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(2)

(b)
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Analyze the linear sigma model for m? > 0 by noticing that, for A = 0, the
Hamiltonian given above is exactly N copies of the Klein-Gordon Hamiltonian.
We can then calculate scattering amplitudes as perturbation series in the pa-
rameter A. Show that the propagator is

9*(z) @' (y) = 6 Dr(z —y),

where D is the standard Klein-Gordon propagator for mass m, and that there
is one type of vertex given by

k l
= —2iA(6 6k 4 s §7F + 5tk I

i J
(That is, the vertex between two ®!s and two ®2s has the value (—2i)); that
between four ®'s has the value (—6i)).) Compute, to leading order in ), the
differential cross sections do/dS2, in the center-of-mass frame, for the scattering
processes

192 - 392,  dlo! 5 9292, and 0O - dle!

as functions of the center-of-mass energy.

Now consider the case m? < 0: m2 = —pu2. In this case, V has a local maximum,
rather than a minimum, at ® = 0. Since V is a potential energy, this implies
that the ground state of the theory is not near ® = 0 but rather is obtained by
shifting ®* toward the minimum of V. By rotational invariance, we can consider
this shift to be in the Nth direction. Write, then,

&' (z) = n'(z), i=1,...,N—1,
N (z) =v+o(x),

where v is a constant chosen to minimize V. (The notation 7 suggests a pion
field and should not be confused with a canonical momentum.) Show that, in
these new coordinates (and substituting for v its expression in terms of A and p),
we have a theory of a massive ¢ field and N — 1 massless pion fields, interacting
through cubic and quartic potential energy terms which all become small as
A — 0. Construct the Feynman rules by assigning values to the propagators and
vertices:

o —— A A

2

. k l
e XXX
i J i J

Compute the scattering amplitude for the process

't (p1) 7J (p2) — 7k (p3) mt (p4)
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to leading order in A. There are now four Feynman diagrams that contribute:

L=~ X

Show that, at threshold (p; = 0), these diagrams sum to zero. (Hint: It may be
easiest to first consider the spec1ﬁc process win! — 7272 for Wthh only the first
and fourth diagrams are nonzero, before tackling the general case.) Show that,

in the special case N = 2 (1 species of pion), the term of O(p?) also cancels.
Add to V a symmetry-breaking term,

AV = —a®V,

where a is a (small) constant. (In QCD, a term of this form is produced if the u
and d quarks have the same nonvanishing mass.) Find the new value of v that
minimizes V', and work out the content of the theory about that point. Show that
the pion acquires a mass such that m% ~ a, and show that the pion scattering
amplitude at threshold is now nonvanishing and also proportional to a.

Rutherford scattering. The cross section for scattering of an electron by the

Coulomb field of a nucleus can be computed, to lowest order, without quantizing the
electromagnetic field. Instead, treat the field as a given, classical potential A, (). The
interaction Hamiltonian is

Hi= / Pz eyt Ay,

where 9(z) is the usual quantized Dirac field.

(a)

(b)

Show that the T-matrix element for electron scattering off a localized classical
potential is, to lowest order,

#'iTIp) = —iea(p' )y u(p) - Au(p' - p),

where A u(q) is the four-dimensional Fourier transform of A, ().

If A, (x) is time independent, its Fourier transform contains a delta function of
energy. It is then natural to define

(p'[iT|p) = iM - (2m)é(E — Ex),

where E; and Ey are the initial and final energies of the particle, and to adopt
a new Feynman rule for computing M:

= —iey*Au(a),

where Zu(q) is the three-dimensional Fourier transform of A, (z). Given this
definition of M, show that the cross section for scattering off a time-independent,
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localized potential is

11 &y 1

L o2 .
7= V; 2F; (271-)3 2Ef |M(pl pf)' (271‘)6(Ef Ez),

where v; is the particle’s initial velocity. This formula is a natural modification
of (4.79). Integrate over |ps| to find a simple expression for do/dS2.

(c) Specialize to the case of electron scattering from a Coulomb potential (A° =
Ze/Anr). Working in the nonrelativistic limit, derive the Rutherford formula,
do a?Z?

dQ  am2vtsint(6/2)

(With a few calculational tricks from Section 5.1, you will have no difficulty
evaluating the general cross section in the relativistic case; see Problem 5.1.)



Chapter 5

Elementary Processes of
Quantum Electrodynamics

Finally, after three long chapters of formalism, we are ready to perform some
real relativistic calculations, to begin working out the predictions of Quantum
Electrodynamics. First we will return to the process considered in Chapter 1,
the annihilation of an electron-positron pair into a pair of heavier fermions.
We will study this paradigm process in extreme detail in the next three sec-
tions, then do a few more simple QED calculations in Sections 5.4 and 5.5.
The problems at the end of the chapter treat several additional QED pro-
cesses. More complete surveys of QED can be found in the books of Jauch
and Rohrlich (1976) and of Berestetskii, Lifshitz, and Pitaevskii (1982).

5.1 ete” — ptpu~: Introduction

The reaction ete™ — p*pu~ is the simplest of all QED processes, but also
one of the most important in high-energy physics. It is fundamental to the
understanding of all reactions in ete™ colliders, and is in fact used to calibrate
such machines. The related process ete™ — ¢¢ (a quark-antiquark pair) is
extraordinarily useful in determining the properties of elementary particles.

In this section we will compute the unpolarized cross section for ete™ —
ut ™, to lowest order. In Chapter 1 we used elementary arguments to guess
the answer (Eq. (1.8)) in the limit where all the fermions are massless. We
now relax that restriction and retain the muon mass in the calculation. Re-
taining the electron mass as well would be easy but pointless, since the ratio
me/m, ~ 1/200 is much smaller than the fractional error introduced by ne-
glecting higher-order terms in the perturbation series.

Using the Feynman rules from Section 4.8, we can at once draw the dia-
gram and write down the amplitude for our process:

131
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Rearranging this slightly and leaving the spin superscripts implicit, we have
;2

iM(e= e () = w™ (B () = 5 (307 u(@)) (ke k) ). (5.1)

This answer for the amplitude M is simple, but not yet very illuminating.

To compute the differential cross section, we need an expression for |M|?,
so we must find the complex conjugate of M. A bi-spinor product such as
Uy*u can be complex-conjugated as follows:

(o7*u)” = u"()T (7)o = uT ()17 = uly "0 = aro.
(This is another advantage of the ‘bar’ notation.) Thus the squared matrix
element is

4
= (20 ulpalor o)) (ke KIE Pu®)). - 6.2

At this point we are still free to specify any particular spinors u®(p),
T (p'), and so on, corresponding to any desired spin states of the fermions.
In actual experiments, however, it is difficult (though not impossible) to re-
tain control over spin states; one would have to prepare the initial state from
polarized materials and/or analyze the final state using spin-dependent mul-
tiple scattering. In most experiments the electron and positron beams are
unpolarized, so the measured cross section is an average over the electron and
positron spins s and s’. Muon detectors are normally blind to polarization, so
the measured cross section is a sum over the muon spins r and r’.

The expression for | M|? simplifies considerably when we throw away the
spin information. We want to compute

DIEDIPI) JIIERETT S

The spin sums can be performed using the completeness relations from Sec-
tion 3.3:

M| =

Y owpap)=F+m; > v ()0(p) =p—m. (5.3)
S S
Working with the first half of (5.2), and writing in spinor indices so we can
freely move the v next to the o, we have
> o (e (P P)veavs (7) = (F = 1) gy (F + m)pe

s,s’

= trace[(§ — m)v*(#+m)y"].

Evaluating the second half of (5.2) in the same way, we arrive at the desired
simplification:

4
£ IMP = o e[ me (rmey | e (m) (=)
spins

(5.4)
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The spinors © and v have disappeared, leaving us with a much cleaner expres-
sion in terms of v matrices. This trick is very general: Any QED amplitude
involving external fermions, when squared and summed or averaged over spins,
can be converted in this way to traces of products of Dirac matrices.

Trace Technology

This last step would hardly be an improvement if the traces had to be la-
boriously computed by brute force. But Feynman found that they could be
worked out easily by appealing to the algebraic properties of the vy matrices.
Since the evaluation of such traces occurs so often in QED calculations, it is
worthwhile to pause and attack the problem systematically, once and for all.

We would like to evaluate traces of products of n gamma matrices, where
n = 0,1,2,.... (For the present problem we need n = 2,3,4.) The n = 0
case is fairly easy: tr1 = 4. The trace of one v matrix is also easy. From the
explicit form of the matrices in the chiral representation, we have

0 ot
tr’y“:tr(a# 0 ) =0.

It is useful to prove this result in a more abstract way, which generalizes to
an arbitrary odd number of v matrices:

tryH = tr Sy yH since (7°)? =1
= —trySyHqP since {y#,7°} =0
= —trySyPyH using cyclic property of trace
= —try*.

Since the trace of v* is equal to minus itself, it must vanish. For n y-matrices
we would get n minus signs in the second step (as we move the second ~° all
the way to the right), so the trace must vanish if n is odd.

To evaluate the trace of two -y matrices, we again use the anticommutation
properties and the cyclic property of the trace:

try*y” = tr(2g"” - 1 — 4"y*) (anticommutation)
= 8gH¥ — tryHy” (cyclicity)

Thus try*4¥ = 4g*”. The trace of any even number of v matrices can be
evaluated in the same way: Anticommute the first v matrix all the way to the
right, then cycle it back to the left. Thus for the trace of four v matrices, we
have

tr(y#y"y"7) = tr(20"7" 77 — 4"
= tr(29""7°77 — 729" + 7 129" — 4V yPH).
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Using the cyclic property on the last term and bringing it to the left-hand
side, we find

tr(1#97P77) = ¢ tryPy7 — gty YT + g4ty
= 4(gwgpa — gMPg¥e + gwgt/p)_

In this manner one can always reduce a trace of n y-matrices to a sum of
traces of (n — 2) y-matrices. The case n = 6 is easy to work out, but has
fifteen terms (the number of ways of grouping the six indices in pairs to make
terms of the form g#¥g#?g®#). Fortunately, we will not need it in this book.
(If you ever do need to evaluate such complicated traces, it may be easier to
learn to use one of the several computer programs that can perform symbolic
manipulations on Dirac matrices.)

Starting in Section 5.2, we will often need to evaluate traces involving ~°.
Since 7% = i7%y!y243, the trace of 4° times any odd number of other
matrices is zero. It is also easy to show that the trace of 4° itself is zero:

tr7° = tr(197%9°) = — tr(1%9%7°) = — tr(71%9°7%) = — try°.

The same trick works for tr(y#y*~+®), if we insert two factors of v* for some «
different from both x and v. The first nonvanishing trace involving 7® contains
four other  matrices. In this case the trick still works unless every v matrix
appears, so tr(y#y”y?y°+5) = 0 unless (uvpo) is some permutation of (0123).
From the anticommutation rules it also follows that interchanging any two of
the indices simply changes the sign of the trace, so tr(y**v?y°~%) must be
proportional to e#¥??. The overall constant turns out to be —4i, as you can
easily check by plugging in (uvpo) = (0123).
Here is a summary of the trace theorems, for convenient reference:
tr(l) =4
tr(any odd # of 4’s) =0
(") = 49"
tr(v* %) = 4(g"* 9”7 — g"79"" + g7 9"") (5.5)
tr(%) =0
tr(y7"7%) =0
tr(y*y" 7Py ) = —dietP?
Expressions resulting from use of the last formula can be simplified by means
of the identities
€*Pre g5 = —24
ePite g, = —66H, (5.6)
€PHY € oy = —2(6"56% — 656"))
All of these can be derived by first appealing to symmetry arguments, then
evaluating one special case to.determine the overall constant.
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Another useful identity allows one to reverse the order of all the v matrices
inside a trace:

tr(yHy Py ) = tr( TPy ). (5.7)
To prove this relation, consider the matrix C' = %42 (essentially the charge-
conjugation operator). This matrix satisfies C? = 1 and Cy*C = —(v*)7.

Thus if there are n y-matrices inside the trace,
tr(y#yY ) = tr(Cy*C CY*C ---)
= (=)™t [(")T ()T -]
=tr(---y""),
since the trace vanishes unless n is even. It is easy to show that the reversal
identity (5.7) is also valid when the trace contains one or more factors of v°.

When two « matrices inside a trace are dotted together, it is easiest to
eliminate them before evaluating the trace. For example,

Y = gy = %gw{'Y“ﬂy} =gy’ =4 (5.8)
The following contraction identities, all easy to prove using the anticommu-

tation relations, can be used when other v matrices lie in between:

v

VY =2y
YV AP = 49*° (5.9)
YA APV = =27y
Note the reversal of order in the last identity.

All of the v matrix identities proved in this section are collected for ref-
erence in the Appendix.

Unpolarized Cross Section

We now return to the evaluation of the squared matrix element, Eq. (5.4).
The electron trace is

tr[(# — me)V(F+ me)y”] = 4[p*p” + 0" — ¢ (p-p’ +m?)].

The terms with only one factor of m vanish, since they contain an odd number
of v matrices. Similarly, the muon trace is

tr[(K + mu)vu (K — mu)w) = 4[kuk), + kK, — g (k-K +m2)].

From now on we will set m, = 0, as discussed at the beginning of this section.
Dotting these expressions together and collecting terms, we get the simple
result

130 M) [(p B K) + oK) k) +mi(pp)].  (5.10)

spins
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To obtain a more explicit formula we must specialize to a particular frame
of reference and express the vectors p, o', k, k', and ¢ in terms of the basic kine-
matic variables—energies and angles—in that frame. In practice, the choice
of frame will be dictated by the experimental conditions. In this book, we will
usually make the simplest choice of evaluating cross sections in the center-of-
mass frame. For this choice, the initial and final 4-momenta for e*e™ — ptpu~
can be written as follows:

k:(Eak)
/ K = /B2 —m2
p=(E.E) \9
el T —— k-5 = |k|cos@

pl = (E,—E%)
)kl/:(E', _k)

To compute the squared matrix element we need
¢’ = (p+p)? =4E% p-p' = 2E%
p-k=p -k = E? - E|k|cos¥; p-k' =p'-k = E?+ E|k|cos¥.

We can now rewrite Eq. (5.10) in terms of E and 6:

4 Z M 16E4 [E2( ~ [k|c0s6)® + E3(E + [k| cos 6)* + 2m2 E?|

4 o
[(1 + E—z) (1 - Z—z) cos 0} (5.11)

All that remains is to plug this expression into the cross-section formula
derived in Section 4.5. Since there are only two particles in the final state and
we are working in the center-of-mass frame, we can use the simplified formula
(4.84). For our problem |vs —vg| =2 and E4 = Eg = Fcn /2, so we have

do 1 k| 1 2
dQ  2E2_ 16m2Eq, 4 > M

spins

=%\/1 ng [<1+7£,—z>+(1—2;)cos 0]

Integrating over d?, we find the total cross section:

4ra? m2 1m?
Ototal = 362, 1- B2 <1 + 35 ) (5.13)

(5.12)
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Figure 5.1. Energy dependence of the total cross section for ete™ — putpu™,
compared to “phase space” energy dependence.

In the high-energy limit where E >> m,,, these formulae reduce to those given
in Chapter 1:

do a? 9
i som, 1EE (LTS 0);

4dra? ) 3 rmy\t
Ototal E>>—7)n,t @ < - ‘8‘ (F) —) .

Note that these expressions have the correct dimensions of cross sections.
In the high-energy limit, E.p, is the only dimensionful quantity in the problem,
so dimensional analysis dictates that oya) o< E2. Since we knew from the
beginning that oyota1 x @2, we only had to work to get the factor of 47/3.

The energy dependence of the total cross-section formula (5.13) near
threshold is shown in Fig. 5.1. Of course the cross section is zero for E., <
2my,. It is interesting to compare the shape of the actual curve to the shape
one would obtain if [M|? did not depend on energy, that is, if all the energy
dependence came from the phase-space factor |k|/E. To test Quantum Elec-
trodynamics, an experiment must be able to resolve deviations from the naive
phase-space prediction. Experimental results from pair production of both
w and 7 leptons confirm that these particles behave as QED predicts. Fig-
ure 5.2 compares formula (5.13) to experimental measurements of the 717~
threshold.

Before discussing our result further, let us pause to summarize how we
obtained it. The method extends in a straightforward way to the calculation
of unpolarized cross sections for other QED processes. The general procedure
is as follows:

(5.14)
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Figure 5.2. The ratio o(ete™ — 7777 )/o(ete™ — utu™) of measured
cross sections near the threshold for 777~ pair-production, as measured
by the DELCO collaboration, W. Bacino, et. al., Phys. Rev. Lett. 41, 13
(1978). Only a fraction of 7 decays are included, hence the small overall
scale. The curve shows a fit to the theoretical formula (5.13), with a small
energy-independent background added. The fit yields m, = 1782f‘; MeV.

Draw the diagram(s) for the desired process.
Use the Feynman rules to write down the amplitude M.

Square the amplitude and average or sum over spins, using the complete-
ness relations (5.3). (For processes involving photons in the final state
there is an analogous completeness relation, derived in Section 5.5.)

. Evaluate traces using the trace theorems (5.5); collect terms and simplify

the answer as much as possible.

. Specialize to a particular frame of reference, and draw a picture of the

kinematic variables in that frame. Express all 4-momentum vectors in
terms of a suitably chosen set of variables such as E and 6.

. Plug the resulting expression for |M|? into the cross-section formula

(4.79), and integrate over phase-space variables that are not measured
to obtain a differential cross section in the desired form. (In our case
these integrations were over the constrained momenta k' and |k|, and
were performed in the derivation of Eq. (4.84).)

While other calculations (especially those involving loop diagrams) often re-
quire additional tricks, nearly every QED calculation will involve the basic
procedures outlined here.
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Production of Quark-Antiquark Pairs

The asymptotic energy dependence of the etTe™ — ut ™ cross-section formula
sets the scale for all ete™ annihilation cross sections. A particularly important
example is the cross section for

ete” — hadrons,

that is, the total cross section for production of any number of strongly inter-
acting particles.

In our current understanding of the strong interactions, given by the the-
ory called Quantum Chromodynamics (QCD), all hadrons are composed of
Dirac fermions called quarks. Quarks appear in a variety of types, called fla-
vors, each with its own mass and electric charge. A quark also carries an
additional quantum number, color, which takes one of three values. Color
serves as the “charge” of QCD, as we will discuss in Chapter 17.

