, and then do the combinatorics by writing out the product
of fields as in (4.45) and counting. But the 1/n! from the Taylor series will
almost always cancel the n! from interchanging the vertices, so we can just
forget about both of these factors. Furthermore, the generic vertex has four
lines coming in from four different places, so the various placements of these
contractions into ¢¢pp¢ generates a factor of 4! (as in the w vertex above),
which cancels the denominator in (—iA/4!). It is therefore conventional to
associate the expression [ d*z(—i\) with each vertex. (This was the reason
for the factor of 4! in the ¢* coupling.)

In the above diagram, this scheme gives a constant that is too large by
a factor of 8 = 2 -2 2, the symmetry factor of the diagram. Two factors
of 2 come from lines that start and end on the same vertex: The diagram is
symmetric under the interchange of the two ends of such a line. The other
factor of 2 comes from the two propagators connecting w to u: The diagram is
symmetric under the interchange of these two lines with each other. A third
possible type of symmetry is the equivalence of two vertices. To get the correct
overall constant for a diagram, we divide by its symmetry factor, which is in
general the number of ways of interchanging components without changing
the diagram.

Most people never need to evaluate a diagram with a symmetry factor
greater than 2, so there’s no need to worry too much about these technicalities.
But here are a few examples, to make some sense out of the above rules:

§ > S=2
z y
<><> §=2.2.2=8
/AR
T Y S=3'=6
NG
@ §=31.2=12
T y

When in doubt, you can always determine the symmetry factor by counting
equivalent contractions, as we did above.
We are now ready to summarize our rules for calculating the numerator
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of our expression (4.31) for (Q| T¢(z)d(y) |2):

(0] T{¢,($)¢z(y) exp [—i/dt HI(t)] } 0) = (Sum of all possible diagrams),

with two external points

where each diagram is built out of propagators, vertices, and external points.
The rules for associating analytic expressions with pieces of diagrams are
called the Feynman rules. In ¢* theory the rules are:

1. For each propagator, ze——— ey = Dp(z—y);
2. For each vertex, Z = (—iA) /d4z;
3. For each external point, ze—m—— =1;

4. Divide by the symmetry factor.

One way to interpret these rules is to think of the vertex factor (—i\) as
the amplitude for the emission and/or absorption of particles at a vertex. The
integral f d*z instructs us to sum over all points where this process can occur.
This is just the superposition principle of quantum mechanics: When a process
can happen in alternative ways, we add the amplitudes for each possible way.
To compute each individual amplitude, the Feynman rules tell us to multiply
the amplitudes (propagators and vertex factors) for each independent part of
the process.

Since these rules are written in terms of the spacetime points z, y, etc.,
they are sometimes called the position-space Feynman rules. In most calcu-
lations, it is simpler to express the Feynman rules in terms of momenta, by
introducing the Fourier expansion of each propagator:

4 .
Dp(z —y) = d’p ’ e~ @=y) (4.46)
F y (27)4 p2 — m? +de ' '

Represent this in the diagram by assigning a 4-momentum p to each propa-
gator, indicating the direction with an arrow. (Since Dp(z —y) = Dp(y — ),
the direction of p is arbitrary.) Then when four lines meet at a vertex, the
z-dependent factors of the diagram are

y4\ . . . .
P2 d4ze P12 o —1P2Z o —iP3Z o FiPaz
«—>

(4.47)

NG = (2m)46™) (p1 + P + P3 — Pa)-
3

In other words, momentum is conserved at each vertex. The delta functions
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from the vertices can now be used to perform some of the momentum inte-
grals from the propagators. We are left with the following momentum-space
Feynman rules:

1

1. For each propagator, —_—— =
propag P p? —m?2 + i€’
2. For each vertex, = —i\
3. For each external point, ze— --«—— =e P7;
p
4. Impose momentum conservation at each vertex;
d4
5. Integrate over each undetermined momentum: / W;
s

6. Divide by the symmetry factor.

Again, we can interpret each factor as the amplitude for that part of the
process, with the integrations coming from the superposition principle. The
exponential factor for an external point is just the amplitude for a particle at
that point to have the needed momentum, or, depending on the direction of
the arrow, for a particle with a certain momentum to be found at that point.

This nearly completes our discussion of the computation of correlation
functions, but there are still a few loose ends. First, what happened to the
large time T that was taken to oo(1 — i€)? We glossed over it completely in
this section, starting with Eq. (4.43). The place to put it back is Eq. (4.47),
where instead of just integrating over d*z, we should have

T
lim /dzo /dSz e~ i(P1+patps—pa)z

T —oo(1-ie€)
-T

The exponential blows up as 2° — oo or 20 — —oo unless its argument
is purely imaginary. To achieve this, we can take each p° to have a small
imaginary part: p° o (1 + i€). But this is precisely what we do in following
the Feynman boundary conditions for computing Dp: We integrate along a
contour that is rotated slightly away from the real axis, so that p® o< (1 + ie)

P_/ P
/—7)
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The explicit dependence on T seems to disappear when we take the limit
T — oo in the previous equation. But consider the diagram

D1

(X L O 4

D2

The delta function for the left-hand vertex is (27)46(®) (p; +pz), so momentum
conservation at the right-hand vertex is automatically satisfied, and we get
(2m)*64) (0) there. This awkward factor is easy to understand by going back
to position space. It is simply the integral of a constant over d*w

/ d*w (const) o« (2T) - (volume of space). (4.49)

This just tells us that the spacetime process (4.48) can happen at any place
in space, and at any time between —T and T. Every disconnected piece of a
diagram, that is, every piece that is not connected to an external point, will
have one such (27)%6*)(0) = 2T - V factor.

The contributions to the correlation function coming from such diagrams
can be better understood with the help of a very pretty identity, the exponen-
tiation of the disconnected diagrams. It works as follows. A typical diagram
has the form

(88O %) w

with a piece connected to z and y, and several disconnected pieces. (Since each
vertex has an even number of lines coming into it, x and y must be connected
to each other.) Label the various possible disconnected pieces by V;:

3 8O ) -}

The elements V; are connected internally, but disconnected from external
points. Suppose that a diagram (such as (4.50)) has n; pieces of the form
V;, for each i, in addition to its one piece that is connected to z and y. (In
any given diagram, only finitely many of the n; will be nonzero.) If we also
let V; denote the value of the piece V;, then the value of such a diagram is

. 1 ni
(value of connected piece) - I,I o~ (Vi)™
The 1/n;! is the symmetry factor coming from interchanging the n; copies of
V;. The sum of all diagrams, representing the numerator of our formula for
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the two-point correlation function, is then

Z Z value of 1 )
(connected iece) x (H ! (V’)n )’
all possible all {n;} p i i
connected

pieces

where “all {n;}” means “all ordered sets {n1,n2,ns,...} of nonnegative inte-
gers.” The sum of the connected pieces factors out of this expression, giving

- (Z connected) X Z (H nizl(vz)m)

all {n;} * 2

where (3 connected) is an abbreviation for the sum of the values of all con-
nected pieces. It is not too hard to see that the rest of the expression can also
be factored (try working backwards):

= (S omcted) x (32 55v) (2 77) (2 7) -

= (3 comneeted) x [T(0 4¥+)

= (3 connected) ﬁexZ(Vz

= (3 connected) e;p (X w). (452)

We have just shown that the sum of all diagrams is equal to the sum of
all connected diagrams, times the exponential of the sum of all disconnected
diagrams. (We should really say “pieces” rather than “diagrams” on the right-
hand side of the equality, but from now on we will often just call a single piece
a “diagram.”) Pictorially, the identity is

T
tim (0 T{6,(2)6,(y) exp i / atHy (0] } 0

T —oo(1-1i€)
X exp 8+§+ + . (4.53)

Now consider the denominator of our formula (4.31) for the two-point

)
g T
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function. By an argument identical to the above, it is just

(0|T{exp[—i-ZdtHI(t)]}|0)=exp[ 8 + § n @ n

which cancels the exponential of the disconnected diagrams in the numerator.
This is the final simplification of the formula, which now reads

(QT[g(=)8()] )

= sum of all connected diagrams with two external points

T Yy 'z Yy y 'z \Jy

We have come a long way from our original formula, Eq. (4.31).

Having gotten rid of the disconnected diagrams in our formula for the
correlation function, we might pause a moment to go back and interpret them
physically. The place to look is Eq. (4.30), which can be written

. T
lim (0| 7{@,(2)8,(y) exp[~i [ 7t Hi(t)] } [0)

T—oo(1-i€)

= (QIT(@)p(y) |- Lim (|(0[Q) Pe D)),

—oo(l-ie)

Looking only at the T-dependent parts of both sides, this implies

exp [Z Vi] o exp [—iEO(zT)]. (4.55)

Since each disconnected diagram V; contains a factor of (27)*6*)(0) = 2T -V,
this gives us a formula for the energy density of the vacuum (relative to the
zero of energy set by Hy|0) = 0):

Volume 8 § @ [(277)45(4) (0)] . (4.56)

We should emphasize that the right-hand side is independent of T and (vol-
ume); in particular it is reassuring to see that Ej is proportional to the volume
of space. In Chapter 11 we will find that this formula is actually useful.

This completes our present analysis of the two-point correlation function.
The generalization to higher correlation functions is easy:

QT [o(r) -~ dlan)] 1) = ( ) . (s7)

The disconnected diagrams exponentiate, factor, and cancel as before, by the
same argument. There is now a potential confusion in terminology, however.
By “disconnected” we mean “disconnected from all external points”—exactly
the same diagrams as in (4.51). (They are sometimes called “vacuum bubbles”

sum of all connected diagrams
with n external points
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or “vacuum to vacuum transitions”.) In higher correlation functions, diagrams
can also be disconnected in another sense. Consider, for example, the four-
point function:

(Q Thr6203¢4 12)
- Tl X e
X e g+ L
+§<+ e (4.58)

In many of these diagrams, external points are disconnected from each other.
Such diagrams do not exponentiate or factor; they contribute to the amplitude
just as do the fully connected diagrams (in which any point can be reached
from any other by traveling along the lines).

Note that in ¢* theory, all correlation functions of an odd number of fields
vanish, since it is impossible to draw an allowed diagram with an odd number
of external points. We can also see this by going back to Wick’s theorem: The
interaction Hamiltonian H; contains an even number of fields, so all terms
in the perturbation expansion of an odd correlation function will contain an
odd number of fields. But it is impossible to fully contract an odd number
of fields in pairs, and only fully contracted terms have nonvanishing vacuum
expectation value.

4.5 Cross Sections and the S-Matrix

We now have an extremely beautiful formula, Eq. (4.57), for computing an
extremely abstract quantity: the n-point correlation function. Our next task
is to find equally beautiful ways of computing quantities that can actually be
measured: cross sections and decay rates. In this section, after briefly reviewing
the definitions of these objects, we will relate them (via a rather technical but
fairly careful derivation) to a more primitive quantity, the S-matrix. In the
next section we will learn how to compute the matrix elements of the S-matrix
using Feynman diagrams.

The Cross Section

The experiments that probe the behavior of elementary particles, especially
in the relativistic regime, are scattering experiments. One collides two beams
of particles with well-defined momenta, and observes what comes out. The
likelihood of any particular final state can be expressed in terms of the cross
section, a quantity that is intrinsic to the colliding particles, and therefore
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allows comparison of two different experiments with different beam sizes and
intensities.

The cross section is defined as follows. Consider a target, at rest, of parti-
cles of type A, with density p4 (particles per unit volume). Aim at this target
a bunch of particles of type B, with number density pp and velocity v:

Let ¢4 and ¢ be the lengths of the bunches of particles. Then we expect
the total number of scattering events (or scattering events of any particular
desired type) to be proportional to pa, ps, f4, {5, and the cross-sectional
area A common to the two bunches. The cross section, denoted by o, is just
the total number of events (of whatever type desired) divided by all of these
quantities:

Number of scattering events

palapsls A

The definition is symmetric between the A’s and B’s, so of course we could
have taken the B’s to be at rest, or worked in any other reference frame.

The cross section has units of area. In fact, it is the effective area of
a chunk taken out of one beam, by each particle in the other beam, that
subsequently becomes the final state we are interested in.

In real beams, p4 and pg are not constant; the particle density is generally
larger at the center of the beam than at the edges. We will assume, however,
that both the range of the interaction between the particles and the width of
the individual particle wavepackets are small compared to the beam diameter.
We can then consider p4 and pg to be constant in what follows, and remember
that, to compute the event rate in an actual accelerator, one must integrate
over the beam area:

2

(4.59)

Number of events = g4 ¢ /dzm palx) p(x). (4.60)

If the densities are constant, or if we use this formula to compute an effective
area A of the beams, then we have simply

oN AN B

\ A 7

where N4 and Ng are the total numbers of A and B particles.
Cross sections for many different processes may be relevant to a single

scattering experiment. In ete™ collisions, for example, one can measure the

cross sections for production of putu~, 77, uTu~y, ptuyy, etc., and

countless processes involving hadron production, not to mention simple e*e™

scattering. Usually, of course, we wish to measure not only what the final-state

particles are, but also the momenta with which they come out. In this case

Number of events = (4.61)
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our definition (4.59) of o still works, but if we specify the exact momenta de-
sired, o will be infinitesimal. The solution is to define the differential cross
section, do/(d®p;y ---d3py,). It is simply the quantity that, when integrated
over any small d3p; - - - d®p,,, gives the cross section for scattering into that re-
gion of final-state momentum space. The various final-state momenta are not
all independent: Four components will always be constrained by 4-momentum
conservation. In the simplest case, where there are only two final-state parti-
cles, this leaves only two unconstrained momentum components, usually taken
to be the angles 6 and ¢ of the momentum of one of the particles. Integrating
do/ (d3p1d3p2) over the four constrained momentum components then leaves
us with the usual differential cross section do/dS.

A somewhat simpler measurable quantity is the decay rate I' of an unsta-
ble particle A (assumed to be at rest) into a specified final state (of two or
more particles). It is defined as

__ Number of decays per unit time

. 4.62
Number of A particles present (4.62)

The lifetime 7 of the particle is then the reciprocal of the sum of its decay
rates into all possible final states. (The particle’s half-life is 7 - In 2.)

In nonrelativistic quantum mechanics, an unstable atomic state shows up
in scattering experiments as a resonance. Near the resonance energy Ejy, the
scattering amplitude is given by the Breit-Wigner formula

1
HE) > g—p i/

The cross section therefore has a peak of the form
1
O X E—Eo?+12/4
The width of the resonance peak is equal to the decay rate of the unstable
state.

The Breit-Wigner formula (4.63) also applies in relativistic quantum me-
chanics. In particular, it gives the scattering amplitude for processes in which
initial particles combine to form an unstable particle, which then decays. The
unstable particle, viewed as an excited state of the vacuum, is a direct ana-
logue of the unstable nonrelativistic atomic state. If we call the 4-momentum

of the unstable particle p and its mass m, we can make a relativistically in-
variant generalization of (4.63):

1 1
p? —m2+iml = 2E,(p° — Ep + i(m/Ep)T/2)
The decay rate of the unstable particle in a general frame is (m/Ep)T, in ac-
cord with relativistic time dilation. Although the two expressions in (4.64) are

equal in the vicinity of the resonance, the left-hand side, which is manifestly
Lorentz invariant, is much more convenient.