According to QCD, the simplest ete™ process that ends in hadrons is

et

e —qq,

the annihilation of an electron and a positron, through a virtual photon, into a

quark-antiquark pair. After they are created, the quarks interact with one an-

other through their strong forces, producing more quark pairs. Eventually the

quarks and antiquarks combine to form some number of mesons and baryons.
To adapt our results for muon production to handle the case of quarks,

we must make three modifications:

1. Replace the muon charge e with the quark charge Qle|.
2. Count each quark three times, one for each color.

3. Include the effects of the strong interactions of the produced quark and
antiquark.

The first two changes are easy to make. For the first, it is simply necessary to
know the masses and charges of each flavor of quark. For u, ¢, and ¢t quarks
we have Q = 2/3, while for d, s, and b quarks we have Q = —1/3. The cross-
section formulae are proportional to the square of the charge of the final-state
particle, so we can simply insert a factor of Q2 into any of these formulae
to obtain the cross section for production of any particular variety of quark.
Counting colors is necessary because experiments measure only the total cross
section for production of all three colors. (The hadrons that are actually de-
tected are colorless.) In any case, this counting is easy: Just multiply the
answer by 3.

If you know a little about the strong interaction, however, you might
think this is all a big joke. Surely the third modification is extremely difficult
to make, and will drastically alter the predictions of QED. The amazing truth
is that in the high-energy limit, the effect of the strong interaction on the
quark production process can be completely neglected. As we will discuss in
Part III, the only effect of the strong interaction (in this limit) is to dress



140 Chapter 5 Elementary Processes of Quantum Electrodynamics

up the final-state quarks into bunches of hadrons. This simplification is due
to a phenomenon called asymptotic freedom; it played a crucial role in the
identification of Quantum Chromodynamics as the correct theory of the strong
force.
Thus in the high-energy limit, we expect the cross section for the reaction
e~ — qq to approach 3 - Q2 - 4wa?/3E?2 . It is conventional to define
4o 86.8 nbarns
1 unit of R = = . 5.15
o 3E2.  (Eom in GeV)2 (5.15)
The value of a cross section in units of R is therefore its ratio to the asymptotic
value of the ete™ — u*p~ cross section predicted by Eq. (5.14). Experimen-
tally, the easiest quantity to measure is the total rate for production of all
hadrons. Asymptotically, we expect
o(ete” — hadrons) — 3- (ZQ?) R, (5.16)
i

Ecm—00

et

where the sum runs over all quarks whose masses are smaller than F,, /2.
When E,/2 is in the vicinity of one of the quark masses, the strong interac-
tions cause large deviations from this formula. The most dramatic such effect
is the appearance of bound states just below E.y = 2mg, manifested as very
sharp spikes in the cross section.

Experimental measurements of the cross section for ete™ annihilation to
hadrons between 2.5 and 40 GeV are shown in Fig. 5.3. The data shows three
distinct regions: a low-energy region in which u, d, and s quark pairs are
produced; a region above the threshold for production of ¢ quark pairs; and
a region also above the threshold for b quark pairs. The prediction (5.16) is
shown as a set of solid lines; it agrees quite well with the data in each region,
as long as the energy is well away from the thresholds where the high-energy
approximation breaks down. The dotted curves show an improved theoretical
prediction, including higher-order corrections from QCD, which we will discuss
in Section 17.2. This explanation of the e*e™ annihilation cross section is a
remarkable success of QCD. In particular, experimental verification of the
factor of 3 in (5.16) is one piece of evidence for the existence of color.

The angular dependence of the differential cross section is also observed
experimentally.* At high energy the hadrons appear in jets, clusters of several
hadrons all moving in approximately the same direction. In most cases there
are two jets, with back-to-back momenta, and these indeed have the angular
dependence (1 + cos? §).

*The basic features of hadron production in high-energy e*e™ annihilation are
reviewed by P. Duinker, Rev. Mod. Phys. 54, 325 (1982).
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Figure 5.3. Experimental measurements of the total cross section for the
reaction ete™ — hadrons, from the data compilation of M. Swartz, Phys.
Rev. D53, 5268 (1996). Complete references to the various experiments are
given there. The measurements are compared to theoretical predictions from
Quantum Chromodynamics, as explained in the text. The solid line is the
simple prediction (5.16).

5.2 ete~ — ptpu~: Helicity Structure

The unpolarized cross section for a reaction is generally easy to calculate
(and to measure) but hard to understand. Where does the (1 + cos? §) angu-
lar dependence come from? We can answer this question by computing the
ete™ — ptu~ cross section for each set of spin orientations separately.

First we must choose a basis of polarization states. To get a simple answer
in the high-energy limit, the best choice is to quantize each spin along the
direction of the particle’s motion, that is, to use states of definite helicity.
Recall that in the massless limit, the left- and right-handed helicity states
of a Dirac particle live in different representations of the Lorentz group. We
might therefore expect them to behave independently, and in fact they do.

In this section we will compute the polarized ete™ — ptu™ cross sections,
using the helicity basis, in two different ways: first, by using trace technology
but with the addition of helicity projection operators to project out the desired
left- or right-handed spinors; and second, by plugging explicit expressions for
these spinors directly into our formula for the amplitude M. Throughout this
section we work in the high-energy limit where all fermions are effectively
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massless. (The calculation can be done for lower energy, but it is much more
difficult and no more instructive.)f
Our starting point for both methods of calculating the polarized cross
section is the amplitude
. _ _ ie? /_ _
iM(e @) () = u™ (Bt () = 2 (307 u(@)) (30 (k) - (5.1)
We would like to use the spin sum identities to write the squared amplitude

in terms of traces as before, even though we now want to consider only one
set of polarizations at a time. To do this, we note that for massless fermions,

the matrices
1++9° (0 0 1-4° (10
> "(0 1>’ AU (5:.17)

are projection operators onto right- and left-handed spinors, respectively. Thus
if in (5.1) we make the replacement

5

1

)]
the amplitude for a right-handed electron is unchanged while that for a left-
handed electron becomes zero. Note that since

5 5

@ (D Yup) =t 0) (FEL )rute), (1)
this same replacement imposes the requirement that v(p’) also be a right-
handed spinor. Recall from Section 3.5, however, that the right-handed spinor
v(p’) corresponds to a left-handed positron. Thus we see that the annihilation
amplitude vanishes when both the electron and the positron are right-handed.
In general, the amplitude vanishes (in the massless limit) unless the electron
and positron have opposite helicity, or equivalently, unless their spinors have
the same helicity.

Having inserted this projection operator, we are now free to sum over the
electron and positron spins in the squared amplitude; of the four terms in the
sum, only one (the one we want) is nonzero. The electron half of |M|?, for a
right-handed electron and a left-handed positron, is then

) ‘Wﬂ)v“(#)%p)r =y f)(p’)“r“(l?S)U(p) ﬁ(p)v”(—l+2—75)v(p')

o(p" )y u(p) — T)(p’)v“(

spins spins
-l () ()
-l ()]

tThe general formalism for S-matrix elements between states of definite helicity is
presented in a beautiful paper of M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959).
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_ 2(p'”p” +p/upu _ g‘“’p~p’ _ Zeauﬁup;pﬁ) (5‘19)

The indices in this expression are to be dotted into those of the muon half
of the squared amplitude. For a right-handed p~ and a left-handed u™, an
identical calculation yields

5 2
Z’a(km(li;l)v(k')] = 2(ky k), + kK, — gk K —i€puon k7). (5.20)

spins
Dotting (5.19) into (5.20), we find that the squared matrix element for epe} —
prAE in the center-of-mass frame is

4et 1o
MP = 5 [20- K)o K) + 20 K) 0 ) = € i lupgh? k|

- SR K+ (p-k'xp'-k)—(p-k)(p'~k’)+(pk’)(p’-k)]
166 ,

— T H) )

=e4(1+c059) ) (5.21)

Plugging this result into (4.85) gives the differential cross section,

do a?
dQ(eReL BRHT) = Vo (1+ cos)®. (5.22)

There is no need to repeat the entire calculation to obtain the other
three nonvanishing helicity amplitudes. For example, the squared amplitude
for ezef — pzpf is identical to (5.20) but with 4 replaced by —® on the
left-hand side, and thus €,,,, replaced by —e€,.,, on the right-hand side.
Propagating this sign though (5.21), we easily see that

do, _ a?
d—Q(eReL pLpug) = 15 (1 — cosf)?. (5.23)
Similarly,

do , _ . - a? 2

a0 (epek = pgui) = 4E2 (1—cosf);

o agm , (5.24)
Tq €€k = nriR) = o (L+cost)”.

cm

(These two results actually follow from the previous two by parity invariance.)
The other twelve helicity cross sections (for instance, e; e}, — puz pu}) are zero,
as we saw from Eq. (5.18). Adding up all sixteen contributions, and dividing
by 4 to average over the electron and positron spins, we recover the unpolarized
cross section in the massless limit, Eq. (5.14).
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0

Figure 5.4. Conservation of angular momentum requires that if the z2-
component of angular momentum is measured, it must have the same value
as initially. :
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Note that the cross section (5.22) for ezef — pxu7 vanishes at § = 180°.
This is just what we would expect, since for § = 180°, the total angular mo-
mentum of the final state is opposite to that of the initial state (see Figure 5.4).

This completes our first calculation of the polarized ete™ — p*pu~ cross
sections. We will now redo the calculation in a manner that is more straight-
forward, more enlightening, and no more difficult. We will calculate the am-
plitude M (rather than the squared amplitude) directly, using explicit values
for the spinors and v matrices. This method does have its drawbacks: It forces
us to specialize to a particular frame of reference much sooner, so manifest
Lorentz invariance is lost. More pragmatically, it is very cumbersome except
in the nonrelativistic and ultra-relativistic limits.

Consider again the amplitude

M= 5 (56 #ulp)) (o) (525)

In the high-energy limit, our general expressions for Dirac spinors become

utp = (V220 o vaB(3 07,

VP 5E 3(1+p o) (5.26)
\/—p-ae) F( %(1—13--0)5) '
v(p) = _ — V2F R .
0= (_Vpeae) =V (L g
A right-handed spinor satisfies (p - 0)§ = +§, while a left-handed spinor has
(p-o)¢ = —£. (Remember once again that for antiparticles, the handedness of

the spinor is the opposite of the handedness of the particle.) We must evaluate
expressions of the form vy*u, so we need

N R B B
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Thus we see explicitly that the amplitude is zero when one of the spinors is
left-handed and the other is right-handed. In the language of Chapter 1, the
Clebsch-Gordan coefficients that couple the vector photon to the product of
such spinors are zero; those coefficients are just the off-block-diagonal elements
of the matrix yy* (in the chiral representation).

Let us choose p and p’ to be in the *z-directions, and first consider the
case where the electron is right-handed and the positron is left-handed:

x

Thus for the electron we have ¢ = (j), corresponding to spin up in the z-
direction, while for the positron we have £ = ((1)), also corresponding to (phys-

ical) spin up in the z-directon. Both particles have (p-0)€ = +&, so the spinors
are

0
u(p) = V2E ; v(p') = V2E 8 . (5.28)

-1

oOrRr OO

The electron half of the matrix element is therefore

1

o(p" )y u(p) = 2E (0, —1)o* (0

) = —-2E(0,1,4,0). (5.29)
We can interpret this expression by saying that the virtual photon has circular
polarization in the +z-direction; its polarization vector is e, = (1/v/2)(&+1i7).

Next we must calculate the muon half of the matrix element. Let the p~
be emitted at an angle 8 to the z-axis, and consider first the case where it is
right-handed (and the p* is therefore left-handed):

o
E L
R

To calculate @(k)y*v(k") we could go back to expressions (5.26), but then it
would be necessary to find the correct spinors £ corresponding to polarization
along the muon momentum. It is much easier to use a trick: Since any expres-
sion of the form y*1 transforms like a 4-vector, we can just rotate the result
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(5.29). Rotating that vector by an angle 6 in the zz-plane, we find
a(k)y'v(k) = [o(k )7 u(k)]
= [-2E (0,cos 6,4, —sinf)]" (5.30)

= —2E (0,cos8, —i,—sinb).

*

This vector can also be interpreted as the polarization of the virtual pho-
ton; when it has a nonzero overlap with (5.29), we get a nonzero amplitude.
Plugging (5.29) and (5.30) into (5.25), we see that the amplitude is

2
Mlepef — upui) = 2—2(2E)2(—c030 —1) = —€2(1 + cos¥), (5.31)

in agreement with (1.6), and also with (5.21). The differential cross section for
this set of helicities can now be obtained in the same way as above, yielding
(5.22).

We can calculate the other three nonvanishing helicity amplitudes in an
analogous manner. For a left-handed electron and a right-handed positron, we
easily find

o(p' )y u(p) = —2E (0,1, —i,0) = —2E - V2 €.

Perform a rotation to get the vector corresponding to a left-handed =~ and a
right-handed u™:

u(k)y*v(k') = —2E (0,cos8,i, —sin ).
Putting the pieces together in various ways yields the remaining amplitudes,
M(eged — ppuk) = —€e*(1 + cosb);

_ (5.32)
M(egef — ppph) = M(efet — pgpui) = —€*(1 — cosb).

5.3 ete~ — putp~: Nonrelativistic Limit

Now let us go to the other end of the energy spectrum, and discuss the re-
action ete™ — putTu~ in the extreme nonrelativistic limit. When E is barely
larger than m,, our previous result (5.12) for the unpolarized differential cross

section becomes
2 m2 2 k
do o Jy T a k| (5.33)
dQ |x|—-o0 2E2, E2 2E? E

We can recover this result, and also learn something about the spin de-
pendence of the reaction, by evaluating the amplitude with explicit spinors.
Once again we begin with the matrix element

M= 5 (56 ulp)) (o)
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Figure 5.5. In the nonrelativistic limit the total spin of the system is con-
served, and thus the muons are produced with both spins up along the z-axis.

The electron and positron are still very relativistic, so this expression will be
simplest if we choose them to have definite helicity. Let the electron be right-
handed, moving in the +z-direction, and the positron be left-handed, moving
in the —z-direction. Then from Eq. (5.29) we have

o(p" )y u(p) = —2E (0, 1,1,0). (5.34)

In the other half of the matrix element we should use the nonrelativistic
expressions

4
u(k) = m@ o(k) = m( £ 8). (5.35)
Keep in mind, in the discussion of this section, that the spinor &’ gives the
flipped spin of the antiparticle. Leaving the muon spinors £ and £’ undeter-
mined for now, we can easily compute

a(k)y*u(k') = m(¢',€h) (aoﬂ 00“) (i'>
_ { 0 for p =0,

—2métate’ for p=1i. (5.36)

To evaluate M, we simply dot (5.34) into (5.36) and multiply by e%/¢%? =
e?/4m?. The result is

Memet — ptpm) = —2e2¢t (8 (1)) ¢ (5.37)

Since there is no angular dependence in this expression, the muons are equally
likely to come out in any direction. More precisely, they are emitted in an
s-wave; their orbital angular momentum is zero. Angular momentum conser-
vation therefore requires that the total spin of the final state equal 1, and
indeed the matrix product gives zero unless both the muon and the antimuon
have spin up along the z-axis (see Fig. 5.5).
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To find the total rate for this process, we sum over muon spins to obtain
M? = 4e*, which yields the cross section

do , _ _ o? K|
E(eReZ —ptpT)= 2 B (5.38)

The same expression holds for a left-handed electron and a right-handed
positron. Thus the spin-averaged cross section is just 2 - (1/4) times this ex-
pression, in agreement with (5.33).

Bound States

Until now we have considered the initial and final states of scattering processes
to be states of isolated single particles. Very close to threshold, however, the
Coulomb attraction of the muons should become an important effect. Just
below threshold, we can still form g+ p™ pairs in electromagnetic bound states.

The treatment of bound states in quantum field theory is a rich and
complex subject, but one that lies mainly beyond the scope of this book.}
Fortunately, many of the familiar bound systems in Nature can be treated (at
least to a good first approximation) as nonrelativistic systems, in which the
internal motions are slow. The process of creating the constituent particles out
of the vacuum is still a relativistic effect, requiring quantum field theory for its
proper description. In this section we will develop a formalism for computing
the amplitudes for creation and annihilation of two-particle, nonrelativistic
bound states. We begin with a computation of the cross section for producing
a utu~ bound state in eTe™ annihilation.

Consider first the case where the spins of the electron and positron both
point up along the 2-axis. From the preceding discussion we know that the
resulting muons both have spin up, so the only type of bound state we can
produce will have total spin 1, also pointing up. The amplitude for producing
free muons in this configuration is

M=k T, ko T) = —2¢%, (5.39)

independent of the momenta (which we now call k; and k) of the muons.

Next we need to know how to write a bound state in terms of free-particle
states. For a general two-body system with equal constituent masses, the
center-of-mass and relative coordinates are

R = i(r1 +r2), r=ry—rs. (5.40)
These have conjugate momenta
K =k; + ko, k= %(kl —kg). (541)

The total momentum K is zero in the center-of-mass frame. If we know the
force between the particles (for p*tp™, it is just the Coulomb force), we can

tReviews of this subject can be found in Bodwin, Yennie, and Gregorio, Rev.
Mod. Phys. 57, 723 (1985), and in Sapirstein and Yennie, in Kinoshita (1990).