(4.63)

(4.64)
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The S-Matrix

How, then, do we calculate a cross section? We must set up wavepackets rep-
resenting the initial-state particles, evolve this initial state for a very long
time with the time-evolution operator exp(—:Ht) of the interacting field the-
ory, and overlap the resulting final state with wavepackets representing some
desired set of final-state particles. This gives the probability amplitude for
producing that final state, which is simply related to the cross section. We
will find that, in the limit where the wavepackets are very narrow in momen-
tum space, the amplitude depends only on the momenta of the wavepackets,
not on the details of their shapes.t
A wavepacket representing some desired state |¢) can be expressed as

[ Bk 1

] (2n)3 V2Ex
where ¢(k) is the Fourier transform of the spatial wavefunction, and |k) is a
one-particle state of momentum k in the interacting theory. In the free theory,
we would have |k) = \/2EkaL |0). The factor of /2E) converts our relativistic

normalization of |k) to the conventional normalization in which the sum of
all probabilities adds up to 1:

[ ¢(k) |k) , (4.65)

A3k 2
=1 i —|ok)|" =1. 4.
o =1 it [leo) (4.66)
The probability we wish to compute is then
P =102 | dads)|”, (4.67)
N N~
future past

where |¢padp) is a state of two wavepackets constructed in the far past and
(P12 - - -] is a state of several wavepackets (one for each final-state particle)
constructed in the far future. The wavepackets are localized in space, so each
can be constructed independently of the others. States constructed in this
way are called in and out states. Note that we use the Heisenberg picture:
States are time-independent, but the name we give a state depends on the
eigenvalues or expectation values of time-dependent operators. Thus states
with different names constructed at different times have a nontrivial overlap,
which depends on the time dependence of the operators.

If we set up |p4¢p) in the remote past, and then take the limit in which
the wavepackets ¢;(k;) become concentrated about definite momenta p;, this
defines an in state |p4pg);, with definite initial momenta. It is useful to view
|¢p.adB) as a linear superposition of such states. It is important, however, to

TMuch of this section is based on the treatment of nonrelativistic scattering given
in Taylor (1972), Chapters 2, 3, and 17. We concentrate on the additional complications
of the relativistic theory, glossing over many subtleties, common to both cases, which
Taylor explains carefully.
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Figure 4.2. Incident wavepackets are uniformly distributed in impact pa-
rameter b.

take into account the transverse displacement of the wavepacket ¢p relative
to ¢4 in position space (see Fig. 4.2). Although we could leave this implicit
in the form of ¢p(kp), we instead adopt the convention that our reference
momentum-space wavefunctions are collinear (that is, have impact parameter
b = 0), and write ¢p(kp) with an explicit factor exp(—ib-kg) to account for
the spatial translation. Then, since ¢4 and ¢p are constructed independently
at different locations, we can write the initial state as

[ dPka [ dPkp da(ka)ps(ks)e ks
|pad5); _/(27r)3 /(271')3 B D)

kkg),.  (4.68)

We could expand (¢1¢3 - | in terms of similarly defined out states of definite
momentum formed in the asymptotic future:*

d3
out<¢1¢’2 l = (H/ 2:)]‘:3 ¢f )out(plpz A |

It is much easier, however, to use the out states of definite momentum as
the final states in the probability amplitude (4.67), and to multiply by the
various normalization factors after squaring the amplitude. This is physically
reasonable as long as the detectors of final-state particles mainly measure
momentum-—that is, they do not resolve positions at the level of de Broglie
wavelengths.

We can now relate the probability of scattering in a real experiment to
an idealized set of transition amplitudes between the asymptotically defined
in and out states of definite momentum,

out{P1P2 * - - [kaks);,- (4.69)

tHere and below, the product symbol applies (symbolically) to the integral as
well as the other factors in parentheses; the integrals apply to what is outside the
parentheses as well.
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To compute the overlap of in states with out states, we note that the conven-
tions for defining the two sets of states are related by time translation:

out{P1P2 - - - [kakp), = Tli_{go@lm - | kakg)
T -7 (4.70)
= Thm <p1p2 e | e_iH(QT) IkAkB> .

In the last line, the states are defined at any common reference time. Thus, the
in and out states are related by the limit of a sequence of unitary operators.
This limiting unitary operator is called the S-matriz:

out{P1P2 "+ - [kakg);, = (p1p2- -+ | S [kaks) . (4.71)

The S-matrix has the following structure: If the particles in question
do not interact at all, S is simply the identity operator. Even if the theory
contains interactions, the particles have some probability of simply missing
one another. To isolate the interesting part of the S-matrix—that is, the part
due to interactions—we define the T-matriz by

5 =1+iT. (4.72)

Next we note that the matrix elements of S should reflect 4-momentum con-
servation. Thus S or T should always contain a factor 6 (k4 + kg — 3 py).
Extracting this factor, we define the invariant matriz element M, by

(P1p2- | iT |kakp) = (27r)46(4) (kA+kB — pr) ~iM(ka, kg — py). (4.73)

We have written this expression in terms of 4-momenta p and k, but of course
all 4-momenta are on mass-shell: p° = E,, k° = Ex. (Note that our entire
treatment is specific to the case where the initial state contains only two
particles. For 3—many or many—many interactions, one can invent analogous
constructions, but we will not consider such complicated experiments in this
book.)

The matrix element M is analogous to the scattering amplitude f of
one-particle quantum mechanics. It is useful because it allows us to separate
all the physics that depends on the details of the interaction Hamiltonian
(“dynamics”) from all the physics that doesn’t (“kinematics”). In the next
section we will discuss how to compute M using Feynman diagrams. But
first, we must figure out how to reconstruct the cross section ¢ from M.

To do this, let us calculate, in terms of M, the probability for the initial
state |¢.4¢B) to scatter and become a final state of n particles whose momenta
lie in a small region d®p; - - - d®>p,. In our normalization, this probability is

P(AB—»12...n)=(Hd3pf 1 . (474

; (27!')3 E) |out<p1 *Pn l ¢A¢B)in
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For a single target (A) particle and many incident (B) particles with different
impact parameters b, the number of scattering events is

N= ) ©P= / d*b nsP(b
all incident
particles
where np is the number density (particles per unit area) of B particles. Since
we are assuming that this number density is constant over the range of the
interaction, np can be taken outside the integral. The cross section is then

N N
= = = [ d% P(b). 4.75
P (4.75)

Deriving a simple expression for ¢ in terms of M is now a fairly straight-
forward calculation. Combining (4.75), (4.74), and (4.68), we have (writing
do rather than o since this is an infinitesimal quantity)

o (e 1N [ ks ¢i(k d37~c 97 (ki)
¢ ‘(l}[m)?'zEf)/ o _E[B/ ﬁ ﬁ>
et (ks —ks) (outl{PrH{ki})in) (out<{Pf}|{ki}>in) » (4.76)

where we have used k4 and kg as dummy integration variables in the second
half of the squared amplitude. The d?b integral can be performed to give a
factor of (2m)26( (kg — ki ). We get more delta functions by writing the final
two factors of (4.76) in terms of M. Assuming that we are not interested in
the trivial case of forward scattering where no interaction takes place, we can
drop the 1 in Eq. (4.72) and write these factors as

(ouel{PrH{ki})in) = iM({ki} — {ps}) @m)*6 (ki = L py);
(oul{P}{ki})in) " = =M ({ki} — {ps}) 2m)*6 D (X ki = X py).

We can use the second of these delta functions, together with the 6 (kj —kg),
to perform all six of the k integrals in (4.76). Of the six integrals, only those
over k% and k% require some work:

[dRadRi 65— $97) 8B+ Ba - SE)
= [drs(/Bem + \ Brmi - 5E))
B F| Ta-wm
E4. Eg
In the last line and in the rest of Eq. (4.76) it is understood that the con-

straints k% + kg = pr and E4 + Eg = 3 Ey now apply (in addition to
the constraints k4§ = k4 and kg = ki coming from the other four integrals).

kp=Spi—k3
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The difference |v4 — vg| is the relative velocity of the beams as viewed from
the laboratory frame.