5.3 ete™ — ptp: Nonrelativistic Limit 149

solve the nonrelativistic Schrodinger equation to find the Schrédinger wave-
function, ¢(r). The bound state is just a linear superposition of free states
of definite r or k, weighted by this wavefunction. For our purposes it is more
convenient to build this superposition in momentum space, using the Fourier
transform of ¥(r):

P(k) = / d*z e Ty (r); Lk lo)[> =1 (5.42)
‘ ’ (2m)3 '

If 9(r) is normalized conventionally, ¥ (k) gives the amplitude for finding a

particular value of k. An explicit expression for a bound state with mass

M = 2m, momentum K = 0, and spin 1 oriented up is then

3k ~ 1 1
B)= VAN [ Gl = kT kD). (549)
The factors of (1/4/2m) convert our relativistically normalized free-particle
states so that their integral with J(k) is a state of norm 1. (The factors
should involve {/2Ey, but for a nonrelativistic bound state, |k| < m.) The
outside factor of v/2M converts back to the relativistic normalization assumed
by our formula for cross sections. These normalization factors could easily be
modified to describe a bound state with nonzero total momentum K.
Given this expression for the bound state, we can immediately write down
the amplitude for its production:

L 1
V2m V2m

Since the free-state amplitude from (5.39) is independent of the momenta of
the muons, the integral over k gives 1*(0), the position-space wavefunction
evaluated at the origin. It is quite natural that the amplitude for creation of
a two-particle state from a pointlike virtual photon should be proportional to
the value of the wavefunction at zero separation. Assembling the pieces, we
find that the amplitude is simply

Bk ~,
M(11— B) = \/m“/(%)3 v*(k M@ — k1, -k1). (5.44)

M(11— B) =\ 2 (269" (0). (5.45)

In a moment we will compute the cross section from this amplitude. First,

however, let us generalize this discussion to treat bound states with more

general spin configurations. The analysis leading up to (5.37) will cast any S-

matrix element for the production of nonrelativistic fermions with momenta
k and —k into the form of a spin matrix element

iM(something — k, k') = ¢'[T'(k)]¢, (5.46)

where I'(k) is some 2 X 2 matrix. We now must replace the spinors with a nor-
malized spin wavefunction for the bound state. In the example just completed,



150 Chapter 5 Elementary Processes of Quantum Electrodynamics

we replaced

0 00
et -
13 (1>(1 0) (1 O)' (5.47)
More generally, a spin-1 state is obtained by the replacement
1
et . —_n*.o, 5.48
et - (5.48)

where n is a unit vector. Choosing n = (Z + §)/v/2 gives back (5.47), while
the choices n = (% — i9)/Vv/2 and n = 2 give the other two spin-1 states
1l and (T} + [1)/v2. (The relative minus sign in (5.48) for this last case
comes from the rule (3.135) for the flipped spin.) Similarly, the spin-zero
state (1| — |1)/+/2 is given by the replacement

1
ik (5.49)

involving the 2 x 2 unit matrix. With these rules, we can convert an S-matrix
element of the form (5.46) quite generally into an S-matrix element for pro-
duction of a bound state at rest:

iM(something — B) \/- / LI (% i), (5.0

where the trace is taken over 2-component spinor indices. For a spin-0 bound
state, replace n - o by the unit matrix.

get —

Vector Meson Production and Decay

Equation (5.45) can be straightforwardly converted into a cross section for
production of u*u~ bound states in ete~ annihilation. To make it easier to
extract all the physics in this equation, let us introduce polarization vectors
for the initial and final spin configurations: €, = (Z+17)/v/2, from Eq. (5.29),
and n, from Eq. (5.48). Then (5.45) can be rewritten in a more invariant form
as

2
M(ezef — B) = ”M (—2€?) (n* - €4) ¥*(0). (5.51)
The bound state spin polarization n is projected parallel to €. Note that if

the electrons are initially unpolarized, the cross section for production of B
will involve the polarization average

1
%(ln* ce4*+In*-e_?) = 1 (In®? + [n¥|?). (5.52)

Thus, the bound states produced will still be preferentially polarized along
the eTe™ collision axis.
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Assuming an unpolarized electron beam, and summing (5.52) over the
three possible directions of n, we find the following expression for the total
cross section for production of the bound state:

11 1 PK 1 4 1
(4) 4\ L 2
33mam | @npamg o) 0 e =K M( )0
(5.53)
Notice that the 1-body phase space integral can remove only three of the

four delta functions. It is conventional to rewrite the last delta function using
§(P° — K% = 2K°§(P? — K?). Then

olete” —» B) =

o(ete”™ — B) = 64#3052%5(Egm — M?). (5.54)

The last delta function enforces the constraint that the total center-of-mass
energy must equal the bound-state mass; thus, the bound state is produced
as a resonance in eTe~ annihilation. If the bound state has a finite lifetime,
this delta function will be broadened into a resonance peak. In practice, the
intrinsic spread of the ete™ beam energy is often a more important broad-
ening mechanism. In either case, (5.54) correctly predicts the area under the
resonance peak.

If the bound state B can be produced from ete™, it can also annihilate
back to ete™, or to any other sufficiently light lepton pair. According to (4.86),
the total width for this decay mode is given by

I'(B — ete™) = ﬁ/dﬂ2 IMP2, (5.55)

where M is just the complex conjugate of the matrix element (5.51) we used
to compute B production. Thus

1d 0
= o1 (20 S WP (n P+l eP). (556)

This formula is summed over the possible final electron polarization states.
It is easiest to evaluate by averaging over the three possible values of n. We
thus obtain

16ma? [(0)[?
['(B—ete )= .
( - ) 3 M2
The formula for the decay width of B is very similar to that for the production
cross section, and this is no surprise: Both calculations involve the square of
the same matrix element, summed over initial and final polarizations. The two
calculations differed only in how we formed the polarization averages, and in

the phase-space factors. By this logic, the relation we have found between the
two quantities, '

(5.57)

A2 (B —ete™)

o(ete” — B) = i

-8(E2, — M?), (5.58)
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is very general and completely independent of the details of the matrix element
computation. The factor 3 in (5.58) came from the orientation average for n;
for a spin-J bound state, this factor would be (2J + 1).

The most famous application of this formalism is to bound states not of
muons but of quarks: quarkonium. We saw the experimental evidence for qq
bound states (the J/v and T, for example) in Fig. 5.3. (The resonance peaks
are much too high and too narrow to show in the figure, but their sizes have
been carefully measured.) Equations (5.54) and (5.57) must be multiplied
by a color factor of 3 to give the production cross section and decay width
for a spin-1 gg bound state. The value ¥(0) of the ¢g wavefunction at the
origin cannot be computed from first principles, but can be estimated from
a nonrelativistic model of the ¢g spectrum with a phenomenologically chosen
potential. Alternatively, we can use the formula

2
I'(B(qq) — ete™) = 16wa2Q2% (5.59)
to measure 1(0) for a ¢qg bound state. For example, the 15 spin-1 state of s3,
the ¢ meson, has an e*e™ partial width of 1.4 keV and a mass of 1.02 GeV.
From this we can infer |1(0)|2 = (1.2 fm) 3. This result is physically reason-
able, since hadronic dimensions are typically ~1 fm.

Our viewpoint in this section has been quite different from that of earlier
sections: Instead of computing everything from first principles, we have pieced
together an approximate formula using a bit of quantum field theory and a bit
of nonrelativistic quantum mechanics. In principle, however, we could treat
bound states entirely in the relativistic formalism. Consider the annihilation
of an e*e™ pair to form a ™~ bound state, which subsequently decays back
into ete™. In our present formalism we might represent this process by the
diagram

e et

The net process is simply ete™ — ete™ (Bhabha scattering). What would
happen if we tried to compute the Bhabha scattering cross section directly in
QED perturbation theory? Obviously there is no u™p~ contribution in the
tree-level diagrams:
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As we go to higher orders in the perturbation series, however, we find (among
others) the following set of diagrams:

At most values of E,,, these diagrams give only a small correction to the
tree-level expression. But when E., is near the utpu~ threshold, the dia-
grams involving the exchange of photons within the muon loop contain the
Coulomb interaction between the muons, and therefore become quite large.
One must sum over all such diagrams, and it can be shown that this sum-
mation is equivalent to solving the nonrelativistic Schrédinger equation.* The
final prediction is that the cross section contains a resonance peak, whose area
is given by (5.54) and whose width is given by (5.57).

5.4 Crossing Symmetry

Electron-Muon Scattering

Now that we have completed our discussion of the process ete™ — putpu~,
let us consider a different but closely related QED process: electron-muon
scattering, or e"u~ — e~ pu~. The lowest-order Feynman diagram is just the
previous one turned on its side:

Py Ph ie? .,
=2 WPy ulpr) (pa)vuu(pa).
P1 q P2
e o
The relation between the processes ete™ — putu~ and e"u~ — e~ u~ be-

comes clear when we compute the squared amplitude, averaged and summed
over spins:

4
12 MP = a0 ma)y G+ me] ] ma) et m]
spins

This is exactly the same as our result (5.4) for ete™ — ptpu™, with the
replacements

p—p, P ——pi, k — ph, k' — —po. (5.60)

*This analysis is carried out in Berestetskii, Lifshitz, and Pitaevskii (1982).
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So instead of evaluating the traces from scratch, we can just make the same
replacements in our previous result, Eq. (5.10). Setting m. = 0, we find

1 Z IM|? = [(p: -ph) (P} - p2) + (p1-p2) (P} - Ph) — ML (p1 ~p’1)]- (5.61)
spins

To evaluate this expression, we must work out the kinematics, which will
be completely different. Working in the center-of-mass frame, we make the
following assignments:

pr = (k.k) 4 -
2 _ 1.2 2
o = (k, k5) Ec=k +m,,

\0
— . _\/__ ~—
e 7N . k-2=kcos@

p2 = (E, —k2)
E+k=FE.
M-Aﬂ —k) 7

The combinations we need are
prp2=py Py =k(E+k);  py-p2=pi-py=k(E+kcosb);
p1-p} = k*(1 — cos §); ¢* = —2p1 -py = —2k*(1 — cosb).

Our expression for the squared matrix element now becomes

1 Z IM|? = %((E+k)2+(E+k0039)2—mi(1—C080)). (5.62)

spins

To find the cross section from this expression, we use Eq. (4.84), which in
the case where one particle is massless takes the simple form

do |M|?
— =— . 5.63
(dQ)CM 6472(E + k)2 (5:63)
Thus we have our result for unpolarized electron-muon scattering in the
center-of-mass frame:
do a?

Q- 2k2(E+k)?(1—cos 6)?

where k = VE? — mi. In the high-energy limit where we can set m, = 0, the
differential cross section becomes

((E+k)2+(E+k cos )2 —m? (1—cos 9)) , (5.64)

do a?
= = 0)?). 5.65
dQ  2E2 (1 — cosf)? (4+(1+COS ) ) (5.65)

Note the singular behavior
do

1
o — - .66
7 & 7 as 0 — 0 (5.66)
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of formulae (5.64) and (5.65). This singularity is the same as in the Rutherford
formula (Problem 4.4). Such behavior is always present in Coulomb scattering;
it arises from the nearly on-shell (that is, ¢* ~ 0) virtual photon.

Crossing Symmetry

The trick we made use of here, namely the relation between the two processes
ete™ — ptp~ and e~ pu~ — e~ u, is our first example of a type of relation
known as crossing symmetry. In general, the S-matrix for any process involv-
ing a particle with momentum p in the initial state is equal to the S-matrix for

an otherwise identical process but with an antiparticle of momentum k = —p
-in the final state. That is,
M(@p) +-o- =) = M(-- = -+ 6(k)), (5.67)

where ¢ is the antiparticle of ¢ and k = —p. (Note that there is no value of p for
which p and k are both physically allowed, since the particle must have p° > 0
and the antiparticle must have k° > 0. So technically, we should say that either
amplitude can be obtained from the other by analytic continuation.)

Relation (5.67) follows directly from the Feynman rules. The diagrams
that contribute to the two amplitudes fall into a natural one-to-one correspon-
dence, where corresponding diagrams differ only by changing the incoming ¢
into the outgoing ¢. A typical pair of diagrams looks like this:

In the first diagram, the momenta ¢; coming into the vertex from the rest of
the diagram must add up to —p, while in the second diagram they must add
up to k. Thus the two diagrams are equal, except for any possible difference in
the external leg factors, if p = —k. If ¢ is a spin-zero boson, there is no external
leg factor, so the identity is proved. If ¢ is a fermion, the analysis becomes
more subtle, since the relation depends on the relative phase convention for
the external spinors u and v. If we simply replace p by —k in the fermion
polarization sum, we find

D u@)up) =g+m=—(K-m)=- v(k)o(k). (5.68)

The minus sign can be compensated by changing our phase convention for
v(k). In practice, it is easiest to cancel by hand one minus sign for each
crossed fermion. With appropriate conventions for the spinors u(p) and v(k),
it is possible to prove the identity (5.67) without spin-averaging.
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Mandelstam Variables

It is often useful to express scattering amplitudes in terms of variables that
make it easy to apply crossing relations. For 2-body — 2-body processes, this
can be done as follows. Label the four external momenta as

We now define three new quantities, the Mandelstam variables:

s=p+p)=k+kK)>
t=(k—p?=k-p)% (5.69)
u= (k' —p)* = (k—p)>%

The definitions of ¢t and u appear to be interchangeable (by renaming k& — k');
it is conventional to define ¢ as the squared difference of the initial and final
momenta of the most similar particles. For any process, s is the square of the
total initial 4-momentum. Note that if we had defined all four momenta to be
ingoing, all signs in these definitions would be +.

To illustrate the use of the Mandelstam variables, let us first consider
the squared amplitude for ete~™ — utpu~, working in the massless limit for
simplicity. In this limit we have t = —2p-k = —2p' -k’ and u = —2p - k' =
—2p’ - k, while of course s = (p + p')? = ¢>. Referring to our previous result
(5.10), we find

X me=TE G e
et

To convert to the process e”u~ — e~ p~, we turn the diagram on its side
and make use of the crossing relations, which become quite simple in terms
of Mandelstam variables. For example, the crossing relations tell us to change
the sign of p’, the positron momentum, and reinterpret it as the momentum
of the outgoing electron. Therefore s = (p + p’)? becomes what we would
now call ¢, the difference of the outgoing and incoming electron momenta.
Similarly, ¢ becomes s, while u remains unchanged. Thus for e p~ — e pu™,
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we can immediately write down

e 1%

iS5+ 6] e

e 1%

You can easily check that this agrees with (5.61) in the massless limit. Note
that while (5.70) and (5.71) look quite similar, they are physically very dif-
ferent: The denominator of the first is just s> = E2, but that of the second
involves ¢, which depends on angles and goes to zero as § — 0.

When a 2-body — 2-body diagram contains only one virtual particle, it
is conventional to describe that particle as being in a certain “channel”. The
channel can be read from the form of the Feynman diagram, and each channel
leads to a characteristic angular dependence of the cross section:

s-channel: o

<
R

u-channel:

In many cases, a single process will receive contributions from more than
one channel; these must be added coherently. For example, the amplitude for
Bhabha scattering, ete”™ — ete™, is the sum of s- and t-channel diagrams;
Myller scattering, e"e~ — e~ e, involves t- and u-channel diagrams.

To get a better feel for s, t, and u, let us evaluate them explicitly in the
center-of-mass frame for particles all of mass m. The kinematics is as usual:
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Thus the Mandelstam variables are

s=(p+p)" = (2B)* = EZy;

t = (k —p)? = —p?sin®§ — p?(cos§ — 1)2 = —2p*(1 — cosb); (5.72)
u= (k' —p)? = —p?sin? 6 — p*(cos§ + 1)2 = —2p*(1 + cosb).

Thus we see that t — 0 as # — 0, while u — 0 as § — 7. (When the masses
are not all equal, the limiting values of ¢t and u will shift slightly.)

Note from (5.72) that when all four particles have mass m, the sum of
the Mandelstam variables is s + t + u = 4E? — 4p? = 4m?. This is a special
case of a more general relation, which is often quite useful:

4
s+t+u:me, (5.73)

i=1

where the sum runs over the four external particles. This identity is easy
to prove by adding up the terms on the right-hand side of Egs. (5.69), and
applying momentum conservation in the form (p +p' — k — k')2 = 0.

5.5 Compton Scattering

We now move on to consider a somewhat different QED process: Compton
scattering, or e~y — e~ 7. We will calculate the unpolarized cross section
for this reaction, to lowest order in a. The calculation will employ all the
machinery we have developed so far, including the Mandelstam variables of
the previous section. We will also develop some new technology for dealing
with external photons.

This is our first example of a calculation involving two diagrams:

As usual, the Feynman rules tell us exactly how to write down an expression
for M. Note that since the fermion portions of the two diagrams are identical,
there is no relative minus sign between the two terms. Using €, (k) and €}, (k")
to denote the polarization vectors of the initial and final photons, we have

M = 0y (e ) () L (e e (o)
i(F— ¥ +m)

+ a(p’)(—iev“)eu(k)m

(—iev")e, (K )u(p)
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— —icen (K)e, (k) a(p) [z;(ﬁ?j e 7(;(’_/ —]f)j b )

We can make a few simplifications before squaring this expression. Since
p? = m? and k2 = 0, the denominators of the propagators are

(p+k)>-m?>=2p-k and (p—Kk)?>-—m?=-2p-k.
To simplify the numerators, we use a bit of Dirac algebra:
(4 m)yu(p) = (20" — ¥+ 7 m)u(p)
= 2p"u(p) — 7" (¥ — m)u(p)
= 2p"u(p).
Using this trick on the numerator of each propagator, we obtain

o o[ | Y E A 2y
iM = —ie’e, (K )e, (k) u(p') ok o

u(p). (5.74)

Photon Polarization Sums

The next step in the calculation will be to square this expression for M
and sum (or average) over electron and photon polarization states. The sum
over electron polarizations can be performed as before, using the identity
Yu(p)a(p) = ¢+ m. Fortunately, there is a similar trick for summing over
photon polarization vectors. The correct prescription is to make the replace-
ment

Z €60 — —Guv- (5.75)

polarizations

The arrow indicates that this is not an actual equality. Nevertheless, the re-
placement is valid as long as both sides are dotted into the rest of the expres-
sion for a QED amplitude M.

To derive this formula, let us consider an arbitrary QED process involving
an external photon with momentum k:

= iM(k) = iM" (k)€ (k). (5.76)

Since the amplitude always contains €},(k), we have extracted this factor and
defined M* (k) to be the rest of the amplitude M. The cross section will be
proportional to

€

ERIMAE) = ehe, ME(R)M* (k).



160 Chapter 5 Elementary Processes of Quantum Electrodynamics

For simplicity, we orient k in the 3-direction: k# = (k,0,0,k). Then the two
transverse polarization vectors, over which we are summing, can be chosen to
be

6‘llt = (07 17070); 65 = (0,0, 1,0)

With these conventions, we have

Z|e KM E)|? = (M) + [ ME(R)|% (5.77)

Now recall from Chapter 4 that external photons are created by the in-
teraction term [ d*zej*A,, where j* = iy is the Dirac vector current.
Therefore we expect M*(k) to be given by a matrix element of the Heisen-
berg field j#:

Mo(k) = / d'z e (] () |i), (5.78)

where the initial and final states include all particles except the photon in
question.

From the classical equations of motion, we know that the current j* is
conserved: 0,,j*(x) = 0. Provided that this property still holds in the quantum
theory, we can dot k, into (5.78) to obtain

k, M (k) = 0. (5.79)

The amplitude M vanishes when the polarization vector €,(k) is replaced
by k,. This famous relation is known as the Ward identity. It is essentially
a statement of current conservation, which is a consequence of the gauge
symmetry (4.6) of QED. We will give a formal proof of the Ward identity in
Section 7.4, and discuss a number of subtle points skimmed over in this quick
“derivation”.

It is useful to check explicitly that the Compton amplitude given in (5.74)
obeys the Ward identity. To do this, replace €, (k) by k, or €},(k") by k,, and
manipulate the Dirac matrix products. In either case (after a bit of algebra)
the terms from the two diagrams cancel each other to give zero.

Returning to our derivation of the polarization sum formula (5.75), w
note that for k* = (k,0,0, k), the Ward identity takes the form

EMO(k) — kM3(k) = 0. (5.80)
Thus M% = M3, and we have
Y e MP(R)MY* (k) = |MP + | MP)2
5 = M MO M A
= — g MP(k)M?* (k).