Now recall that the initial wavepackets are localized in momentum space,
centered on p4 and pp. This means that we can evaluate all factors that
are smooth functions of k4 and kg at p4 and pg, pulling them outside the
integrals. These factors include E 4, Eg, |v4 —vp|, and M—everything except
the remaining delta function. After doing this, we arrive at the expression

do = (7 L) Mbaps > {ps})|” /d3kA /d3k3
f (2'”)3 2Ef 2E 42ER |’UA—’U3| (27l')3 (2#)3 (4.78)

x |ga(ka)|’|¢s(ks)|* (2m)16@ (katks— 3 py)-

To simplify this formula further, we should think a bit more about the
properties of real particle detectors. We have already noted that real detec-
tors project mainly onto eigenstates of momentum. But real detectors have
finite resolution; that is, they sum incoherently over momentum bites of fi-
nite size. Normally, the measurement of the final-state momentum is not of
such high quality that it can resolve the small variation of this momentum
that results from the momentum spread of the initial wavepackets ¢ 4, ¢p. In
that case, we may treat even the momentum vector k4 + kg inside the delta
function as being well approximated by its central value p4 + pg. With this
further approximation, we can perform the integrals over k4 and kg using the
normalization condition (4.66). This produces the final form of the relation
between S-matrix elements and cross sections,

do = L ( d3pf L)
2EA2EB |’UA~1)3| (271’)3 2Ef (4.79)

x |M(pa,ps = {ps )| (21)*6@ (pa+ps — Y py).

All dependence on the shapes of the wavepackets has disappeared.
The integral over final-state momenta in (4.79) has the structure

/dH" - ( /é:’; 2113 ) 2m)* 6™ (P — X py), (4.80)

with P the total initial 4-momentum. This integral is manifestly Lorentz in-
variant, since it is built up from invariant 3-momentum integrals constrained
by a 4-momentum delta function. This integral is known as relativistically
invariant n-body phase space. Of the other ingredients in (4.79), the matrix
element M is also Lorentz invariant. The Lorentz transformation property of
(4.79) therefore comes entirely from the prefactor

1 1 1
EaEglua — vg| B |E8Pf4 - E.Apzsl B |€,uacyupf:1pg| '
This is not Lorentz invariant, but it is invariant to boosts along the z-direction.

In fact, this expression has exactly the transformation properties of a cross-
sectional area.




4.5 Cross Sections and the S-Matrix 107

For the special case of two particles in the final state, we can simplify
the general expression (4.79) by partially evaluating the phase-space integrals
in the center-of-mass frame. Label the momenta of the two final particles
p1 and ps. We first choose to integrate all three components of py over the
delta functions enforcing 3-momentum conservation. This sets p; = —p; and
converts the integral over two-body phase space to the form

dplp dQ
/ dllz = / 3m)3 2, 2B, 28 (Eem = By = Ba), (4.81)

where E; = \/p? +m2, Ey = / p? + mZ, and E.,, is the total initial energy.
Integrating over the final delta function gives

p1 Y4t
dly = [do —PL
/ 2= / 16721 E, (El + Ez)

1 |P1|
Q—
/ 1672

For reactions symmetric about the colhslon axis, two-body phase space can
be written simply as an integral over the polar angle in the center-of-mass

frame: ) 2| |
P1
/dH2 = /dc SO — 6m Ecm (4.83)

The last factor tends to 1 at high energy.

Applying this simplification to (4.79), we find the following form of the
cross section for two final-state particles:

(4.82)

do _ 1 |p1] 2
(58)ors = 72085 rmem i, Mmoo — mmal. 450

In the special case where all four particles have identical masses (including the
commonly seen limit m — 0), this reduces to the formula quoted in Chapter 1,

2
(%)GM = 6417?24—;73"1 (all four masses identical). (4.85)

To conclude this section, we should derive a formula for the differential
decay rate, dI', in terms of M. The correct expression is only a slight modifi-
cation of (4.79), and is quite easy to guess: Just remove from (4.79) the factors
that do not make sense when the initial state consists of a single particle. The
definition of I" assumes that the decaying particle is at rest, so the normaliza-
tion factor (2E4)~! becomes (2m4)~!. (In any other frame, this factor would
give the usual time dilation.) Thus the decay rate formula is

3
Gt v (If] TEahs ) MO — o)) (2069~ Top). (450

Unfortunately, the meaning of this formula is far from clear. Since an unstable
particle cannot be sent into the infinitely distant past, our definition (4.73)
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of M(m4 — {ps}) in terms of the S-matrix makes no sense in this context.
Nevertheless formula (4.86) is correct, when M is computed according to the
Feynman rules for S-matrix elements that we will present in the following
section. We postpone the further discussion of these matters, and the proof
of Eq. (4.86), until Section 7.3. Until then, an intuitive notion of M as a
transition amplitude should suffice.

Equations (4.79) and (4.86) are completely general, whether or not the
final state contains several identical particles. (The computation of M, of
course, will be quite different when identical particles are present, but that is
another matter.) When integrating either of these formulae to obtain a total
cross section or decay rate, however, we must be careful to avoid counting the
same final state several times. If there are n identical particles in the final
state, we must either restrict the integration to inequivalent configurations,
or divide by n! after integrating over all sets of momenta.

4.6 Computing S-Matrix Elements
from Feynman Diagrams

Now that we have formulae for cross sections and decay rates in terms of
the invariant matrix element M, the only remaining task is to find a way of
computing M for various processes in various interacting field theories. In this
section we will write down (and try to motivate) a formula for M in terms
of Feynman diagrams. We postpone the actual proof of this formula until
Section 7.2, since the proof is somewhat technical and will be much easier to
understand after we have seen how the formula is used.

Recall from its definition, Eq. (4.71), that the S-matrix is simply the
time-evolution operator, exp(—iHt), in the limit of very large ¢:

(P1p2 -+ | S [kaks) = lim (p1pz--[e” D) kaks). (4.87)

To compute this quantity we would like to replace the external plane-wave
states in (4.87), which are eigenstates of H, with their counterparts in the
unperturbed theory, which are eigenstates of Hy. We successfully made such
a replacement for the vacuum state |Q2) in Eq. (4.27):

)= lim (e7*BT(Q]0)) e T o).

T —oo(1-i€)
This time we would like to find a relation of the form

[kakg) o lim e *HT |k 4 kg),, (4.88)
where we have omitted some unknown phases and overlap factors like those
in (4.27). To find such a relation would not be easy. In (4.27), we used the fact
that the vacuum was the state of absolute lowest energy. Here we can use only
the much weaker statement that the external states with well-separated initial
and final particles have the lowest energy consistent with the predetermined
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nonzero values of momentum. The problem is a deep one, and it is associated
with one of the most fundamental difficulties of field theory, that interactions
affect not only the scattering of distinct particles but also the form of the
single-particle states themselves.

If the formula (4.88) could somehow be justified, we could use it to rewrite
the right-hand side of (4.87) as

lim (p1--- pn|6—iH(2T) IPAPB)o

T —roo(1-1ie€)

(4.89)

T
oc  Jim o{pr-- 'pnIT<eXp [—i / L Hz(t)]) IPAPB)o-
In the evaluation of vacuum expectation values, the awkward proportionality
factors between free and interacting vacuum states cancelled out of the final
formula, Eq. (4.31). In the present case those factors are so horrible that we
have not even attempted to write them down; we only hope that a similar
dramatic cancellation will take place here. In fact such a cancellation does
take place, although it is not easy to derive this conclusion from our present
approach. Up to one small modification (which is unimportant for our present
purposes), the formula for the nontrivial part of the S-matrix can be simplified
to the following form:

(P1--PnliT |PaAPB)

T
= T—-»Llcl(rll—ie) (0<P1 o pnIT (eXp [_l[Tdt Hi (t)] ) lpApB)O)connected,

amputated

(4.90)

The attributes “connected” and “amputated” refer to restrictions on the class
of possible Feynman diagrams; these terms will be defined in a moment. We
will prove Eq. (4.90) in Section 7.2. In the remainder of this section, we will
explain this formula and motivate the new restrictions that we have added.