That is, we may sum over external photon polarizations by replacing Y €,€v
with —g,..
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Note that this proves (pending our general proof of the Ward identity)
that the unphysical timelike and longitudinal photons can be consistently
omitted from QED calculations, since in any event the squared amplitudes
for producing these states cancel to give zero total probability. The negative
norm of the timelike photon state, a property that troubled us in the discussion
after Eq. (4.132), plays an essential role in this cancellation.

The Klein-Nishina Formula

The rest of the computation of the Compton scattering cross section is
straightforward, although it helps to be somewhat organized. We want to
average the squared amplitude over the initial electron and photon polariza-
tions, and sum over the final electron and photon polarizations. Starting with
expression (5.74) for M, we find

LS up et [V 2 7"%’7"—27”;0"]
— = — Vo * t

spins

VH 2T | AP E =2 pP
e’ I IT 111 v

where I, II, ITI, and IV are complicated traces. Note that IV is the same
as I if we replace k with —k’. Also, since we can reverse the order of the ~y
matrices inside a trace (Eq. (5.7)), we see that IT = ITI. Thus we must work
only to compute I and II.

The first of the traces is

I=tr[(# +m)(Y" Iy + 29"p")(F + m) (v bvu + 27up0)] -

There are 16 terms inside the trace, but half contain an odd number of vy
matrices and therefore vanish. We must now evaluate the other eight terms,
one at a time. For example,

te [y Ky ) = tr((—20) K(—20) K]
= tr[4p'K(2p-k — Kp)]
=8p-k tr[p' K]
=32(p-k)(p' - k).

By similar use of the contraction identities (5.8) and (5.9), and other Dirac
algebra such as gy = p? = m?, each term in I can be reduced to a trace of no
more than two v matrices. When the smoke clears, we find

I=16(4m* — 2m?p-p’ + 4m?p-k — 2m?p’ -k + 2(p-k)(p' - k)). (5.82)
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Although it is not obvious, this expression can be simplified further. To
see how, introduce the Mandelstam variables:

s=(p+k)?=2pk+m?=2p-k +m?
t=p —p)?®=—-2p-p +2m® = —2k-k; (5.83)

u=(k'—p)?=—2k"-p+m?=—-2k-p' + m>.

Recall from (5.73) that momentum conservation implies s+t+u = 2m?. Writ-
ing everything in terms of s, t, and u, and using this identity, we eventually
obtain

I=16(2m* + m?(s —m?) — 3(s — m?)(u — m?)). (5.84)
Sending k — —k’, we can immediately write
IV = 16(2m* + m?(u — m?) — 1(s — m?)(u — m?)). (5.85)

Evaluating the traces in the numerators IT and III requires about the same
amount of work as we have just done. The answer is

IT = IIT = —8(4m* + m?(s — m?) + m*(u — m?)). (5.86)

Putting together the pieces of the squared matrix element (5.81), and rewriting
s and u in terms of p- k and p - k/, we finally obtain

1 o o4lpk Pk . .01 1 o1 12
7> M2 =2 [pfk+p.k,+2m (ﬂ‘p.k')m (;)-_k_ﬁ) . (5.87)

spins

To turn this expression into a cross section we must decide on a frame of
reference and draw a picture of the kinematics. Compton scattering is most
often analyzed in the “lab” frame, in which the electron is initially at rest:

k' = (',w'sin8,0,w cosf)

Before: After: J\H\,\/\_'
0
/,

\

o
QY

7S

pl — (El,p/)
We will express the cross section in terms of w and 6. We can find w’, the
energy of the final photon, using the following trick:

m?=(p)2=(p+k—K)2=p*+2p-(k—K)—2k -k
=m? 4+ 2m(w — ') — 2w’ (1 — cos ),

hence,

%—%: 7—;—(1—(:050). (5.88)
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The last line is Compton’s formula for the shift in the photon wavelength. For
our purposes, however, it is more useful to solve for w':

’ w

w = ” . (5.89)
14+ —(1 —cosf)
m

The phase space integral in this frame is

ek 1 dp 1 4c(4

(k! _
_/dH2 /27r32w’ 27r32E’(27r)6 (K +p' =k —p)
B / (W)2de’ d 1
- (2m)3  4W'E’
x 21 6(w' + vVm2+w?+(w')2—2ww’ cos  — w — m)
_ [dcosf W 1
N 2 AE' w' —wcosf
14+

Bl
1 W
- g/d COS6)m+w(1 — cosf)
/)2

1
= —/d cos @ (w
8 wm

Plugging everything into our general cross-section formula (4.79) and setting
|lva —vg| =1, we find

do 11 1(w
dcos@  2w2m 8t wm ( ZIMI)

spins

(5.90)

To evaluate |[M|?, we replace p-k = mw and p- k' = mw’ in (5.87). The
shortest way to write the final result is

do ma? r\2 W w
Teosd = 7 (o) [; t s "]’ (5:91)

where W’ /w is given by (5.89). This is the (spin-averaged) Klein-Nishina for-
mula, first derived in 1929.
In the limit w — 0 we see from (5.89) that w’/w — 1, so the cross section
becomes o ) 8o
Toosd = 7;%(1 + cos? 6); Ototal = —3%.
This is the familiar Thomson cross section for scattering of classical electro-
magnetic radiation by a free electron.

(5.92)

TQ. Klein and Y. Nishina, Z. Physik, 52, 853 (1929).
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High-Energy Behavior

To analyze the high-energy behavior of the Compton scattering cross section,
it is easiest to work in the center-of-mass frame. We can easily construct the
differential cross section in this frame from the invariant expression (5.87).
The kinematics of the reaction now looks like this:

k' = (w,wsinh,0,w cos )

k= (w,w?) y \9 p k=wE+w)
SCNANNANS T E - k' =w(E +wcosb
70 p— (E,—w3) p ( )

E? =w? +m?

Plugging these values into (5.87), we see that for § =~ m, the term p-k/p-k’
becomes very large, while the other terms are all of O(1) or smaller. Thus for
E > m and 0 =~ 7, we have

1 2 o4 pk 4 E+w
4Z|M| ~ 2e _k/—-2e Ftwcosh (5.93)

3

spins

The cross section in the CM frame is given by (4.84):

do _li —]__ w .264(E+w)
doosd ~ 2 26 2w @B W) E-+woosd (5.94)
2Ta

~omzy s(1+cosf)’

Notice that, since s > m?, the denominator of (5.94) almost vanishes
when the photon is emitted in the backward direction (6 = 7). In fact, the
electron mass m could be neglected completely in this formula if it were not
necessary to cut off this singularity. To integrate over cosf, we can drop the
electron mass term if we supply an equivalent cutoff near § = x. In this way,
we can approximate the total Compton scattering cross section by

1

1
do 2ma? 1
_— — 0) ————. 5.9

/d(cos %) d cos 0 s / d(cos9) (14 cosf) (5.95)

-1 —142m?2/s
Thus, we find that the total cross section behaves at high energy as

: 2ma’? s
Ttotal = — log(ﬁ). (5.96)

The main dependence o?/s follows from dimensional analysis. But the singu-
larity associated with backward scattering of photons leads to an enhancement
by an extra logarithm of the energy.
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Let us try to understand the physics of this singularity. The singular term
comes from the square of the u-channel diagram,

4 r“rj/;c’
= —ie? e, (k) (K)a(p' )"

P Nk

F—K +m

(p_k,)—2_1n27"u(p). (5.97)

" The amplitude is large at § ~ 7 because the denominator of the propagator
is then small (~m?) compared to s. To be more precise, define y = 7 — 6. We
will be interested in values of x that are somewhat larger than m/w, but still
small enough that we can approximate 1 — cos x &~ x2/2. For x in this range,
the denominator is

2
(p—kN2—m? = -2p-k ~ —2w? (% +1—cos X) ~ —(w?x?+m?). (5.98)
This is small compared to s over a wide range of values for x, hence the
enhancement in the total cross section.

Looking back at (5.93), we see that for x such that m/w < x < 1, the
squared amplitude is proportional to 1/x?, and hence we expect M o 1/x.
But we have just seen that the denominator of M is proportional to x2, so
there must be a compensating factor of x in the numerator. We can understand
the physical origin of that factor by looking at the amplitude for a particular
set of electron and photon polarizations.

Suppose that the initial electron is right-handed. The dominant term of
(5.97) comes from the term that involves (§ — ¥') in the numerator of the
propagator. Since this term contains three y-matrices in (5.97) between the
@ and the u, the final electron must also be right-handed. The amplitude is
therefore

iM = i€, () (F)uh@)r o atun), (.99
where
ur(p) = V2E ((D and  ug(p)) = \/EEG) (5.100)

If the initial photon is left-handed, with e# = (1/+/2)(0,1, —i,0)*, then

o) = (5 o).
i

and the combination up(p’)o*e€, (k) vanishes. The initial photon must there-
fore be right-handed. Similarly, the amplitude vanishes unless the final photon
is right-handed. The kinematic situation for this set of polarizations is shown
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Before:

After:

Dy
R

Figure 5.6. In the high-energy limit, the final photon is most likely to be
emitted at backward angles. Since helicity is conserved, a unit of spin angular
momentum is converted to orbital angular momentum.

/,‘\\\\

vy

in Fig. 5.6. Note that the total spin angular momentum of the final state is
one unit less than that of the initial state.

Continuing with our calculation, let us consider the numerator of the
propagator in (5.99). For x in the range of interest, the dominant term is

—olp—-K) =o' wx.

This is the factor of x anticipated above. It indicates that the final state is a
p-wave, as required by angular momentum conservation. Assembling all the
pieces, we obtain

w 4e?
M(eR'yR — eR'yR) ~ 62@\/§m@\/§ ~ X2+—m>2</w2
(5.101)
We would find the same result in the case where all initial and final particles
are left-handed.

Notice that for directly backward scattering, x = 0, the matrix element
(5.101) vanishes due to the angular momentum zero in the numerator. Thus,
at angles very close to backward, we should also take into account the mass
term in the numerator of the propagator in (5.97). This term contains only two
gamma matrices and so converts a right-handed electron into a left-handed
electron. By an analysis similar to the one that led to Eq. (5.101), we can
see that this amplitude is nonvanishing only when the initial photon is left-
handed and the final photon is right-handed. Following this analysis in more
detail, we find :
4e’m/jw

—_. .102
X2 + m?/w? (5.102)

M(egyL — eLVR) *
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The reaction with all four helicities reversed gives the same matrix element.
To compare this result to our previous calculations, we should add the

contributions to the cross section from (5.101) and (5.102) and equal con-

tributions for the reactions involving initial left-handed electrons, and divide

by 4 to average over initial spins. The unpolarized differential cross section
should then be

do 11 1 w 8etx? 8eim? Jw?
dcosf 2 2E 2w (2m)4(E +w) [ (x2 + m2/w?)? (X% + m2/w?)?
4o’

~ s(x% +4m?/s)’ (5.103)
which agrees precisely with Eq. (5.94).

The importance of the helicity-flip process (5.102) just at the kinematic
endpoint has an interesting experimental consequence. Consider the process
of inverse Compton scattering, a high-energy electron beam colliding with
a low-energy photon beam (for example, a laser beam) to produce a high-
energy photon beam. Let the electrons have energy E and the laser photons
have energy w, let the energy of the scattered photon be E’ = yFE, and
assume for simplicity that s = 4Ew > m?2. Then the computation we have
just done applies to this situation, with the highest energy photons resulting
from scattering that is precisely backward in the center-of-mass frame. By
computing 2k-k’ in the center-of-mass frame and in the lab frame, it is easy
to show that the final photon energy is related to the center-of-mass scattering
angle through ,

L 1 X
y~2(1 cosf) =~ 1 i
Then Eq. (5.103) can be rewritten as a formula for the energy distribution of
backscattered photons near the endpoint:

do 2o m2
dy ~ s((1—y) +m?2/s)2 [(l—y) + ?], (5.104)

where the first term in brackets corresponds to the helicity-conserving pro-
cess and the second term to the helicity-flip process. Thus, for example, if
a right-handed polarized laser beam is scattered from an unpolarized high-
energy electron beam, most of the backscattered photons will be right-handed
but the highest-energy photons will be left-handed. This effect can be used
experimentally to measure the polarization of an electron beam or to create
high-energy photon sources with adjustable energy distribution and polariza-
tion.
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Pair Annihilation into Photons

We can still obtain one more result from the Compton-scattering amplitude.
Consider the annihilation process

.+.

ete” — 2y,

given to lowest order by the diagrams

kX ks

p1 \ p2

This process is related to Compton scattering by crossing symmetry; we can
obtain the correct amplitude from the Compton amplitude by making the
replacements

p—p P —=-p k—=-ki K k.
Making these substitutions in (5.87), we find
1 pi-ke | prrka 1 1
1 o IMP= —264[ + - 2m2< + )

: pi-kr  pike p1-k1  prke
spins (5.105)

2
-t <P:k'1 * P:kz) ] .

The overall minus sign is the result of the crossing relation (5.68) and should
be removed.
Now specialize to the center-of-mass frame. The kinematics is

k1= (E,FEsin0,0, E cosf)

ks = (E,—Esinf,0,—E cos0)
A routine calculation yields the differential cross section,
d_a_ﬁ(g) [E2+p2c0529 2m? B 2m?
dcos® s \p/|m?2+p?sin®0 m2+p?sin®0 (m2 +p?sin®6)2]
(5.106)

In the high-energy limit, this becomes

do 2o (1 + cos? 9)

5.107
d cosf E;>r)n s ( )

sin? 6
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Figure 5.7. Angular dependence of the cross section for ete™ — 2y at
Ecm = 29 GeV, as measured by the HRS collaboration, M. Derrick, et. al.,
Phys. Rev. D34, 3286 (1986). The solid line is the lowest-order theoretical
prediction, Eq. (5.107).

except when sin 6 is of order m/p or smaller. Note that since the two photons
are identical, we count all possible final states by integrating only over 0 <
6 < 7/2. Thus the total cross section is computed as

1
do
o = [ d(cosf . 5.108
total / ( ) d cosf ( )
0

Figure 5.7 compares the asymptotic formula (5.107) for the differential
cross section to measurements of ete™ annihilation into two photons at very

high energy.

Problems

5.1 Coulomb scattering. Repeat the computation of Problem 4.4, part (c), this
time using the full relativistic expression for the matrix element. You should find, for
the spin-averaged cross section,

do _ o (
dQ  4|p|232sint(6/2)

where p is the electron’s 3-momentum and 3 is its velocity. This is the Mott formula for
Coulomb scattering of relativistic electrons. Now derive it in a second way, by working

0
p— 2 i 2.—
1— B*sin 2),
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out the cross section for electron-muon scattering, in the muon rest frame, retaining
the electron mass but sending m,, — 0.

5.2 Bhabha scattering. Compute the differential cross section do/dcosé for
Bhabha scattering, eTe™ — ete™. You may work in the limit Ecp, > me, in which
it is permissible to ignore the electron mass. There are two Feynman diagrams; these
must be added in the invariant matrix element before squaring. Be sure that you have
the correct relative sign between these diagrams. The intermediate steps are compli-
cated, but the final result is quite simple. In particular, you may find it useful to
introduce the Mandelstam variables s, t, and u. Note that, if we ignore the electron
mass, s+t + u = 0. You should be able to cast the differential cross section into the

form
a2y (0 ()
deosf s [V \s % s t '

Rewrite this formula in terms of cosf and graph it. What feature of the diagrams
causes the differential cross section to diverge as § — 07

5.3 The spinor product formalism introduced in Problem 3.3 provides an efficient
way to compute tree diagrams involving massless particles. Recall that in Problem 3.3
we defined spinor products as follows: Let urg, ugg be the left- and right-handed
spinors at some fixed lightlike momentum kg. These satisfy

_ 1——",/5 _ 1+75
uroliLo = ( 3 )h’o, UROURO = ( 7 )ko- 1)
(These relations are just the projections onto definite helicity of the more standard
formula Y uptip = ¥j.) Then define spinors for any other lightlike momentum p by
1 1
ur(p) = —=—==Wuro,  ur(p) = ———==Pur0- (2)
V2p - ko V2p - ko

We showed that these spinors satisfy pu(p) = 0; because there is no m around, they
can be used as spinors for either fermions or antifermions. We defined

s(p1,p2) = ur(p1)urL(p2),  t(p1,p2) = uL(p1)ur(p2),
and, in a special frame, we proved the properties
2
t(p1,p2) = (s(p2,p1))*, s(p1,p2) = —s(p2,p1), [s(p1,p2)|” =2p1-p2. (3)

Now let us apply these results.

(a) To warm up, give another proof of the last relation in Eq. (3) by using (1) to
rewrite |s(p1,p2)|? as a trace of Dirac matrices, and then applying the trace
calculus.

(b) Show that, for any string of Dirac matrices,
tr{'y“’y”’yp .. ] = tr[~ . .,yp,yvvu]
where u,v, p,...=0,1,2,3, or 5. Use this identity to show that
ur(p1)v*ur(p2) = tr(p2)v*ur(p1).
(c) Prove the Fierz identity

ar (P )Y ur(p2) [yulas = 2 [urL(P2)ir(p1) + ur(p1)ir(P2)] 4,



(d)

(e)

5.4
()
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where a,b = 1,2,3,4 are Dirac indices. This can be done by justifying the
following statements: The right-hand side of this equation is a Dirac matrix;
thus, it can be written as a linear combination of the 16 I" matrices discussed in
Section 3.4. It satisfies

VM) = -[M]y°,
thus, it must have the form

1—9° 1+4°
[M]z( 7 )V”V”‘L( 2 )’“‘Wﬂ

where V# and W# are 4-vectors. These 4-vectors can be computed by trace
technology; for example,

1 1-95
VY= 3 tr[y” (T’Y)M]

Consider the process ete™ — ptu~, to the leading order in «, ignoring the
masses of both the electron and the muon. Consider first the case in which the
electron and the final muon are both right-handed and the positron and the
final antimuon are both left-handed. (Use the spinor vg for the antimuon and
upg for the positron.) Apply the Fierz identity to show that the amplitude can
be evaluated directly in terms of spinor products. Square the amplitude and
reproduce the result for

o~ + =
dcosO(eReL — KRML)

given in Eq. (5.22). Compute the other helicity cross sections for this process
and show that they also reproduce the results found in Section 5.2.

Compute the differential cross section for Bhabha scattering of massless elec-
trons, helicity state by helicity state, using the spinor product formalism. The
average over initial helicities, summed over final helicities, should reproduce the
result of Problem 5.2. In the process, you should see how this result arises as
the sum of definite-helicity contributions.

Positronium lifetimes.

Compute the amplitude M for et e~ annihilation into 2 photons in the extreme
nonrelativistic limit (i.e., keep only the term proportional to zero powers of the
electron and positron 3-momentum). Use this result, together with our formal-
ism for fermion-antifermion bound states, to compute the rate of annihilation
of the 15 states of positronium into 2 photons. You should find that the spin-1
states of positronium do not annihilate into 2 photons, confirming the symme-
try argument of Problem 3.8. For the spin-0 state of positronium, you should
find a result proportional to the square of the 1.5 wavefunction at the origin. In-
serting the value of this wavefunction from nonrelativistic quantum mechanics,
you should find

a®me

3 ~ 8.03 x 109 sec!.

l:l“:
T
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A recent measurement? gives I' = 7.994 + .011 nsec™!; the 0.5% discrepancy is
accounted for by radiative corrections.

Computing the decay rates of higher-l positronium states is somewhat more
difficult; in the rest of this problem, we will consider the case | = 1. First, work
out the terms in the eTe~™ — 2y amplitude proportional to one power of the
3-momentum. (For simplicity, work in the center-of-mass frame.) Since

3 )
/(gﬁz))3 P(p) = i%w(x) Yy

this piece of the amplitude has overlap with P-wave bound states. Show that
the S = 1, but not the S = 0 states, can decay to 2 photons. Again, this is a
consequence of C.

To compute the decay rates of these P-wave states, we need properly normalized
state vectors. Denote the three P-state wavefunctions by

¥y = 2t f(|x]), normalized to /d3x Y5 (x)Y;(x) = 65,

and their Fourier transforms by 1;(p). Show that

.'.
1B() = VaM / i (P) 812 T8 2 0
is a properly normalized bound-state vector if ©¢ denotes a set of three 2 x 2
matrices normalized to
D (et =1
i
To build S = 1 states, we should take each ¥* to contain a Pauli sigma matrix.
In general, spin-orbit coupling will split the multiplet of S = 1, L = 1 states

according to the total angular momentum J. The states of definite J are given
by

. 1 .
J=0: 3= —o",
V6
J=1: v = le"jknjak
2 b
1

J=2: Tt = —_p¥gd,
V3

where 1 is a polarization vector satisfying |n|? = 1 and h¥ is a traceless tensor,
for which a typical value might be A12 = 1 and all other components zero.

Using the expanded form for the ete™ — 2y amplitude derived in part (b) and
the explicit form of the S = 1, L = 1, definite-J positronium states found in
part (c), compute, for each J, the decay rate of the state into two photons.

tD. W. Gidley et. al., Phys. Rev. Lett. 49, 525 (1982).
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5.5 Physics of a massive vector boson. Add to QED a massive photon field B,
of mass M, which couples to electrons via

AH = / d*z (gy"yB,).

A massive photon in the initial or final state has three possible physical polarizations,
corresponding to the three spacelike unit vectors in the boson’s rest frame. These can
be characterized invariantly, in terms of the boson’s 4-momentum k¥, as the three
vectors eg) satisfying

e . el0) = g1, ke =0.

The four vectors (k./M, efz) ) form a complete orthonormal basis. Because B, couples
to the conserved current ty*1), the Ward identity implies that k, dotted into the
amplitude for B production gives zero; thus we can replace:

T L g,
1

This gives a generalization to massive bosons of the Feynman trick for photon polar-
ization vectors and simplifies the calculation of B production cross sections. (Warning:
This trick does not work (so simply) for “non-Abelian gauge fields”.) Let’s do a few
of these computations, using always the approximation of ignoring the mass of the
electron.

(a) Compute the cross section for the process ete~ — B. Compute the lifetime of
the B, assuming that it decays only to electrons. Verify the relation
1272

o(ete™ — B) = TF(B —ete)o(M? —s)

discussed in Section 5.3.

(b) Compute the differential cross section, in the center-of-mass system, for the
process ete™ — v + B. (This calculation goes over almost unchanged to the
realistic process ete™ — v + Z9; this allows one to measure the number of
decays of the Z0 into unobserved final states, which is in turn proportional to
the number of neutrino species.)

(c) Notice that the cross section of part (b) diverges as § — 0 or w. Let us analyze
the region near # = 0. In this region, the dominant contribution comes from
the t-channel diagram and corresponds intuitively to the emission of a photon
from the electron line before et e~ annihilation into a B. Let us rearrange the
formula in such a way as to support this interpretation. First, note that the
divergence as § — 0 is cut off by the electron mass: Let the electron momentum
be p* = (E,0,0,k), with k = (E2 — m2)1/2, and let the photon momentum be
k¥ = (zE,zEsin,0,2E cosf). Show that the denominator of the propagator
then never becomes smaller than O(m?/s). Now integrate the cross section of
part (b) over forward angles, cutting off the @ integral at §2 ~ (m2/s) and
keeping only the leading logarithmic term, proportional to log(s/mZ). Show
that, in this approximation, the cross section for forward photon emission can
be written

olete” v+ B)~ /dm f(z) o(ete™ — Bat EX, = (1-z)s),
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where the annihilation cross section is evaluated for the collision of a positron
of energy E and an electron of energy (1 — z)E, and the function f(x), the
Weizsdacker- Williams distribution function, is given by

'—I2 S
fla) = g =T o ().

This function arises universally in processes in which a photon is emitted
collinearly from an electron line, independent of the subsequent dynamics. We
will meet it again, in another context, in Problem 6.2.

This problem extends the spinor product technology of Problem 5.3 to external

photons.

(a)

(b)

Let k be the momentum of a photon, and let p be another lightlike vector, chosen
so that p-k # 0. Let ur(p), ur (p) be spinors of definite helicity for fermions with
the lightlike momentum p, defined according to the conventions of Problem 5.3.

Define photon polarization vectors as follows:
1 1
b (k) = ur(k)v* Bk) = wr, (k)y* .
6-i—( ) muR( )’y uR(p)a 6—( ) mul/( )’7 uL(p)

Use the identity

ur(p)uL(p) + ur(p)ur(p) =¥

to compute the polarization sum
kHpY + kY pH
e +elerr = — gt + —pp~k P

The second term on the right gives zero when dotted with any photon emission
amplitude MH*, so we have

le4 - M2+ Je - M2 = MEMY* (—gu);
thus, we can use the vectors €, e_ to compute photon polarization sums.

Using the polarization vectors just defined, and the spinor products and the Fierz
identity from Problem 5.3, compute the differential cross section for a massless
electron and positron to annihilate into 2 photons. Show that the result agrees
with the massless limit derived in (5.107):

do 2ra? (1+cos20)
dcos® ~ s sin? 0

in the center-of-mass frame. It follows from the result of part (a) that this answer

is independent of the particular vector p used to define the polarization vectors;

however, the calculation is greatly simplified by taking this vector to be the
initial electron 4-vector.



Chapter 6

Radiative Corrections: Introduction

Now that we have acquired some experience at performing QED calculations,
let us move on to some more complicated problems. Chapter 5 dealt only with
tree-level processes, that is, with diagrams that contain no loops. But all such
processes receive higher-order contributions, known as radiative corrections,
from diagrams that do contain loops. Another source of radiative corrections
in QED is bremsstrahlung, the emission of extra final-state photons during a
reaction. In this chapter we will investigate both types of radiative corrections,
and find that it is inconsistent to include one without also including the other.

Throughout this chapter, in order to illustrate these ideas in the simplest
possible context, we will consider the process of electron scattering from an-
other, very heavy, particle. We analyzed this process at tree level in Section 5.4
and Problem 5.1. At the next order in perturbation theory, we encounter the
following four diagrams:

HHH -

The order-a correction to the cross section comes from the interference term
between these diagrams and the tree-level diagram. There are six additional
one-loop diagrams involving the heavy particle in the loop, but they can be
neglected in the limit where that particle is much heavier than the electron,
since the mass appears in the denominator of the propagator. (Physically,
the heavy particle accelerates less, and therefore radiates less, during the
collision.)

Of the four diagrams in (6.1), the first (known as the vertex correction) is
the most intricate and gives the largest variety of new effects. For example, it
gives rise to an anomalous magnetic moment for the electron, which we will
compute in Section 6.3. '

The next two diagrams of (6.1) are external leg corrections. We will neglect
them in this chapter because they are not amputated, as required by our
formula (4.90) for S-matrix elements. We will discuss these diagrams in more
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detail when we prove that formula in Section 7.2.

The final diagram of (6.1) is called the vacuum polarization. Since it re-
quires more computational machinery than the others, we will not evaluate
this diagram until Section 7.5.

Our study of these corrections will be complicated by the fact that they
are ill-defined. Each diagram of (6.1) involves an integration over the unde-
termined loop momentum, and in each case the integral is divergent in the
k — oo or ultraviolet region. Fortunately, the infinite parts of these integrals
will always cancel out of expressions for observable quantities such as cross
sections.

The first three diagrams of (6.1) also contain infrared divergences: infini-
ties coming from the k£ — 0 end of the loop-momentum integrals. We will see
in Section 6.4 that these divergences are canceled when we also include the
following bremsstrahlung diagrams:

+ (6.2)

These diagrams are divergent in the limit where the energy of the radiated
photon tends to zero. In this limit, the photon cannot be observed by any
physical detector, so it makes sense to add the cross section for producing these
low-energy photons to the cross section for scattering without radiation. The
bremsstrahlung diagrams are thus an essential part of the radiative correction,
in this and any other QED process.

Our main goals in the present chapter are to understand bremsstrahlung
of low-energy photons, the vertex correction diagram, and the cancellation of
infrared divergences between these two types of radiative corrections.

6.1 Soft Bremsstrahlung

Let us begin our study of radiative corrections by analyzing the bremsstrah-
lung process. In this section we will first do a classical computation of the
intensity of the low-frequency bremsstrahlung radiation when an electron un-
dergoes a sudden acceleration. We will then compute a closely related quantity
in quantum field theory: the cross section for emission of one very soft pho-
ton, given by diagrams (6.2). We would like to understand how the classical
result arises as a limiting case of the quantum result.
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Classical Computation

Suppose that a classical electron receives a sudden kick at time ¢ = 0 and
position x = 0, causing its 4-momentum to change from p to p’. (An in-
finitely sudden change of momentum is of course an unrealistic idealization.
The precise form of the trajectory during the acceleration does not affect the
low-frequency radiation, however. Our calculation will be valid for radiation
with a frequency less than the reciprocal of the scattering time.)

/

p
sudden kick at time ¢ = 0,
-
when particle is at x =0

p

We can find the radiation field by writing down the current of this electron,
and considering that current as a source for Maxwell’s equations.

What is the current density of such a particle? For a charged particle at
rest at x = 0, the current would be

(2) = (1,0)" - €6 (x)

= /dt(l,O)“ e (z —y(?)), with y*(t) = (¢,0)".

From this we can guess the current for an arbitrary trajectory y#*(7):

jH(x) = e/d dy” ( ) 6(4)( —y(7)). (6.3)

Note that this expression is 1ndependent of the precise way in which the
curve y#(7) is parametrized: Changing variables from 7 to o(7) gives a factor
of dr/do in the integration measure, which combines with dy*/dr via the
chain rule to give dy*/do. We can also prove from (6.3) that the current is
automatically conserved: For any “test function” f ( ) that falls off at infinity,
we have

[#25@0.tw) = [ate e far 2 0,60~ yir)

_ dyt(r) 0
—e[ar B T p@)

/dT—— (y(m)
=—e f(y(T))‘: =0.

For our process the trajectory is

win_ f@/m)T for T <O0;
(1) = { (p*/m)r for T > 0.

z=y(7)
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Thus the current can be written
[es) " , 0 i
i*(z) = 6/d7p—5(4)($— p_T) —I—e/dTp—é(‘l)(a:— £7‘).
m m m m

0 —00

In a moment we will need to know the Fourier transform of this function.
Inserting factors of e™¢" and e” to make the integrals converge, we have

jwm=/fwmwwm

[eS) 0
—eldr ﬂei(k~p'/m+ie)‘r te /dT p_uei(k:-p/m——ie)r
m m
0 —00
: p* p )
= — . 6.4
ze(lc~p’+z'e k-p—ie (6.4)

We are now ready to solve Maxwell’s equations. In Lorentz gauge (04 A, =
0) we must solve §2A* = j*, or in Fourier space,

Ak (k) = 5 34(R)

Plugging in (6.4), we obtain a formula for the vector potential:

d*k _.. —ie p'H pH
u — —ikx _ "% _
A () /(27r)46 k2 (k-p’+ie k'p—ie)‘ (6.5)

The k° integral can be performed as a contour integral in the complex plane.
The locations of the poles are as follows:

> > > >

kO_. 0_. ../_
= —|K| _ o =+kl  k-p=0

We place the poles at k® = £|k| below the real axis so that (as we shall soon
confirm) the radiation field will satisfy retarded boundary conditions.

For t < 0 we close the contour upward, picking up the pole at k- p = 0,
that is, kK = k - p/p°. The result is

e

Bk iten/0 (2m1)(+ie) p*
7 — ik-x ,—i(k-p/p°)t £
Allx) = / em3 ¢ © 2mk2 PO
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In the reference frame where the particle is initially at rest, its momentum
vector is p* = (p%, 0)* and the vector potential reduces to

3k e
AW (z) = /W - (L)

This is just the Coulomb potential of an unaccelerated charge. As we would
expect, there is no radiation field before the particle is scattered.

After scattering (¢t > 0), we close the contour downward, picking up the
three poles below the real axis. The pole at k° = k- p’/p"® gives the Coulomb
potential of the outgoing particle. Thus the other two poles are completely
responsible for the radiation field. Their contribution gives

Aly(T) = /(3371;3 ﬁ{e‘ik'”(kpjl;, - kp_“p) + c.c.}

KO=|k|

6.6
—Re [ h () e o
P ACTER
where the momentum-space amplitude A(k) is given by
—e p/“ p“
nk)=—<(2_ _ P .
A" (k) |k|(k0p’ k~p> (6.7)

(The condition k° = |k| is implicit here and in the rest of this calculation.)

To calculate the energy radiated, we must find the electric and magnetic
fields. It is easiest to write E and B as the real parts of complex Fourier
integrals, just as we did for A#:

3
E(z) = Re/% E(k) e, o5
d3k —ik-x \ ( ‘ )

The momentum-space amplitudes £(k) and B(k) of the radiation fields are
then simply

E(k) = —ikA°(k) + ik° A(k);

. (6.9)
B(k) =ik x A(k) = k x E(k).

Using the explicit form (6.7) of A*(k), you can easily check that the electric
field is transverse: k - £(k) = 0.

Having expressed the fields in this way, we can compute the energy radi-
ated:

Energy = %/de (E(@)]® + |B(z)]?). (6.10)
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The first term is

/ /d3k /d3k’ 8(k) ik | £%(K)e zkz) (g(k/)e—ik/z+g*(k/)eik/z)

d3k

W (8(1() -5(—k)e—2ik°t + 25(k) .g*(k) + 8*(k) '8*(—k)e2ikot)~

A similar expression involving B(k) holds for the second term. Using (6.9)
and the fact that £(k) is transverse, you can show that the time-dependent
terms cancel between £ and B, while the remaining terms add to give

3
Energy = %/(gﬂl): Ek) - E* (k). (6.11)

Since €(k) is transverse, let us introduce two transverse unit polarization
vectors €y (k), A =1,2. We can then write the integrand as

E(k =Y |ex(k) =k 3 |extk) - Ak)|".
A=1,2 A=1,2

Using the explicit form of A(k) (6.7), we finally arrive at an expression for
the energy radiated*:

d3k e’
Energy = / 277)3

/

e,\(k)-< L —L)r. (6.12)

k-p k-p

We can freely change €, p’, and p into 4-vectors in this expression. Then,
noting that substituting k* for e# would give zero,

Iu "

b2 - 2 ) o,
k-p k-p

we find that we can perform the sum over polarizations using the trick of

Section 5.5, replacing Y € €} by —g,.. Our result then becomes

B dBk 62 p/u pu p/u pu
Energy—/wé‘(—guv)(k,pr - k.p)(k-p’ ; k'P)
_/d3k i( 2p.p/ - m2 B m? )
@ 2\ p)kp) kPP (kp?)

To make this formula more explicit, choose a frame in which p° = p° = E.
Then the momenta are

(6.13)

k* = (k, k), p* = E(1,v), p* = E(1,v).

*This result is also derived in Jackson (1975), p. 703.
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In such a frame our formula becomes
2

¢
(2m)?
where Z(v, v’) (which is essentially the differential intensity d(Energy)/dk) is
given by
dQ; . 2 2 2 2
I(v,v')=/—k< 0—v-v) _ m /B m'/E
dr \(1—k-v)(1-k-v) (1-k-v)2 (1—k-v)2

Energy = /dk I(v,Vv'), (6.14)

). (6.15)

Since Z(v,v’) does not depend on k, we see that the integral over & in (6.14)
is trivial but divergent. This divergence comes from our idealization of an
infinitely sudden change in momentum. We expect our formula to be valid
only for radiation whose frequency is less than the reciprocal of the scattering
time. For a relativistic electron, another possible cutoff would take effect when
individual photons carry away a sizable fraction of the electron’s energy. In
either case our formula is valid in the low-frequency limit, provided that we
cut off the integral at some maximum frequency kpax. We then have

Energy = % “kmax - Z(v,v'). (6.16)

The integrand of Z(v,v’) peaks when k is parallel to either v or v':
“final-state »\W s
» “initial-state
bremsstrahlung \’> f:)f/:.f' bremsstrahlung”

In the extreme relativistic limit, most of the radiated energy comes from
the two peaks in the first term of (6.15). Let us evaluate Z(v,v’) in this limit,
by concentrating on the regions around these peaks. Break up the integral
into a piece for each peak, and let § = 0 along the peak in each case. Integrate
over a small region around 6 = 0, as follows:

cos 0=1 1 ,
— V-V
I(v,v)~ dcosf
v, v') / 08 (1—vcos)(1—v-v')
kv=v'-v
cos =1 1 ,
— V-V
dcosf .
+ / €08 (1=v-v")(1—v'cosh)
kvi=v/v

(The lower limits on the integrals are not critical; an equally good choice
would be k- v =1—2(1 —v-Vv'), as long as z is neither too close to 0 nor
too much bigger than 1. It is then easy to show that the leading term in the
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relativistic limit does not depend on z.) The integrals are easy to perform,
and we obtain '
/

I(v,v') ~ log(ll%v',v) + log(ll—_—‘]:}z) = M%)

, (6.17)

R~ 210g((]2—2%‘2)/2) = 2log(%),

where ¢? = (p’ — p)2.