First we must learn how to represent the matrix element in (4.90) as a
sum of Feynman diagrams. Let us evaluate the first few terms explicitly, in
¢* theory, for the case of two particles in the final state. The first term is

o{P1P2|PAPB)y = V/2E12E22E 42E55 (0| araza’yaj; 0)
— 2E42E5(27)° (6(3) (pa—P1)6% (ps — P2) (4.91)

+69(pa = p2)6® (p5 — p1) )

The delta functions force the final state to be identical to the initial state,
so this term is part of the ‘1’ in S = 1 + ¢T, and does not contribute to the
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scattering matrix element M. We can represent it diagrammatically as

A B A B

The next term in (p1p2| S |paPs) is

A
0<P1p2|T(_ZJ / d*z 6}()) Ipaps)o
' \ (4.92)
= 0<P1p2|N(_iZ /d4a: o7 () + contractions) |PAPB)gs

using Wick’s theorem. Since the external states are not |0), terms that are not
fully contracted do not necessarily vanish; we can use an annihilation operator
from ¢,(z) to annihilate an initial-state particle, or a creation operator from
¢,(x) to produce a final-state particle. For example,

Bk 1 _
¢-I‘_(17)|P>0 = /Wﬁake—zk.m \/ﬁa;ﬁ 10)

k1 4.93
B / (2r)3 V2B - ke BB, m Pk —p)joy )
= e T |0> .

An uncontracted ¢, operator inside the N-product of (4.92) has two terms:
¢}L on the far right and ¢; on the far left. We get one contribution to the
S-matrix element for each way of commuting the a of ¢;r past an initial-state
at, and one contribution for each way of commuting the at of ¢; past a final-
state a. It is natural, then, to define the contractions of field operators with
external states as follows:

1 . (. .
¢;(x)lp) = e"P=(0);  (ple,(x) = (0]e"P". (4.94)

To evaluate an S-matrix element such as (4.92), we simply write down all
possible full contractions of the ¢, operators and the external-state momenta.

To see that this prescription is correct, let us evaluate (4.92) in detail.
The N-product contains terms of the form

M m
PPod;  PpPdd;  PPPo. (4.95)

The last term, in which the ¢ operators are fully contracted with each other, is
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equal to a vacuum bubble diagram times the value of (4.91) calculated above:

'/\ . M nm
—ig [d z (P1P2|0PP|PAPE)g

1 2 2 (4.96)

1
-+ X

A B A B

This is just another contribution to the trivial part of the S-matrix, so we
ignore it. :

Next consider the second term of (4.95), in which two of the four ¢ oper-
ators are contracted. The normal-ordered product of the remaining two fields
looks like (afaf +2ata+ aa). As we commute these operators past the a’s and
a'’s of the initial and final states, we find that only a term with an equal num-
ber of a’s and a'’s can survive. In the language of contractions, this says that
one of the ¢’s must be contracted with an initial-state |p), the other with a
final-state (p|. The uncontracted |p) and (p| give a delta function as in (4.91).
To represent these quantities diagrammatically, we introduce external lines to
our Feynman rules:

[

H@R) = S Pl = —=—K (@97)

Feynman diagrams for S-matrix elements will always contain external lines,
rather than the external points of diagrams for correlation functions. The
second term of (4.95) thus yields four diagrams:

1l 9 0%

The integration f d*r produces a momentum-conserving delta function at
each vertex (including the external momenta), so these diagrams again de-
scribe trivial processes in which the initial and final states are identical. This
illustrates a general principle: Only fully connected diagrams, in which all
external lines are connected to each other, contribute to the T-matrix.
Finally, consider the term of (4.95) in which none of the ¢ operators are
contracted with each other. Our prescription tells us to contract two of the
¢’s with |papg) and the other two with (p;pa|. There are 4! ways to do this.
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Thus we obtain the diagram

1 2

X = (4!) - (—2%) /d4x e~ HPat+ps—p1—p2)=@
: (4.98)

A B
= =i (2m)*6™ (pa + ps — P1 — D2).

This is exactly of the form iM(27)%6™) (p4 + ps — P1 — P2), With M = —].
Before continuing our discussion of Feynman diagrams for S-matrix ele-
ments, we should certainly pause to turn this result into a cross section. For

scattering in the center-of-mass frame, we can simply plug |[M|? = A\? into
Eq. (4.85) to obtain

do A2
= S A— 4.
(dQ )CM 64w E2,, (4:99)

We have just computed our first quantum field theory cross section. It is a
rather dull result, having no angular dependence at all. (This situation will
be remedied when we consider fermions in the next section.) Integrating over
dQ, and dividing by 2 since there are two identical particles in the final state,
we find the total cross section,

/\2

Tiotal = 35— (4.100)
cm

In practice, one would probably use this result to measure the value of A.
Returning to our general discussion, let us consider some higher-order

contributions to the T-matrix for the process A, B — 1, 2. If we ignore, for the

moment, the “connected and amputated” prescription, we have the formula

>é><+22+><><+/§+...
. ><O T (4.101)

plus diagrams in which the four external lines are not all connected to each
other. We have already seen that this last class of diagrams gives no contribu-
tion to the T-matrix. The first diagram shown in (4.101) gives the lowest-order
contribution to T', which we calculated above. The next three diagrams give

(P1P2|iT |pAPB
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expected corrections to this amplitude, involving creation and annihilation of
additional “virtual” particles.

The diagrams in the second line of-(4.101) contain disconnected “vacuum
bubbles”. By the same argument as at the end of Section 4.4, the disconnected
pieces exponentiate to an overall phase factor giving the shift of the energy
of the interacting vacuum state upon which the scattering takes place. Thus
they are irrelevant to S. We have now seen that only fully connected diagrams
give sensible contributions to S-matrix elements.

The last diagram is more problematical; let us evaluate it. After integrat-
ing over the two vertex positions, we obtain

n P2 _1/d4p' i /d4k i
T 2) 2n)ip? —m2 | (2n)% k2 — m?2
. 4.102
pag N i@ S patp i —p) 1
bB

x (—iX)(2m)*6™ (pp — p').

We can integrate over p’ using the second delta function. It tells us to evaluate

1 1 1

P2 —m2lp—ps p% —m?2 0

We get infinity, since pg, being the momentum of an external particle, is on-
shell: p4 = m?. This is a disaster. Clearly, our formula for S makes sense only
if we exclude diagrams of this form, that is, diagrams with loops connected to
only one external leg. Fortunately, this is physically reasonable: In the same
way that the vacuum bubble diagrams represent the evolution of |0) into |{2),
these external leg corrections,

QL% AN e

represent the evolution of |p), into |p), the single-particle state of the inter-
acting theory. Since these corrections have nothing to do with the scattering
process, we should exclude them from the computation of S.

For a general diagram with external legs, we define amputation in the
following way. Starting from the tip of each external leg, find the last point
at which the diagram can be cut by removing a single propagator, such that
this operation separates the leg from the rest of the diagram. Cut there. For
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example:

_
amputate

T 7

Let us summarize our prescription for calculating scattering amplitudes.
Our formula for S-matrix elements, Eq. (4.90), can be rewritten

iM - (2m)*6@ (pa+ ps — 3 py)

__( sum of all connected, amputated Feynman (4.103)
~ \ diagrams with py4, pg incoming, py outgoing )

By ‘connected’, we now mean fully connected, that is, with no vacuum bub-
bles, and all external legs connected to each other. The Feynman rules for
scattering amplitudes in ¢* theory are, in position space,

1. For each propagator, zoe——ey = Dp(z—y);

b

2. For each vertex, z = (—i)\) /d4:v;

3. For each external line, >'x_<— = e PT,;
p

4. Divide by the symmetry factor.

Notice that the factor for an ingoing line is just the amplitude for that particle
to be found at the vertex it connects to, i.e., the particle’s wavefunction. Sim-
ilarly, the factor for an outgoing line is the amplitude for a particle produced
at the vertex to have the desired final momentum.

Just as with the Feynman rules for correlation functions, it is usually
simpler to introduce the momentum-space representation of the propagators,
carry out the vertex integrals to obtain momentum-conserving delta functions,
and use these delta functions to evaluate as many momentum integrals as
possible. In a scattering amplitude, however, there will always be an overall
delta function, which can be used to cancel the one on the left-hand side of
Eq. (4.103). We are then left with

1M = sum of all connected, amputated diagrams, (4.104)

where the diagrams are evaluated according to the following rules:
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i

1. For each propagator, = .
Propag p? — m?2 + i€’

SA

2. For each vertex, = —i)\;

3. For each external line, >—<— =1

4. Impose momentum conservation at each vertex;

d4
5. Integrate over each undetermined loop momentum: / ———(27:)) e

6. Divide by the symmetry factor.

This is our final version of the Feynman rules for ¢* theory; these rules are
also listed in the Appendix, for reference.