In conclusion, we have found that the radiated energy at low frequencies
is given by

/

Kmax kmax

2
Energy = 2 dk Z(v,v') — 2o dk log 1), (6.18)
T E>m T m?
0 0

If this energy is made up of photons, each photon contributes energy k. We
would then expect

kmax
1
Number of photons = % / dk z Z(v,v"). (6.19)
0
We hope that a quantum-mechanical calculation will confirm this result.

Quantum Computation

Consider now the quantum-mechanical process in which one photon is radiated
during the scattering of an electron:

Let My denote the part of the amplitude that comes from the electron’s
interaction with the external field. Then the amplitude for the whole process
is
. - (P — K+ %
iM = —ieu(p) [ Mo(p!,p — k) B EXT i i)
(p—k)?—m
(6.20)

+ytel (k) %%%MO(P/ + k,p)) u(p).

Since we are interested in connecting with the classical limit, assume that
the photon radiated is soft: |k| < [p’ — p|. Then we can approximate

Mo(p',p — k) = Mo(p' + k,p) ~ Mo(p,p), (6.21)
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and we can ignore ¥ in the numerators of the propagators. The numerators
can be further simplified with some Dirac algebra. In the first term we have

(#+ m)y*e, u(p) = [2p*e), + v*el(—F + m)|u(p)
= 2p“e; u(p).
Similarly, in the second term,
u(p) Y (¥ +m) = u(p') 2p™e,.
The denominators of the propagators also simplify:
(p—k)2—m?=—-2p-k; @ +k)?-m?=2p k.

So in the soft-photon approximation, the amplitude becomes

M = 50" [ Mo (o p-€e* p.E*) (6.22)"
iM=a(p') [Mo(p', p)]u(p) - e(ﬂ il :
This is just the amplitude for elastic scattering (without bremsstrahlung),
times a factor (in brackets) for the emission of the photon.

The cross section for our process is also easy to express in terms of the
elastic cross section; just insert an additional phase-space integration for the
photon variable k. Summing over the two photon polarization states, we have

d*k 1
(2m)3 2k 5

S|P €®  poe™ 2
vk pk

do(p—p'+7) =do(p —p')- / . (6.23)

Thus the differential probability of radiating.a photon with momentum k,
given that the electron scatters from p to p’, is

2
d(prob) = )3Z2k ( Tk pr')k>l . (6.24)

This looks very familiar; if we multiply by the photon energy k to compute
the expected energy radiated, we recover the classical expression (6.12).

But there is a problem. Equation (6.24) is an expression not for the ex-
pected number of photons radiated, but for the probability of radiating a
single photon. The problem becomes worse if we integrate over the photon
momentum. As in (6.16), we can integrate only up to the energy at which our
soft-photon approximations break down; a reasonable estimate for this energy
is |q| = |p — P’|- The integral is therefore

lal
Total probability ~ % / dk % I(v,Vv'). (6.25)
0

Since Z(v,Vv’) is independent of k, the integral diverges at its lower limit
(where all our approximations are well justified). In other words, the total
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probability of radiating a very soft photon is infinite. This is the famous
problem of infrared divergences in QED perturbation theory.

We can artificially make the integral in (6.25) well-defined by pretending
that the photon has a very small mass u. This mass would then provide a
lower cutoff for the integral, allowing us to write the result of this section as

2

g )I(V,v')

o /-
do(p—p' +9(k)) =dolp - p) - o log(F

, (6.26)

oo os(E) s ()

The ¢? dependence of this result, known as the Sudakov double logarithm, is
physical and will appear again in Section 6.4. The dependence on y, however,
presents a problem that we must solve. It is not hard to guess that the resolu-
tion of this problem will involve reinterpreting (6.24) as the expected number
of radiated photons, rather than the probability of radiating a single pho-
ton. We will see in Sections 6.4 and 6.5 how this reinterpretation follows from
the Feynman diagrams. To prepare for that discussion, however, we need to
improve our understanding of the amplitude for scattering without radiation.

6.2 The Electron Vertex Function: Formal Structure

Having briefly discussed QED radiative corrections due to emission of photons
(bremsstrahlung), let us now study the correction to electron scattering that
comes from the presence of an additional virtual photon:

(6.27)

This will be our first experience with a Feynman diagram containing a loop.
Such diagrams give rise to significant and profound complications in quantum
field theory.

The result of computing this diagram will be rather complicated, so it
will be useful to think ahead about what form we expect this correction to
take and how to interpret its various possible terms. In this section, we will
consider the general properties of vertex correction diagrams. We will see that
the basic requirements of Lorentz invariance, the discrete symmetries of QED,
and the Ward identity strongly constrain the form of the vertex.



6.2 The Electron Vertex Function: Formal Structure 185

Consider, then, the class of diagrams

where the gray circle indicates the sum of the lowest-order electron-photon
vertex and all amputated loop corrections. We will call this sum of vertex
diagrams —iel'*(p’, p). Then, according to our master formula (4.103) for S-
matrix elements, the amplitude for electron scattering from a heavy target
is

iM = i (1) P p) o) (i) (628)

More generally, the function I'*(p’,p) appears in the S-matrix element
for the scattering of an electron from an external electromagnetic field. As in
Problem 4.4, add to the Hamiltonian of QED the interaction

AHiy = / d*zeAj*, (6.29)

where j*(z) = ¥(z)y*(x) is the electromagnetic current and Af} is a fixed
classical potential. In the leading order of perturbation theory, the S-matrix
element for scattering from this field is

iM(2m)6(p” — p°) = —iea(p') v u(p) - AL (P - p),

where Xf}(q) is the Fourier transform of AZ‘ (z). The vertex corrections modify
this expression to

iM (2m)8(p” — p°) = —ieu(p') T*(p', p) u(p) - AS (' — p). (6.30)

In writing (6.28) and (6.30), we have deliberately omitted the contribution of
vacuum polarization diagrams, such as the fourth diagram of (6.1). The reason
for this omission is that these diagrams should be considered corrections to
the electromagnetic field itself, while the diagrams included in I'* represent
corrections to the electron’s response to a given applied field.

We can use general arguments to restrict the form of T'*(p’, p). To lowest
order, " = ~*. In general, I'* is some expression that involves p, p’, v*,
and constants such as m, e, and pure numbers. This list is exhaustive, since
no other objects appear in the Feynman rules for evaluating the diagrams
that contribute to I'*. The only other object that could appear in any theory
is e#¥P? (or equivalently, 4°); but this is forbidden in any parity-conserving
theory.

tTo justify this statement, we must give a careful definition of an applied external
field in a quantum field theory. We will do this in Chapter 11.
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We can narrow down the form of I'* considerably by appealing to Lorentz
invariance. Since I'* transforms as a vector (in the same sense that v* does),
it must be a linear combination of the vectors from the list above: v*, p*, and
p'*. Using the combinations p’ + p and p’ — p for convenience, we have

% = 4*.A + (p"+p")-B + (p*—p")-C. (6.31)

The coeflicients A, B, and C could involve Dirac matrices dotted into vectors,
that is,  or p’. But since gu(p) = m-u(p) and a(p’)y = a(p’)-m, we can
write the coefficients in terms of ordinary numbers without loss of generality.
The only nontrivial scalar available is ¢> = —2p’-p + 2m?, so 4, B, and C
must be functions only of ¢? (and of constants such as m).

The list of allowed vectors can be further shortened by applying the Ward
identity (5.79): ¢,I'* = 0. (Note that our arguments for this identity in Sec-
tion 5.5—and the proof in Section 7.4—do not require g = 0.) Dotting qu
into (6.31), we find that the second term vanishes, as does the first when sand-
wiched between @(p’) and u(p). The third term does not automatically vanish,
so C' must be zero.

We can make no further simplifications of (6.31) on general principles. It
is conventional, however, to rewrite (6.31) by means of the Gordon identity
(see Problem 3.2):

) S Ciat

5 Tom u(p). (6.32)

a(p')y*u(p) = a(p)
This identity allows us to swap the (p’ + p) term for one involving o*¥q,. We
write our final result as

io*q,
2m

where F} and F, are unknown functions of ¢2 called form factors.

To lowest order, F; =1 and F3 = 0. In the next section we will compute
the one-loop (order-a) corrections to the form factors, due to the vertex cor-
rection diagram (6.27). In principle, the form factors can be computed to any
order in perturbation theory.

Since F; and F3 contain complete information about the influence of
an electromagnetic field on the electron, they should, in particular, contain
the electron’s gross electric and magnetic couplings. To identify the electric
charge of the electron, we can use (6.30) to compute the amplitude for elastic
Coulomb scattering of a nonrelativistic electron from a region of nonzero elec-
trostatic potential. Set AS(z) = (¢(x),0). Then A5(q) = ((2m)6(¢°)4(a),0).
Inserting this into (6.30), we find

M = —ieu(p') T°(p', p) u(p) - 4(q).

If the electrostatic field is very slowly varying over a large (perhaps macro-
scopic) region, ¢(q) will be concentrated about q = 0; then we can take the

T (p',p) = YFi(¢®) + F>(q%), (6.33)
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limit q — 0 in the spinor matrix element. Only the form factor F; contributes.
Using the nonrelativistic limit of the spinors,

w(p" ) u(p) = ul (p')u(p) ~ 2me'te,
the amplitude for electron scattering from an electric field takes the form
iM = —ieF1(0)d(q) - 2mete. (6.34)
This is the Born approximation for scattering from a potential

V(%) = eF1(0)¢(x)-

Thus F3(0) is the electric charge of the electron, in units of e. Since F;(0) =1
already in the leading order of perturbation theory, radiative corrections to
Fy(¢?) should vanish at ¢? = 0.

By repeating this analysis for an electron scattering from a static vector
potential, we can derive a similar connection between the form factors and the
electron’s magnetic moment.* Set A%(z) = (0, A°(x)). Then the amplitude
for scattering from this field is

iM = +ie [ﬂ(p/)( ip 4 F2) (p )]ngl(q). (6.35)

The expression in brackets vanishes at q = O, so we must carefully extract from
it a contribution linear in ¢*. To do this, insert the nonrelativistic expansion
of the spinors u(p), keeping terms through first order in momenta:

_ vp~a£> N ((1—p~a’/2m)§)
up) = (\/ﬁg VI 1y poo/am)e ) (6.36)
Then the Fj term can be simplified as follows:

/ . . . .
ﬁ(p')’y’u(p) — 2m£IT (P a'o_z + 0'1'p 0')5
2m 2m

Applying the identity 0’0’ = 69 + ie'/*o*, we find a spin-independent term,
proportional to (p’+p), and a spin-dependent term, proportional to (p’ — p).
The first of these terms is the contribution of the operator [p- A + A - p] in
the standard kinetic energy term of nonrelativistic quantum mechanics. The
second is the magnetic moment interaction we are seeking. Retaining only the
latter term, we have

u(p' )y u(p) = 2m ¢’ ( o kgl )5

The F5 term already contains an explicit factor of ¢, so we can evaluate it
using the leading-order term of the expansion of the spinors. This gives

1) (0™ a Ju(p) = 2me” (o ehaiot e

tThe following argument contains numerous factors of (—1) from raising and
lowering spacelike indices. Be careful in verifying the algebra.
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Thus, the complete term linear in ¢’ in the electron-photon vertex function is
iUW‘Ju 1t —1 ijk j k
F ~ 2m — F F ) .

5 g)u(p)q 02 £ (2 e o [ 1(0) + 2(0)] £

a(p) (+'F +
Inserting this expression into (6.35), we find
-1 -
M = —i ettt 2 5k k
iM = —i(2m) - ¢ (20" [F1(0) + Fa(0)] )€ B*(a),

where B L
B*(q) = —ie“*q' A};(q)
is the Fourier transform of the magnetic field produced by A (x).
Again we can interpret M as the Born approximation to the scattering

of the electron from a potential well. The potential is just that of a magnetic
moment interaction,

V(x) = —(m) - B(x),

where . o
=—|[F F. ¢
() = [F1(0) + F(0)]€1 5S¢
This expression for the magnetic moment of the electron can be rewritten in
the standard form
e
n=g (—) S,

2m
where S is the electron spin. The coefficient g, called the Landé g-factor, is

g =2[F1(0) + F2(0)] =2+ 2F(0). (6.37)

Since the leading order of perturbation theory gives no Fy term, QED predicts
g = 2+ O(a). The leading term is the standard prediction of the Dirac
equation. In higher orders, however, we will find a nonzero F5 and thus a small
difference between the electron’s magnetic moment and the Dirac value. We
will compute the order-a contribution to this anomalous magnetic moment
in the next section.

Since our derivation of the structure (6.33) for the vertex function used
only general symmetry principles, we expect this formula to apply not-only
to the electron but to any fermion with electromagnetic interactions. For ex-
ample, the electromagnetic scattering amplitude of the proton should also be
described by two invariant functions of 2. Since the proton is not an ele-
mentary particle, we should not expect the Dirac equation values F; =1 and
F» =0 to be good approximations to the form factors of the proton. In fact,
both proton form factors depend strongly on ¢*. However, the description of
the vertex function in term of form factors provides a useful summary of data
on scattering at many energies and angles. The precise transcription between
form factors and cross sections is worked out in Problem 6.1. In addition, the
general constraints at g2 = 0 that we have just derived apply to the proton:
F1(0) =1, and 2F5(0) = (g, — 2), though the g-factor of the proton differs by
40% from the Dirac value.
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6.3 The Electron Vertex Function: Evaluation

Now that we know what form the answer is to take (Eq. (6.33)), we are ready
to evaluate the one-loop contribution to the electron vertex function. Assign
momenta on the diagram as follows:

Applying the Feynman rules, we find, to order «, that I'* = v* 4 §I'*, where
a(p')sT* (', p)u(p)

d4k —1 v — .y (K ] + .
= [ W i e e )

i d'k _a(p) (K +m*y = 2mik + k) ]u(p) 6.38)
- (2m)* ((k — p)? + i€) (k"2 — m2 + i€) (k2 — m2 + i€) ’
In the second line we have used the contraction identity y/y*y, = —2vy*.

~ Note that the +ie terms in the denominators cannot be dropped; they are
necessary for proper evaluation of the loop-momentum integral.

The integral looks impossible, and in fact it will not be easy. The eval-
uation of such integrals requires another piece of computational technology,
known as the method of Feynman parameters (although a very similar method
was introduced earlier by Schwinger).

Feynman Parameters

The goal of this method is to squeeze the three denominator factors of (6.38)
into a single quadratic polynomial in k, raised to the third power. We can then
shift k by a constant to complete the square in this polynomial and evaluate
the remaining spherically symmetric integral without difficulty. The price will
be the introduction of auxiliary parameters to be integrated over.

It is easiest to begin with the simpler case of two factors in the denomi-
nator. We would then use the identity

1
1

AB ~ 0/d$ [xA +(1-z)B

(6.39)

1
1
= [ dzdyé 1) —/—m—.



190 Chapter 6 Radiative Corrections: Introduction

An example of its use might look like this:

1 —
(k—p)?(k?—m?2) —

1
[z(k—p)? + y(k2—m?)]?

dz dy §(z+y—1)

1
[k2—2zk - p+zp?—ym?] z

dz dy 6(z+y—1)

O\H O\H

If we now let £ = k — zp, we see that the denominator depends only on £2.
Integrating over d*k would now be much easier, since d*k = d*¢ and the
integrand is spherically symmetric with respect to £. The variables x and y
that make this transformation possible are called Feynman parameters.

Our integral (6.38) involves a denominator with three factors, so we need
a slightly better identity. By differentiating (6.39) with respect to B, it is easy
to prove

1

1 nyn—l

= [d 1) . A4

Yy / x dy 6(z+y—1) GA+ yBI" (6.40)
0

But this still isn’t quite good enough. The formula we need is

(n—1)!
[(ElAl + x9As + - (EnAn]n '

1
1
0

The proof of this identity is by induction. The case n = 2 is just Eq. (6.39);
the induction step is not difficult and involves the use of (6.40).

By repeated differentiation of (6.41), you can derive the even more general
identity

1
1 [Tz D(mi+--+my)
L m = = [dz1---dz, 6 i—1 L : .
AT AT AT 0/ 1 T, 6(3 7i—1) [Z -'EiAi]Zml T(mq)---T(my)

(6.42)
This formula is true even when the m; are not integers; in Section 10.5 we
will apply it in such a case.

Evaluation of the Form Factors
Now let us apply formula (6.41) to the denominator of (6.38):

1

2
= /dxdydz&(x+y+z—1) D5

1
((k—p)2+ie) (K2—m2+ie) (k2—m2+ie)

0
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where the new denominator D is

D=z(lc2 —m2)+y(k’2 —mz) +z(k—p)2+ (x +y + 2)ie ( )
6.43
= k% 4 2k (yq — zp) + yg* + zp* — (x + y)m? + ie.
In the second line we have used £+ y + z = 1 and k¥’ = k + q. Now shift &k to
complete the square:
£=k+yq— zp.

After a bit of algebra we find that D simplifies to
D =% — A +ie,
where
A= —zyg® + (1 - 2)*m? (6.44)

Since q? < 0 for a scattering process, A is positive; we can think of it as an
effective mass term.

Next we must express the numerator of (6.38) in terms of £. This task is
simplified by noting that since D depends only on the magnitude of £,

dte o

/ oy 1 = (6.45)
die e 1g Lowpe

/ ; Sz/“‘lg . (6.46)
@mt D @rt D3

The first identity follows from symmetry. To prove the second, note that the
integral vanishes by symmetry unless 4 = v. Lorentz invariance therefore
requires that we get something proportional to g#*”. To check the coefficient,
contract each side with g,,,,. Using these identities, we have

Numerator = %(p’) [k’y” ¥ +m2y* — 2m(k + k')“] u(p)

= () [~ 3 + (—yd + ) (1 - 9)d + =)
+mPy* —2m((1 - 2y)g* + 2zp“)]u(p).

(Remember that k' =k + ¢.)

Putting the numerator into a useful form is now just a matter of some
tedious Dirac algebra (about a page or two). This is where our work in the
last section pays off, since it tells us what kind of an answer to expect. We
eventually want to group everything into two terms, proportional to v* and
10" q,. The most straightforward way to accomplish this is to aim instead for
an expression of the form

YA+ (P*+p*)-B + ¢*-C,

just as in (6.31). Attaining this form requires only the anticommutation rela-
tions (for example, gy* = 2p# —y*§) and the Dirac equation (gu(p) = mu(p)
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—V|€]2+A + i \
[}

.
\ VI€2+A — e

Figure 6.1. The contour of the £° integration can be rotated as shown.

and a(p)¢’ = u(p’) m; note that this implies u(p’)¢du(p) = 0). It is also useful
to remember that  + y + z = 1. When the smoke clears, we have

Numerator = @(p’) [’y“ (=3 + (1-2)(1-y)¢® + (1-22—2%)m?)