Actually, Eq. (4.103) still isn’t quite correct. One more modification is nec-
essary, involving the proportionality factors that were omitted from Eq. (4.89).
But the modification affects only diagrams containing loops, so we postpone
its discussion until Chapters 6 and 7, where we first evaluate such diagrams.
We will prove the corrected formula (4.103) in Section 7.2, by relating S-
matrix elements to correlation functions, for which we have actually derived
a formula in terms of Feynman diagrams.

4.7 Feynman Rules for Fermions

So far in this chapter we have discussed only ¢* theory, in order to avoid un-
necessary complication. We are now ready to generalize our results to theories
containing fermions.

Our treatment of correlation functions in Section 4.2 generalizes without
difficulty. Lorentz invariance requires that the interaction Hamiltionian Hj be
a product of an even number of spinor fields, so no difficulties arise in defining
the time-ordered exponential of Hj.

To apply Wick’s theorem, however, we must generalize the definitions of
the time-ordering and normal-ordering symbols to include fermions. We saw
at the end of Section 3.5 that the time-ordering operator 7' acting on two
spinor fields is most conveniently defined with an additional minus sign:

_ () for 9 > y°;
T(¥(2)P(y)) = { ¥(z)ily) Y
- —Y(y)p(z) for z° <y”.

With this definition, the Feynman propagator for the Dirac field is

4 7 . —
Sr(z —y) = / (;if; > (_ﬂ,j;zni) —eT Y = (0] T(x)d(y) 0) . (4.106)

(4.105)




116 Chapter 4 Interacting Fields and Feynman Diagrams

For products of more than two spinor fields, we generalize this definition in
the natural way: The time-ordered product picks up one minus sign for each
interchange of operators that is necessary to put the fields in time order. For
example,

T(Yrvovsa) = (—1)%sthrpatre if 2§ > 2 > af > af.

The definition of the normal-ordered product of spinor fields is analogous:
Put in an extra minus sign for each fermion interchange. The anticommutation
properties make it possible to write a normal-ordered product in several ways,
but with our conventions these are completely equivalent:

N(apaqal) = (-1)%afapaq = (—1)*alaqap.

Using these definitions, it is not hard to generalize Wick’s theorem. Con-
sider first the case of two Dirac fields, say T [w(x)w(y)] . In analogy with (4.37),
define the contraction of two fields by

_ _ 1
T[d(x)9(y)] = N[v(@)d(y)] + v(z)v(y). (4.107)
Explicitly, for the Dirac field,

T { {y*(2), 9~ (y)} forz®>y°
h

Y(x)Y(y) = @) (20} for 2© < g } =Sr(z—y);  (4.108)

D(@)9(y) = P(x)P(y) = 0. (4.109)

Define contractions under the normal-ordering symbol to include minus signs
for operator interchanges:

2 _ [ — _
N (Y1920310y) = —19h3 N (¢othy) = —Sp(x1 — z3) N (¢athy). (4.110)
With these conventions, Wick’s theorem takes the same form as before:
T[z/)lz_p21/J3 = ] = N[1/1117)21/J3 .-+ + all possible contractions]. (4.111)

The proof is essentially unchanged from the bosonic case, since all extra minus
signs are accounted for by the above definitions.

Yukawa Theory

Writing down the Feynman rules for fermion correlation functions would now
be easy, but instead let’s press on and discuss scattering processes. For defi-
niteness, we begin by analyzing the Yukawa theory:

H = Hpjrac + Hklein-Gordon + /d3z g@_ZJWb (4112)
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This is a simplified model of Quantum Electrodynamics. In this section we

will carefully work out the rules of calculation for Yukawa theory, so that in

the next section we can guess the rules for QED without too much difficulty.
To be even more specific, consider the two-particle scattering reaction

fermion(p) + fermion(k) — fermion(p’) + fermion(k’).

The leading contribution comes from the H? term of the S-matrix:

0 KT (55 (i) [ @ bpinr (i) [ dyrbesr)ipddy. (4113

To evaluate this expression, use Wick’s theorem to reduce the T-product to
an N-product of contractions, then act the uncontracted fields on the initial-
and final-state particles. Represent this latter process as the contraction

1 a3y 1 "ost N —ip'x s
Yr(z)|p, s) = /(ET%\/TT: ;af’yus (#)e™*** \/2Epay) |0) (4.114)
= e~ "%u(p) |0).

Similar expressions hold for the contraction of ¥ ; with a final-state fermion,
and for contractions of ¥; and ¥ 1 with antifermion states. Note that ¢r can
be contracted with a fermion on the right or an antifermion on the left; the
opposite is true for ;.

We can write a typical contribution to the matrix element (4.113) as the
contraction

(3 K1} (i) [ s o fer b,

Up to a possible minus sign, the value of this quantity is
dlg i
(2m)* q2 —m]
x (2m) 6 (K —k—q)u(p )u(p)u(k )u(k).

(—ig)? (2m)*6™ (p —p+q)

(We have dropped the factor 1/2! because there is a second, identical term
that comes from interchanging x and y in (4.115).) Using either delta func-
tion to perform the integral, we find that this expression takes the form
iM(2m)*6™ (Sp), with

. —292 —7 — (1.
IM= mu(p Yu(p)u(k')u(k). (4.116)

When writing it in this way, we must remember to impose the constraints
/ /
p—p =q=kK -k
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Instead of working from (4.115), we could draw a Feynman diagram:

pl k,
PR Sp—

P 9 k

We denote scalar particles by dashed lines, and fermions by solid lines. The S-
matrix element could then be obtained directly from the following momentum-
space Feynman rules.

1. Propagators:

)
B)by) = -~ P
. i +m)
= . ————— =
b(@)(y) - e
2. Verticess T -———- = —ig
3. External leg contractions:
[ 1
= — - -<- - == 1 = - - = 1
dla)= > - (al ¢ =<
— [—
Vlps) = S>—=— =w(p) (ps|h= —= =)
—— p —— p -
fermion fermion
A— [ —
¥ k) = > =) (ks| p= —>— =v(k)
k k
antifermion antifermion

4. Impose momentum conservation at each vertex.
5. Integrate over each undetermined loop momentum.
6. Figure out the overall sign of the diagram.

Several comments are in order regarding these rules.

First, note that the 1/n! from the Taylor series of the time-ordered expo-
nential is always canceled by the n! ways of interchanging vertices to obtain
the same contraction. The diagrams of Yukawa theory never have symmetry
factors, since the three fields (¢9)¢) in Hy cannot substitute for one another
in contractions.

Second, the direction of the momentum on a fermion line is always signifi-
cant. On external lines, as for bosons, the direction of the momentum is always
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ingoing for initial-state particles and outgoing for final-state particles. This
follows immediately from the expansions of ¢ and t, where the annihilation
operators ap and by, both multiply e~*7® and the creation operators af, and b},
both multiply e*®?*?. On internal fermion lines (propagators), the momentum
must be assigned in the direction of particle-number flow (for electrons, this
is the direction of negative charge flow). This requirement is most easily seen
by working out an example from first principles. Consider the annihilation of
a fermion and an antifermion into two bosons:

\ !
kR | |

I 1L il
m = (kK| fd437 oYy fd4y ¢¢7ITI‘J,P'>
p PN

-1/ - 7 4 3 . . .
~ /d4x/d4y etk o(p)e ' / (3734 Z;fj,;nz) e—ia(z=y) u(p)e PV etky.

The integrals over z and y give delta functions that force ¢ to flow from y to ,
as shown. On internal boson lines the direction of the momentum is irrelevant
and may be chosen for convenience, since Dp(z — y) = Dp(y — z).

It is conventional to draw arrows on fermion lines, as shown, to represent
the direction of particle-number flow. The momentum assigned to a fermion
propagator then flows in the direction of this arrow. For external antiparticles,
however, the momentum flows opposite to the arrow; it helps to show this
explicitly by drawing a second arrow next to the line.