+ (P ) ma(z-1) + ¢4 m(z=2) (w—y) | u(p).

The coeflicient of g* must vanish according to the Ward identity, as discussed
after Eq. (6.31). To see that it does, note from (6.44) that the denominator
is symmetric under x <« y. The coefficient of ¢* is odd under x — y and
therefore vanishes when integrated over z and y.

Still following our work in the previous section, we now use the Gordon
identity (6.32) to eliminate (p’ + p) in favor of i0#¥g,. Our entire expression
for the O(a) contribution to the electron vertex then becomes

1

_ , d*¢ 2

a(p)éT*(p', p)u(p) = 2262/ }i /dm dydz 6(z+y+z—1)
0

(2w D

X a(p) [y - (~36 + (1=2)(1-y)¢ + (1-4z+22)m?)

i’ qy
2m

(2m2z(1—z))]u(p), (6.47)
where as before, )
D =% — A +ie, A = —zyg® + (1-2)?m? > 0.

The decomposition into form factors is now manifest.
With most of the work behind us, our main remaining task is to perform
the momentum integral. It is not difficult to evaluate the ¢ integral as a



6.3 The Electron Vertex Function: Evaluation 193

contour integral, then do the spatial integrals in spherical coordinates. We
will use an even easier method, making use of a trick called Wick rotation.
Note that if it were not for the minus signs in the Minkowski metric, we could
perform the entire four-dimensional integral in four-dimensional “spherical”
coordinates. To remove the minus signs, consider the contour of integration
in the ¢%-plane (see Fig. 6.1). The locations of the poles, and the fact that
the integrand falls off sufficiently rapidly at large [£°|, allow us to rotate the
contour counterclockwise by 90°. We then define a Fuclidean 4-momentum
variable ¢g:

O =il L=tLp. (6.48)

Our rotated contour goes from ¢%, = —oo to oo. By simply changing vari-
ables to g, we can now evaluate the integral in four-dimensional spherical
coordinates.

Let us first evaluate

d4e 1 i1 1
/(277)4 [2— A~ (—1)m (2m)A /d% (6% + Al

_ i(~—1)m . 53
= o [ a0 0/ e G+ AT

(Here we need only the case m = 3, but the more general result will be useful
for other loop calculations.) The factor [ dfl4 is the surface “area” of a four-
dimensional unit sphere, which happens to equal 272. (One way to compute
this area is to use four-dimensional spherical coordinates,

z = (rsinwsinf cos ¢, rsinw sin fsin ¢, rsinw cos f, T cosw).

The integration measure is then d*z = 3 sin w sin 6 d¢ df dw dr.) The rest of
the integral is straightforward, and we have

d'e L _a=nm 1 1
|G Far = e ey a 049
Similarly,
T~ 2 = (6.50)

@2m4 [ -A™ (4m)2 (m—=1)(m—2)(m-3) A™~3"

Note that this second result is valid only when m > 3. When m = 3, the Wick
rotation cannot be justified, and the integral is in any event divergent. But it
is just this case that we need for (6.47).

We will eventually explore the physical meaning of this divergence, but
for the moment we simply introduce an artificial prescription to make our
integral finite. Go back to the original expression for the Feynman integral in
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(6.38), and replace in the photon propagator

(b—p)? +ic  (b—p2+ie  (k—p)? — A2 +ie

(6.51)

where A is a very large mass. The integrand is unaffected for small k (since
A is large), but cuts off smoothly when k¥ 2 A. We can think of the second
term as the propagator of a fictitious heavy photon, whose contribution is
subtracted from that of the ordinary photon. In terms involving the heavy
photon, the numerator algebra is unchanged and the denominator is altered
by

A — Ap = —zyg® + (1 — 2)*m? + zA% (6.52)

The integral (6.50) is then replaced with a convergent integral, which can be
Wick-rotated and evaluated:

d4€ 62 52 g4
@2n) ([ez—AP B wz—AAP) = / 4t ( L1 AF [f%fZAP)

_ @;—)2 log(%). (6.53)

The convergent terms in (6.47) are modified by terms of order A=2, which we
ignore.

This prescription for rendering Feynman integrals finite by introducing
fictitious heavy particles is known as Pauli- Villars reqularization. Please note
that the fictitious photon has no physical significance, and that this method
is only one of many for defining the divergent integrals. (We will discuss other
methods in the next chapter; see especially Problem 7.2.) We must hope that
the new parameter A will not appear in our final results for observable cross
sections.

Using formulae (6.49) and (6.53) to evaluate the integrals in (6.47), we
obtain an explicit, though complicated, expression for the one-loop vertex
correction:

M|Q

1
/ rdydz §(x+y+z—1)
0

xa(p/)< [log%+A((l z)(1-y)g® + (1-4z+2%)m )]

g,

[—i—%nzz(l—z)])u(p). (6.54)

2m

The bracketed expressions are our desired corrections to the form factors.
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Before we try to interpret this result, let us summarize the calculational
methods we used. The techniques are common to all loop calculations:

1. Draw the diagram(s) and write down the amplitude.

2. Introduce Feynman parameters to combine the denominators of the prop-
agators.

3. Complete the square in the new denominator by shifting to a new loop
momentum variable, £.

4. Write the numerator in terms of ¢. Drop odd powers of ¢, and rewrite
even powers using identities like (6.46).

5. Perform the momentum integral by means of a Wick rotation and four-
dimensional spherical coordinates.

The momentum integral in the last step will often be divergent. In that case
we must define (or regularize) the 1ntegral using the Pauli-Villars prescription
or some other device.

Now that we have parametrized the ultraviolet divergence in (6.54), let
us try to interpret it. Notice that the divergence appears in the worst possible
place: It corrects Fi (g = 0), which should (according to our discussion at the
end of the previous section) be fixed at the value 1. But this is the only effect
of the divergent term. We will therefore adopt a simple but completely ad hoc
fix for this difficulty: Subtract from the above expression a term proportional
to the zeroth-order vertex function (a(p’)y*u(p)), in such a way as to maintain
the condition F;(0) = 1. In other words, make the substitution

§F1(q%) — 6F1(q%) — 6F1(0) (6.55)

(where 6F; denotes the first-order correction to F}). The justification of this
procedure involves the minor correction to our S-matrix formula (4.103) men-
tioned in Section 4.6. In brief, the term we are subtracting corrects for our
omission of the external leg correction diagrams of (6.1). We postpone the
justification of this statement until Section 7.2.

There is also an infrared divergence in Fj(g?), coming from the 1/A term.
For example, at ¢ = 0 this term is

1
/dwdydzé(x+y+z—l) L—dz2? /dz /dy —2+(1-2)(3=2)
0

A(g?=0) m2 1-2)2

1

= / dz #iz)' + finite terms.
We can cure this disease by pretending that the photon has a small nonzero
mass y. Then in the denominator of the photon propagator, (k — p)? would
become (k — p)? — 2. This denominator was multiplied by z in (6.43), so the
net effect is to add a term zu? to A. We will discuss the infrared divergence
further in the next two sections.
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With both of these provisional modifications, the form factors are
1
Fi(g®>) =1+ % /dx dydz§(z+y+2—1)
0

< o ( m?(1—2)? ) m?(1—4z+22) + ¢*(1—z)(1-y)
& m2(1—2)2 — ¢?zy m2(1—2)2 — ?xy + p2z

m?(1—4z+22) .
- m] O(CY?), (656)
1
22(1-2
Fa(q?) =% /dxdydzé(x-l—y-f-z 1) [#ﬁ_qgw]-ﬂ—(’)(a%. (6.57)
0

Note that neither the ultraviolet nor the infrared divergence affects Fy(g?).
We can therefore evaluate unambiguously

1
2m?2(1 — 2)
Fy(¢* =0) = 2[4 dzé 1) —7———5
2(q 27r/acdy 26(x+y+z— )m2(1—z)2
0
1 1-2
e z o
== [d = . 6.58
7r/ z / 1—-2z 2m ( )
0 0
Thus, we get a correction to the g-factor of the electron:
g—2 «
=>— = — ~.0011614. .
Ge 7 o 00116 (6.59)

This result was first obtained by Schwinger in 1948.* Experiments give a, =
.0011597. Apparently, the unambiguous value that we obtained for F5(0) is
also, up to higher orders in a, unambiguously correct.

Precision Tests of QED

Building on the success of the order-a QED prediction for a., successive gener-
ations of physicists have improved the accuracy of both the theoretical and the
experimental determination of this quantity. The coefficients of the QED for-
mula, for a. are now known through order o. The calculation of the order-a?
and higher coefficients requires a systematic treatment of ultraviolet diver-
gences.

These challenging theoretical calculations have been matched by increas-
ingly imaginative experiments. The most recent measurement of a. uses a
technique, developed by Dehmelt and collaborators, in which individual elec-
trons are trapped in a system of electrostatic and magnetostatic fields and

*J. Schwinger, Phys. Rev. 73, 416L (1948).
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excited to a spin resonance.” Today, the best theoretical and experimental
values of a. agree to eight significant figures.

High-order QED calculations have also been carried dut for several other
quantities. These include transition energies in hydrogen and hydrogen-like
atoms, the anomalous magnetic moment of the muon, and the decay rates of
singlet and triplet positronium. Many of these quantities have also been mea-
sured to high precision. The full set of these comparisons gives a detailed test
of the validity of QED in a variety of settings. The results of these precision
tests are summarized in Table 6.1.

There is some subtlety in reporting the results of precision comparisons
between QED theory and experiment, since theoretical predictions require an
extremely precise value of «, which can only be obtained from another pre-
cision QED experiment. We therefore quote each comparison between theory
and experiment as an independent determination of a. Each value of « is as-
signed an error that is the composite of the expected uncertainties from theory
and experiment. QED is confirmed to the extent that the values of a from
different sources agree.

The first nine entries in Table 6.1 refer to QED calculations in atomic
physics settings. Of these, the hydrogen hyperfine splitting, measured using
Ramsey’s hydrogen maser, is the most precisely known quantity in physics.
Unfortunately, the influence of the internal structure of the proton leads to un-
certainties that limit the accuracy with which this quantity can be predicted
theoretically. The same difficulty applies to the Lamb shift, the splitting be-
tween the j = 1/2 25 and 2P levels of hydrogen. The most accurate QED
tests now come from systems that involve no strongly interacting particles,
the electron g—2 and the hyperfine splitting in the e~ u+ atom, muonium. The
last entry in this group gives a new method for determining «, by convert-
ing a very accurate measurement of the neutron Compton wavelength, using
accurately known mass ratios, to a value of the electron mass. This can be
combined with the known value of the Rydberg energy and accurate QED
formulae to determine a. The only serious discrepancy among these numbers
comes in the triplet positronium decay rate; however, there is some evidence
that diagrams of relative order a? give a large correction to the value quoted
in the table.

The next two entries are determinations of « from higher-order QED re-
actions at high-energy electron colliders. These high-energy experiments typi-
cally achieve only percent-level accuracy, but their results are consistent with
the precise information available at lower energies.

Finally, the last two entries in the table give two independent measure-
ments of o from exotic quantum interference phenomena in condensed-matter
systems. These two effects provide a standard resistance and a standard fre-
quency, respectively, which are believed to measure the charge of the electron

fR. Van Dyck, Jr., P. Schwinberg, and H. Dehmelt, Phys. Rev. Lett. 59, 26 (1987).
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Low-Energy QED:

Electron (g — 2)

Muon (g — 2)

Muonium hyperfine splitting

Lamb shift

Hydrogen hyperfine splitting
235,-138, splitting in positronium
1Sy positronium decay rate

38, positronium decay rate
Neutron compton wavelength

High-Energy QED:
olete” —ete ete)
olete™ —ete putu™)
Condensed Matter:
Quantum Hall effect

Radiative Corrections: Introduction

Table 6.1. Values of @~ Obtained from Precision QED Experiments

137.035 992 35 (73)
137.035 5 (1 1)
137.035 994 (18)
137.036 8 (7)
137.036 0 (3)
137.034 (16)

137.00 (6)

136.971 (6)

137.036 010 1 (5 4)

136.5 (2.7)
139.9 (1.2)

137.035 997 9 (3 2)

AC Josephson effect 137.035 9770 (7 7)
Each value of « displayed in this table is obtained by fitting an experimental
measurement to a theoretical expression that contains o as a parameter. The
numbers in parentheses are the standard errors in the last displayed digits,
including both theoretical and experimental uncertainties. This table is based
on results presented in the survey of precision QED of Kinoshita (1990). That
book contains a series of lucid reviews of the remarkable theoretical and ex-
perimental technology that has been developed for the detailed analysis of
QED processes. The five most accurate values are updated as given by T. Ki-
noshita in History of Original Ideas and Basic Discoveries in Particle Physics,
H. Newman and T. Ypsilantis, eds. (Plenum Press, New York, 1995). This
latter paper also gives an interesting perspective on the future of precision
QED experiments.

with corrections that are strictly zero for macroscropic systems.

The entire picture fits together well beyond any reasonable expectation.
On the evidence presented in this table, QED is the most stringently tested—
and the most dramatically successful—of all physical theories.

1For a discussion of these effects, and their exact relation to a, see D. R. Yennie,
Rev. Mod. Phys. 59, 781 (1987).
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6.4 The Electron Vertex Function: Infrared Divergence

Now let us confront the infrared divergence in our result (6.56) for F(q?).
The dominant part, in the g — 0 limit, is

m?(1-42+2°) + ¢*(1-z)(1-y)

Fi(¢®) =
i(a)~ m?(1—2)? — q?zy + p2z

SR

1
/d:z: dy dz §(z+y+z— 1)[
0

m?(1—42+2?)

m2(1—2)2 + p2z ]’

To understand this expression we must do some work to simplify it, extracting

and evaluating the divergent part of the integral. Throughout this section we
will retain only terms that diverge in the limit x — 0.

First note that the divergence occurs in the corner of Feynman-parameter

space where z ~ 1 (and therefore z ~ y ~ 0). In this region we can set z =1

and z = y = 0 in the numerators of (6.60). We can also set z = 1 in the y?

terms in the denominators. Using the delta function to evaluate the z-integral,
we then have

T _ 2 2 _ 2
Fl(q /dz/ 2m* +gq 2m
m2(1-2)2 — @?y(1—z—y) + 2 m2(1-2)% + 2
0

(The lower limit on the z-integral is unimportant.) Making the variable
changes

(6.60)

y=(1-2)§, w=(1-2),

this expression becomes

1 1
@ . \ —om? 4 g2 —om2
Fi(¢°) = o /df 2/d(w ) [[ 2 — g26(1-€)|w? + p? B m2w2+u2]

1
[ e ) )

In the limit 4 — 0 we can ignore the details of the numerators inside the
logarithms; anything proportional to m? or ¢2 is effectively the same. We
therefore write

2
2 _ 4 @ 9 q° orm
Fi(g®) =1~ 5 fin(q >log(——u )+0@>,  (66D)
where the coefficient of the divergent logarithm is

1

’ m? — g
fir(d?) O/ — 1/25))d€ ~1 (6.62)
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Since ¢? is negative and £(1—¢) has a maximum value of 1/4, the first term
is greater than 1 and hence fir(q?) is positive.

How does this infinite term affect the cross section for electron scattering
off a potential? Since Fj(q?) is just the quantity that multiplies v* in the
matrix element, we can find the new cross section by making the replacement
e — e- F1(g?). The cross section for the process p — p’ is therefore

;lg (do)o‘ 1- %fm(f)log(#;"ﬁ) +0(a?)], (6.63)

where the first factor is the tree-level result. Note that the O(a) correction
to the cross section is not only infinite, but negative. Something is terribly
wrong.

To gain a better understanding of the divergence, let us evaluate the
coefficient of the divergent logarithm, fir(q?), in the limit —¢? — oco. In this
limit, we find a second logarithm:

1

/dg —q2/2 / S ( equal contribution)
—q26(1-€) + mz = 2§ + m?2 from £ = 1

0

10g( ;:2 ) . (6.64)

The form factor in this limit is therefore

Fi(—¢* 5 00)=1- — log( ) log( 2 ) + 0(a?). (6.65)

Note that the numerator in the second logarithm is —g?, not m?2; this expres-
sion contains not only the correct coefficient of log(1/1?), but also the correct
coefficient of log?(g2).

The same double logarithm of —q? appeared in the cross section for soft
bremsstrahlung, Eq. (6.26). This correspondence points to a resolution of the
infrared divergence problem. Comparing (6.65) with (6.26), we find in the
limit —¢? — oo

=)= (5,11~ 21o8(55) os(55) + 0]
] , (6.66)

o=+ =(35),[ +Fres(E) es(S) + 0]

The separate cross sections are divergent, but their sum is independent of u
and therefore finite.

In fact, neither the elastic cross section nor the soft bremsstrahlung cross
section can be measured individually; only their sum is physically observable.
In any real experiment, a photon detector can detect photons only down to
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some minimum limiting energy E,. The probability that a scattering event
occurs and this detector does not see a photon is the sum

do do
dQ( —Pp ) + (p - p + ’Y(k < Eg)) (dﬂ)measured

The divergent part of thls “measured” cross section is

(6.67)

(8 s (1)o@ 108 ()

+;I(vv)log(i )+(’)( )]

We have just seen that Z(v,v’) = 2fir(q?) when —q? > m?. If the same
relation holds for general g2, the measured cross section becomes
2

which depends on the experimental conditions, but no longer on u?. The
infrared divergences from soft bremsstrahlung and from Fj(q?) cancel each
other, yielding a finite cross section for the quantity that can actually be
measured.

We must still verify the identity Z(v,v’) = 2fir(q?) for arbitrary values
of ¢2. From (6.13) we have

' 0 ! 2 2
I(v,v’)=/d—“( p M m ) (6.69)
4 \(k-p)k-p) (k-p)? (k-p)?
The last two terms are easy to evaluate:

1
o 1 _1/d6059 1 11
T (k-p)2 2 (p® —pcosf)2  p2  m?’
1

In the first term, we can combine the denominators with a Feynman parameter
and perform the integral in the same way:

dfh 1 / de dy 1
p)
1

Ar (k) (k- Ar [ek-p/ + (1-6)k - p]”

1
1 1
- 0/d€ [ep + (1-€)p]° O/d£ m? — £(1-€)¢*

(In the last step we have used 2p - p’ = 2m? — ¢2.) Putting all the terms of
(6.69) together, we find

1
I(v,v') / 2m’ ‘q e ) =2 = 2fm(d?), (6.70)
0
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just what we need to cancel the infrared divergence.