Third, note that in our examples the Dirac indices contract together along
the fermion lines. This will also happen in more complicated diagrams:

E _ i(gy +m) i(f +m)

- ~ : . : . (4117
IR NN u(p3) o e R u(po). )
Ps3 D2 P Do

1 '
1 )
' '
) '
' '
' '
N L

Finally, let’s take a moment to worry about fermion minus signs. Return
to the example of the fermion-fermion scattering process. We adopt a sign
convention for the initial and final states:

|p7 k> ~ aLaL IO) ’ <p,a kl| ~ <0| Ak’ Qp’, (4118)

so that (|p, k)T = (p, k|. Then the contraction

— L v 0 N
(P K ()2 (%)) [P.K) ~ (0] s apy ytby Py abal 0)

can be untangled by moving @y two spaces to the left, and so picks up a factor
of (—1)? = +1. But note that in the contraction

l—r—L—r——:I_—T = I
(B K [(B0)e (B0)y ID.K) ~ (O] aroay Dot Bty alal[0),



120 Chapter 4 Interacting Fields and Feynman Diagrams

it is sufficient to move the 171y one space to the left, giving a factor of —1. This
contraction corresponds to the diagram

)

The full result, to lowest order, for the S-matrix element for this process
is therefore

(4.119)

The minus sign difference between these diagrams is a reflection of Fermi
statistics. Turning this expression into an explicit cross section would require
some additional work; we postpone such calculations until Chapter 5, when
we can work with QED instead of the less interesting Yukawa theory.

In complicated diagrams, one can often simplify the determination of the
minus signs by noting that the product (i), or any other pair of fermions,
commutes with any operator. Thus,

=1 1
c (P) e (P)y (V) (V) - - = -+ (+ )(Wl’) (Wﬁ) (@W)) (YY) - -
= Sr(z —2)Sp(z — y)Sp(y —w) -

But note that in a closed loop of n fermion propagators we have

G =y PP P Py
arira
=(=1)tr [1/) VY PP Yo ]
= (1) tr[Sr Sr SF Sk]. (4.120)

A closed fermion loop always gives a factor of —1 and the trace of a product
of Dirac matrices.
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The Yukawa Potential

We now have all the formal rules we need to compute scattering amplitudes
in Yukawa theory. Before going on to discuss QED, let us briefly descend from
abstraction to concrete physics, and consider one very simple application of
these rules: the scattering of distinguishable fermions, in the nonrelativistic
limit. By comparing the amplitude for this process to the Born approxima-
tion formula from nonrelativistic quantum mechanics, we can determine the
potential V(r) created by the Yukawa interaction.

If the two interacting particles are distinguishable, only the first dia-
gram in (4.119) contributes. To evaluate the amplitude in the nonrelativis-
tic limit, we keep terms only to lowest order in the 3-momenta. Thus, up to
O3, p?,...),

p:(m7p)7 k:(m,k),

/

o = (m,p'), K = (m, k). (4.121)

Using these expressions, we have
(® —p)* =—p' - pl* + O(p"),

wi) = v ), e,

where £° is a two-component constant spinor normalized to & S/TSS = 6% The
spinor products in (4.119) are then

@ (p')u’ (p) = 2mg*1€° = 2ms*’;
, , , (4.122)
a" (Ku" (k) = 2me™ TE" = 2mé™ .

So our first physical conclusion is that the spin of each particle is separately
conserved in this nonrelativistic scattering interaction—a pleasing result.
Putting together the pieces of the scattering amplitude (4.119), we find

2
iM=——I — 9ms* 2ms™. (4.123)
P’ —pl*+ my

This should be compared with the Born approximation to the scattering am-
plitude in nonrelativistic quantum mechanics, written in terms of the potential
function V(x):

(p/liTlp) = =iV (q) (2m)6(Ep — Ep),  (@=p —p). (4.124)
So apparently, for the Yukawa interaction,
2

= -9
V(g) = TR (4.125)
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(The factors of 2m in (4.123) arise from our relativistic normalization conven-
tions, and must be dropped when comparing to (4.124), which assumes con-
ventional nonrelativistic normalization of states. The additional 6§ (p’ — p)
goes away when we integrate over the momentum of the target.)

Inverting the Fourier transform to find V(x) requires a short calculation:

d3q —92 iq-X
veo= [ @r) [P +m3 °

oo . .
_g2 /d ) ezq?‘ — e tar 1
=75 q4q -
2 2 2
4 ) iqr g +my

o0
2 iqr
-9 qe
= d . 4.126
4m2ir / e g% +m} ( )

— 00

The contour of this integral can be closed above in the complex plane, and
we pick up the residue of the simple pole at ¢ = +imgy. Thus we find

_ g1 e=mer,

V(r)= e (4.127)
an attractive “Yukawa potential”, with range 1/my = h/mgc, the Compton
wavelength of the exchanged boson. Yukawa made this potential the basis for
his theory of the nuclear force, and worked backwards from the range of the
force (about 1 fm) to predict the mass (about 200 MeV) of the required boson,
the pion.

What happens if instead we scatter particles off of antiparticles? For the
process

we need to evaluate (nonrelativistically)

5 (k)o™ (k') ~ m(et, —&*1) ((1) é) (5 63,) — —2mé*. (4.128)
We must also work out the fermion minus sign. Using |p, k) = af bT |0) and
(p',K'| = (0| biwap, we can write the contracted matrix element as

1 STl o7 ] A T
(p' K| 99 P9 [p.k) = (0] bwap ¥ Y2 alby |0).
To untangle the contractions requires three operator interchanges, so there is
an overall factor of —1. This cancels the extra minus sign in (4.128), and there-

fore we see that the Yukawa potential between a fermion and an antifermion
is also attractive, and identical in strength to that between two fermions.
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The remaining case to consider is scattering of two antifermions. It should
not be surprising that the potential is again attractive; there is an additional
minus sign from changing the other wu into v, and the number of interchanges
necessary to untangle the contractions is even. Thus we conclude that the
Yukawa potential is universally attractive, whether it is between a pair of
fermions, a pair of antifermions, or one of each.

4.8 Feynman Rules for Quantum Electrodynamics

Now we are ready to step from Yukawa theory to Quantum Electrodynamics.
To do this, we replace the scalar particle ¢ with a vector particle A,, and
replace the Yukawa interaction Hamiltonian with

Hipe = / 3z eyt pA,. (4.129)

How do the Feynman rules change? The answer, though difficult to prove, is
easy to guess. In addition to the fermion rules from the previous section, we
have

New vertex: po = —teyt
. —igu
Photon propagator: B~ NNy = 5
«(q q° + 1€
1
External photon lines: A, lp) = ’/\_/\/ p = €u(p)
«p

—
(p| Ay = u/}_/H =€, (p)

Photons are conventionally drawn as wavy lines. The symbol ¢, (p) stands for
the polarization vector of the initial- or final-state photon.

To justify these rules, recall that in Lorentz gauge (which we employ to
retain explicit relativistic invariance) the field equation for A, is

%A, =0. (4.130)

Thus each component of A separately obeys the Klein-Gordon equation (with
m = 0). The momentum-space solutions of this equation are e,(p)e™"?7,
where p? = 0 and €,(p) is any 4-vector. The interpretation of € as the polar-
ization vector of the field should be familiar from classical electromagnetism.
If we expand the quantized electromagnetic field in terms of classical solutions
of the wave equation, as we did for the Klein-Gordon field, we find

d3p 1 3 ) )
— T —ip-x rt _r* ip-T
Au(x) /———(277)3 —\/2_E; ;zo (apeu(p)e +ag'e, (ple ), (4.131)
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where r = 0,1,2,3 labels a basis of polarization vectors. The external line
factors in the Feynman rules above follow immediately from this expansion,
just as we obtained u’s and v’s as the external line factors for Dirac particles.
The only subtlety is that we must restrict initial- and final-state photons to
be transversely polarized: Their polarization vectors are always of the form
e* = (0, €), where p - € = 0. For p along the z-axis, the right- and left-handed
polarization vectors are e* = (0, 1, +4,0)/v/2.

The form of the QED vertex factor is also easy to justify, by simply
looking at the interaction Hamiltonian (4.129). Note that the vy matrix in a
QED amplitude will sit between spinors or other v matrices, with the Dirac
indices contracted along the fermion line. Note also that this interaction term
is specific to the case of an electron (and its antiparticle, the positron). In
general, for a Dirac particle with electric charge Qle|,

po = —1Qlely".

For example, an electron has @ = —1, an up quark has Q = +2/3, and a
down quark has Q4 = —1/3.

There is no easy way to derive the form of the photon propagator, so for
now we will settle for a plausibility argument. Since the electromagnetic field
in Lorentz gauge obeys the massless Klein-Gordon equation, it should come
as no surprise that the photon propagator is nearly identical to the massless
Klein-Gordon propagator. The factor of —g,,.,, however, requires explanation.
Lorentz invariance dictates that the photon propagator be an isotropic second-
rank tensor that can dot together the v* and ¥ from the vertices at each
end. The simplest candidate is g*”. To understand the overall sign of the
propagator, evaluate its Fourier transform:

d4q —’L‘gl“/ i (e d3q 1 o )
/(2,”)4 qz-l—iee ig-(z—y) =/(27r)3me ig-(z—y (= guw)- (4.132)

Presumably this is equal to (0| T[A,(z)A,(y)] |0). Now set = v, and take
the limit 2° — y° from the positive direction. Then this quantity becomes
the norm of the state A,(z)|0), which should be positive. We see that our
choice of signs in the propagator implies that the three states created by A;,
with 4 = 1,2, 3, indeed have positive norm. These states include all real (non-
virtual) photons, which always have spacelike polarizations. Unfortunately,
because g, is not positive definite, the states created by Ag inevitably have
negative norm. This is potentially a serious problem for any theory with vector
particles. For Quantum Electrodynamics, we will show in Section 5.5 that the
negative-norm states created by Ag are never produced in physical processes.
In Section 9.4 we will give a careful derivation of the photon propagator.
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The Coulomb Potential

As a simple application of these Feynman rules, and to better understand the
sign of the propagator, let us repeat the nonrelativistic scattering calculation
of the previous section, this time for QED. The leading-order contribution is

vz Y Ciea ) I k). (4139
P k (r' —p)?

In the nonrelativistic limit,

w(p' )7 u(p) = u' (p')u(p) = +2me’¢.

You can easily verify that the other terms, u(p')yu(p), vanish if p = p’ = 0;
they can therefore be neglected compared to %(p’)y°u(p) in the nonrelativistic
limit. Thus we have

+ie?
o —pp 2me 1O (2mE )k - guo

;2
= ———(2m¢&’1€),(2mg"T¢).
’ p/ _ p|2 )P( § g)
Comparing this to the Yukawa case (4.123), we see that there is an extra
factor of —1; the potential is a repulsive Yukawa potential with m = 0, that
is, a repulsive Coulomb potential:

iM=
(4.134)

e
Vir)=—=— 4.135
) dmr 7 ( )
where a = €2?/4m = 1/137 is the fine-structure constant.
For particle-antiparticle scattering, note first that

(k) u(k') = vl (k)v(k') = +2mete’.

The presence of the 4° eliminates the minus sign that we found in the Yukawa
case. The nonrelativistic scattering amplitude is therefore

P Ak _ —ie?

iM = , o (D)1 _p|2(+2m5’*§)p(+2m5*§’)k, (4.136)

where the (—1) is the same fermion minus sign we saw in the Yukawa case. This
is an attractive potential. Similarly, for antifermion-antifermion scattering one
finds a repulsive potential. We have just verified that in quantum field theory,
when a vector particle is exchanged, like charges repel while unlike charges
attract.
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Note that the repulsion in fermion-fermion scattering came entirely from
the extra factor —ggo = —1 in the vector boson propagator. A tensor boson,
such as the graviton, would have a propagator

1 1
LV AN po = 5 ((—gﬂp)(_gwr) + (_guu)(_gup)) (q2 T ie) s
which in nonrelativistic collisions gives a factor (—goo)? = +1; this will result
in a universally attractive potential. It is reassuring to see that quantum

field theory does indeed reproduce the obvious features of the electric and
gravitational forces:

Exchanged particle ffand ff ff

scalar (Yukawa) attractive attractive

vector (electricity) repulsive attractive

tensor (gravity) attractive attractive
Problems

4.1 Let us return to the problem of the creation of Klein-Gordon particles by a
classical source. Recall from Chapter 2 that this process can be described by the
Hamiltonian

H=Hy+t / i3z (~j(t,0)9(x)),

where Hp is the free Klein-Gordon Hamiltonian, ¢(z) is the Klein-Gordon field, and
j(z) is a c-number scalar function. We found that, if the system is in the vacuum state
before the source is turned on, the source will create a mean number of particles

dp 1 2
N)= [ —= —|] .
In this problem we will verify that statement, and extract more detailed information,
by using a perturbation expansion in the strength of the source.
(a) Show that the probability that the source creates no particles is given by
2

P(0) = [(0] 7{ exeli / a2 j(z)¢1()] } 0)|

(b) Evaluate the term in P(0) of order j2, and show that P(0) = 1 — A + O(j*),
where ) equals the expression given above for (V).

(c) Represent the term computed in part (b) as a Feynman diagram. Now represent
the whole pertubation series for P(0) in terms of Feynman diagrams. Show that
this series exponentiates, so that it can be summed exactly: P(0) = exp(—2A).

(d) Compute the probability that the source creates one particle of momentum k.
Perform this computation first to O(j) and then to all orders, using the trick of
part (c) to sum the series.
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‘(e) Show that the probability of producing n particles is given by
P(n) = (1/n)A™ exp(—A).
This is a Poisson distribution.

(f) Prove the following facts about the Poisson distribution:

iP(n):l; (N):inP(n):)\.
n=0 n=0

The first identity says that the P(n)’s are properly normalized probabilities,
while the second confirms our proposal for (N). Compute the mean square fluc-
tuation <(N - (N))2>

4.2 Decay of a scalar particle. Consider the following Lagrangian, involving two
real scalar fields ® and ¢:

L=1(0,2) - IM?3% + 1(8,0)? - Im?¢? — nu®so.

The last term is an interaction that allows a ® particle to decay into two ¢’s, provided
that M > 2m. Assuming that this condition is met, calculate the lifetime of the ® to
lowest order in p.

4.3 Linear sigma model. The interactions of pions at low energy can be described
by a phenomenological model called the linear sigma model. Essentially, this model
consists of N real scalar fields coupled by a ¢* interaction that is symmetric under
rotations of the NV fields. More specifically, let ®*(z), i = 1,..., N be a set of N fields,
governed by the Hamiltonian

H= /d% (%(Hi)2 + (Vo) + V(q>2)),
where (®%)2 = & - ®, and
V(8?) = §m? (@) + 3((@9)2)?

is a function symmetric under rotations of ®. For (classical) field configurations of
@i(m) that are constant in space and time, this term gives the only contribution to H;
hence, V is the field potential energy.

(What does this Hamiltonian have to do with the strong interactions? There
are two types of light quarks, u and d. These quarks have identical strong interac-
tions, but different masses. If these quarks are massless, the Hamiltonian of the strong
interactions is invariant to unitary transformations of the 2-component object (u,d):

(Z) — explia-o/2) (Z)

This transformation is called an isospin rotation. If, in addition, the strong interactions
are described by a vector “gluon” field (as is true in QCD), the strong interaction
Hamiltonian is invariant to the isospin rotations done separately on the left-handed
and right-handed components of the quark fields. Thus, the complete symmetry of
QCD with two massless quarks is SU(2) x SU(2). It happens that SO(4), the group
of rotations in 4 dimensions, is isomorphic to SU(2) x SU(2), so for N = 4, the linear
sigma model has the same symmetry group as the strong interactions.)
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