Although Eq. (6.68) demonstrates the cancellation of the infrared diver-
gence, this result has little practical use. An experimentalist would want to
know the precise dependence on g2, which we did not evaluate carefully. Re-
call from (6.65), however, that we were careful to obtain the correct coefficient
of log?(—¢?) in the limit —q2 > m2. In that limit, therefore, (6.68) becomes

(5) s = (28,1~ 2100(55 ) 0n( %) + 03] 671

This result is unambiguous and useful. Note that the O(a) correction again
involves the Sudakov double logarithm.

6.5 Summation and Interpretation
of Infrared Divergences

The discussion of infrared divergences in the previous section suffices for re-
moving the infinities from our bremsstrahlung and vertex-correction calcula-
tions. There are still, however, three points that we have not addressed:

1. We have not demonstrated the cancellation of infrared divergences beyond
the leading order.

2. The correction to the measured cross section that we found after the
infrared cancellation (Egs. (6.68) and (6.71)) can be made arbitrarily
negative by making photon detectors with a sufficiently low threshold E,.

3. We have not yet reproduced the classical result (6.19) for the number of
photons radiated during a collision.

The solutions of the second and third problems will follow immediately from
that of the first, to which we now turn.

A complete treatment of infrared divergences to all orders is beyond the
scope of this book.* We will discuss here only the terms with the largest
logarithmic enhancement at each order of perturbation theory. In general,
these terms are of order

2

2 n
«a —q —q
| (—) 1 (—) 6.72
(2 (2 o
in the nth order of perturbation theory. Our final physical conclusions were
first presented by Bloch and Nordsieck in a prescient paper written before the

invention of relativistic perturbation theory.! We will follow a modern, and
simplified, version of the analysis due to Weinberg.}

" *The definitive treatment is given in D. Yennie, S. Frautschi, and H. Suura, Ann.
Phys. 13, 379 (1961).

tF. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).
1S. Weinberg, Phys. Rev. 140, B516 (1965).
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Infrared divergences arise from photons with “soft” momenta: real pho-
tons with energy less than some cutoff E,, and virtual photons with (after
Wick rotation) k% < El?. A typical higher-order diagram will involve numer-
ous real and virtual photons. But to find a divergence, we need more than
a soft photon; we need a singular denominator in an electron propagator.
Consider, for example, the following two diagrams:

The first diagram, in which the electron emits a soft photon followed by a
hard photon, has no infrared divergence, since the momenta in both electron
propagators are far from the mass shell. If the soft photon is emitted last,
however, the denominator of the adjacent propagator is (p’ + k)? — m? =
2p’ - k, which vanishes as k — 0. Thus the second diagram does contain a
divergence. We would like, then, to consider diagrams in which an arbitrary
hard process, possibly involving emission of hard and soft photons, is modified
by the addition of soft real and virtual photons on the electron legs:

arbitrary
:Zﬁ and hard process
virtual
photons

Following Weinberg, we will add up the contributions of all such diagrams.
The only new difficulty in this calculation will be in the combinatorics of
counting all the ways in which the photons can appear.

First consider the outgoing electron line:

/

p /
p'+k
' p'+k1+ko
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We attach n photons to the line, with momenta k; . .. k,. For the moment we
do not care whether these are external photons, virtual photons connected to
each other, or virtual photons connected to vertices on the incoming electron
line. The Dirac structure of this diagram is

Wt m) iy W L+ fp + m)
2 k1 T 9y (ks + ka) + O(k?)

i +k+ K +m)

2 (ks + - ko) + O(K2)

u(p')(—iey"t)

(6.73)

oo (—deytn) (iMhnara) -+ -
We will assume that all the k; are small, dropping the O(k?) terms in the
denominators. We will also drop the ¥; terms in the numerators, just as in
our treatment of bremsstrahlung in Section 6.1. Also, as we did there, we can
push the factors of (g’ + m) to the left and use a(p’)(—p' + m) = 0:

a(p )y (P + m)y*2 (' +m) - =ap) 2 A2 (F +m) -
— a(p’) 2p/li1 2p'u2 een

This turns expression (6.73) into

(r) (eplfl':l) (ep"(’z:i“i kz)) (ep"(kl _1‘:”" + kn)) e (67

Still working with only the outgoing electron line, we must now sum over
all possible orderings of the momenta k; . . . k,. (This procedure will overcount
when two of the photons are attached together to form a single virtual photon.
We will deal with this overcounting later.) There are n! different diagrams to
sum, corresponding to the n! permutations of the n photon momenta. Let 7
denote one such permutation, so that 7(i) is the number between 1 and n that
i is taken to. (For example, if 7w denotes the permutation that takes 1 — 3,
2 — 1and 3 — 2, then 7(1) =3, m(2) =1, and 7(3) = 2.)

Armed with this notation, we can perform the sum over permutations by
means of the following identity:

1 1 1
2 P-kxry P (Br(ty + kn(2) P (kr() + En) + 0+ kn(n)

all permu-
tations 7

11 1
T pkipks pkn

(6.75)

The proof of this formula proceeds by induction on n. For n = 2 we have

Z 1 1 _ 1 1 n 1 1

— p-kr() P (kn)thn)  Prhip-(kitka)  p-kap-(k2tki)
1

—Mp-kz'
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For the induction step, notice that the last factor on the left-hand side of
(6.75) is the same for every permutation 7. Pulling this factor outside the
sum, the left-hand side becomes

1 1

1 1
LHS = .
p- Yk ; P key P (kr(yt+ke2))  P-(krqy + -+ kr(no1))

For any given 7, the quantity being summed is independent of k(). Letting
i = m(n), we can now write

n
2=
™ i=1 (i)

where 7/(i) is the set of all permutations on the remaining n — 1 integers.
Assuming by induction that (6.75) is true for n — 1, we have

1 &1
LHS =
p-Zk;p-klp

If we now multiply and divide each term in this sum by p- k;, we easily obtain
our desired result (6.75).
Applying (6.75) to (6.74), we find

/

1 1 1 1
ke pkicip-kiyn  poka

p

) (e 2 ) (e 22) o (22, (670)

-k ep’ ko ep’ -kn

kn

where the blob denotes a sum over all possible orders of inserting the n photon
lines.

A similar set of manipulations simplifies the sum over soft photon inser-
tions on the initial electron line. There, however, the propagator momenta are
p— k1, p— k1 — k2, and so on:

k
ky 3

kq

We therefore get an extra minus sign in the factor for each photon, since
(p—Xk)? —m? =~ —2p- Tk.
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Now consider diagrams containing a total of n soft photons, connected in
any possible order to the initial or final electron lines. The sum over all such
diagrams can be written

= u(p") iMnara u(p) )
6.77
‘e( pll"'l _ p#l ) .e( p’ﬂ? _ p/—'f2 ) ( )
p-ki p-ki p-ky p-ko
S /Hn Hn
soft .. p _p
6(p/’kn pkn)

By multiplying out all the factors, you can see that we get the correct term
for each possible way of dividing the n photons between the two lines.

Next we must decide which photons are real and which are virtual.

We can make a virtual photon by picking two photon momenta k; and k;,
setting k; = —k; = k, multiplying by the photon propagator, and integrating
over k. For each virtual photon we then obtain the expression

2 d4 k i / /
e—/ — (-2 (2 -2 )=x.  (679)
2 ) 2r)tk2+ie\p -k p-k -p -k -p-k
The factor of 1/2 is required because our procedure has counted each Feynman
diagram twice: interchanging k; and k; gives back the same diagram. It is
possible to evaluate this expression by careful contour integration, but there

is an easier way. Notice that this approximation scheme assigns to the diagram
with one loop and no external photons the value

a(pl)(iMhard)u(p) - X

Thus; X must be precisely the infrared limit of the one-loop correction to the
form factor, as displayed in (6.61):

2
X = —%fla(q2>log(j’2—). (6.79)

A direct derivation of this result from (6.78) is given in Weinberg’s paper cited
above. Note that result (6.79) followed in our argument of the previous sec-
tion only after the subtraction at ¢ = 0, and so we should worry whether
(6.79) is consistent with the corresponding subtraction of the nth-order dia-
gram. In addition, some of the diagrams we are summing contain external-leg
corrections, which we have not discussed. Here we simply remark that nei-
ther of these subtleties affects the final answer; the proof requires the heavy
machinery in the paper of Yennie, Frautschi, and Suura.

If there are m virtual photons we get m factors like (6.79), and also an
additional symmetry factor of 1/m! since interchanging virtual photons with
each other does not change the diagram. We can then sum over m to obtain
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the complete correction due to the presence of arbitrarily many soft virtual
photons:

(p,) (iMhard)u(p) exp(X). (680)

If in addition to the m virtual photons we also emit a real photon, we must
multiply by its polarization vector, sum over polarizations, and integrate the
squared matrix element over the photon’s phase space. This gives an additional
factor

d3 k1 9 p/,u pp, plu pu
—= —e“(—gu - — =Y 6.81
/(27r)32ke( g“)(p'-k p-k)(p'-k p-k) (6:81)
in the cross section. Assuming that the energy of the photon is greater than
u and less than FEy (the detector threshold), this expression is simply

2

Y = 7Tl’(v v )log(]i ) —fIR( )log(%). (6.82)

If n real photons are emitted we get m such factors, and also a symmetry
factor of 1/n! since there are n identical bosons in the final state. The cross
section for emission of any number of soft photons is therefore

[e9)

ngpap )= 36~ ) 30 Y = B ) ex(Y)

v n! dQ2
(6.83)
Combining our results for virtual and real photons gives our final result
for the measured cross section, to all orders in «, for the process p — p'+
(any number of photons with k < Ey):

(Z_;)meas. - (3_;)0 x exp(2X) x exp(Y)

2

_ (;j%)oxexp[-;fm@znog(;—f)]xexp[;fmmznog(%)]

- (82), x5 os

The correction factor depends on the detector sensitivity E,, but is indepen-
dent of the infrared cutoff u. Note that if we expand this result to O(a),
we recover our earlier result (6.68). Now, however, the correction factor is
controlled in magnitude—always between 0 and 1.

In the limit —q? > m?2, our result becomes

2
(38w = (),

2 2

o) 1s( 2z )]

(6.85)

exp [—2— log(
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In this limit, the probability of scattering without emitting a hard photon
decreases faster than any power of ¢?. The exponential correction factor, con-
taining the Sudakov double logarithm, is known as the Sudakov form factor.
To conclude this section, let us calculate the probability, in the same ap-
proximation, that some hard scattering process is accompanied by the produc-
tion of n soft photons, all with energies between F_ and E. . The phase-space
integral for these photons gives log(E, /E_) instead of log(E,/p). If we as-
sign photons with energy greater than E, to the “hard” part of the process,
we find that the cross section is given by (6.84), times the additional factor

. lra E2\1n
Prob(ny with E_<E<E,) = o [;fm(q2)log(—£—:’2"—)]
' - (6.86)

a 2 i
X €Xp [—;fm(q )10g(E—3)]-
This expression has the form of a Poisson distribution,
_ 1 n,—A
P(n) = ;L—')‘ e -,

with B
— () = Z1oe( 2t /
A={(n)= - log(E )I(v,v ).

This is precisely the semiclassical estimate of the number of radiated photons
that we made in Eq. (6.19).

Problems
6.1 Rosenbluth formula. As discussed Section 6.2, the exact electromagnetic in-

teraction vertex for a Dirac fermion can be written quite generally in terms of two
form factors Fi(g?) and F»(q?):

where ¢ = p’ —p and o#¥ = %i[v", 7¥]. If the fermion is a strongly interacting particle
such as the proton, the form factors reflect the structure that results from the strong
interactions and so are not easy to compute from first principles. However, these form
factors can be determined experimentally. Consider the scattering of an electron with
energy E > m, from a proton initially at rest. Show that the above expression for
the vertex leads to the following expression (the Rosenbluth formula) for the elastic
scattering cross section, computed to leading order in o but to all orders in the strong
interactions:

2 2 .
do Ta? [(F12 — L3 F2)cos? § — 315 (Fy + Fa)? sin %]

dcos — 2E2[1 + % sin? %] sin? %

’
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where 6 is the lab-frame scattering angle and F; and Fy are to be evaluated at the
g2 associated with elastic scattering at this angle. By measuring (do/dcosf) as a
function of angle, it is thus possible to extract F} and F». Note that when F; = 1 and
F; = 0, the Rosenbluth formula reduces to the Mott formula (in the massless limit)
for scattering off a point particle (see Problem 5.1).

6.2 Equivalent photon approximation. Consider the process in which electrons
of very high energy scatter from a target. In leading order in @, the electron is connected
to the target by one photon propagator. If the initial and final energies of the electron
are E and E’, the photon will carry momentum g such that ¢ ~ —2EE’(1 — cos ).
In the limit of forward scattering, whatever the energy loss, the photon momentum
approaches g2 = 0; thus the reaction is highly peaked in the forward direction. It is
tempting to guess that, in this limit, the virtual photon becomes a real photon. Let us
investigate in what sense that is true.

(a) The matrix element for the scattering process can be written as

~

M = (—ie)i(p' )y*u(p) “f}%“”M"(q),

where MY represents the (in general, complicated) coupling of the virtual photon
to the target. Let us analyze the structure of the piece @(p')y*u(p). Let ¢ =
(¢°,q), and define § = (¢%, —q). We can expand the spinor product as:

a(p')y*u(p) = A-¢* + B-¢" + C-¢f + D€},

where A, B, C, D are functions of the scattering angle and energy loss and ¢;
are two unit vectors transverse to q. By dotting this expression with g, show
that the coefficient B is at most of order §2. This will mean that we can ignore
it in the rest of the analysis. The coefficient A is large, but it is also irrelevant,
since, by the Ward identity, ¢ M, = 0.

(b) Working in the frame where p = (E, 0,0, E), compute explicitly
a(p')y - €zu(p)

using massless electrons, u(p) and u(p’) spinors of definite helicity, and €1, €3
unit vectors parallel and perpendicular to the plane of scattering. We need this
quantity only for scattering near the forward direction, and we need only the
term of order #. Note, however, that for € in the plane of scattering, the small 3
component of € also gives a term of order # which must be taken into account.

(c) Now write the expression for the electron scattering cross section, in terms of
|/\’/\l“\2 and the integral over phase space on the target side. This expression
must be integrated over the final electron momentum p’. The integral over p’3
is an integral over the energy loss of the electron. Show that the integral over
p'J_ diverges logarithmically as p’J_ or 6 — 0.

(d) The divergence as § — 0 appears because we have ignored the electron mass in
too many places. Show that reintroducing the electron mass in the expression
for ¢2,

¢® = —2(EE' — pp’ cos8) + 2m?,

cuts off the divergence and yields a factor of log(s/m?) in its place.
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Assembling all the factors, and assuming that the target cross sections are inde-
pendent of the photon polarization, show that the largest part of the electron-
target scattering cross section is given by considering the electron to be the
source of a beam of real photons with energy distribution (z = E/E):

Ny(z)dz = dfg [1+(1-2)% log(%).

This is the Weizsdcker-Williams equivalent photon approzimation. This phe-
nomenon allows us, for example, to study photon-photon scattering using ete™
collisions. Notice that the distribution we have found here is the same one that
appeared in Problem 5.5 when we considered soft photon emission before elec-
tron scattering. It should be clear that a parallel general derivation can be con-
structed for that case.

Exotic contributions to g — 2. Any particle that couples to the electron can

produce a correction to the electron-photon form factors and, in particular, a correction

tog—

2. Because the electron g—2 agrees with QED to high accuracy, these corrections

allow us to constrain the properties of hypothetical new particles.

€Y

(b)

()

The unified theory of weak and electromagnetic interactions contains a scalar
particle h called the Higgs boson, which couples to the electron according to

Hiny = d*z 7 hi/"l’
Compute the contribution of a virtual Higgs boson to the electron (g — 2), in
terms of A and the mass my of the Higgs boson.

QED accounts extremely well for the electron’s anomalous magnetic moment. If
a=(9-2)/2,

|aexpt. — aqED| < 1 x 10710
What limits does this place on A and mp? In the simplest version of the elec-
troweak theory, A = 3 x 1076 and mj, > 60 GeV. Show that these values are
not excluded. The coupling of the Higgs boson to the muon is larger by a fac-

tor (my/me): A = 6 x 10~4. Thus, although our experimental knowledge of the
muon anomalous magnetic moment is not as precise,

Iaexpt. — aQED| <3 x 10—8,

one can still obtain a stronger limit on my,. Is it strong enough?

Some more complex versions of this theory contain a pseudoscalar particle called
the azion, which couples to the electron according to

\/_

The axion may be as light as the electron, or lighter, and may couple more
strongly than the Higgs boson. Compute the contribution of a virtual axion to
the g — 2 of the electron, and work out the excluded values of A and mg.

Hiny = A LIy,



Chapter 7

Radiative Corrections:
Some Formal Developments

We cheated four times in the last three chapters,* stating (and sometimes
motivating) a result but postponing its proof. Those results were:

1. The formula for decay rates in terms of S-matrix elements, Eq. (4.86).

2. The master formula for S-matrix elements in terms of Feynman diagrams,
Eq. (4.103).

3. The Ward identity, Eq. (5.79).

4. The ad hoc subtraction to remove the ultraviolet divergence in the vertex-
correction diagram, Eq. (6.55).

It is time now to return to these issues and give them a proper treatment. In
Sections 7.2 through 7.4 we will derive all four of these results. The knowledge
we gain along the way will help us interpret the three remaining loop correc-
tions for electron scattering from a heavy target shown in (6.1): the external
leg corrections and the vacuum polarization. We will evaluate the former in
Section 7.1 and the latter in Section 7.5.

This chapter will be more abstract than the two preceding ones. Its main
theme will be the singularities of Feynman diagrams viewed as analytic func-
tions of their external momenta. We will find, however, that this apparently
esoteric subject is rich in physical implications, and that it illuminates the rela-
tion between Feynman diagrams and the general principles of quantum theory.

7.1 Field-Strength Renormalization

In this section we will investigate the analytic structure of the two-point cor-
relation function,

QTo(x)d(y) 1) or  (QUTY(2)9(y) ).
In a free field theory, the two-point function (0| T'¢(z)¢p(y)|0) has a simple
interpretation: It is the amplitude for a particle to propagate from y to z. To
what extent does this interpretation carry over into an interacting theory?

*A fifth cheat, postulating rather than deriving the photon propagator, will be
remedied in Chapter 9.

211
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Our analysis of the two-point function will rely only on general principles
of relativity and quantum mechanics; it will not depend on the nature of
the interactions or on an expansion in perturbation theory. We will, however,
restrict our consideration to scalar fields. Similar results can be obtained for
correlation functions of fields with spin; we will display the analogous result
for Dirac fields at the end of the analysis.

To dissect the two-point function (| T'¢(z)é(y)|2) we will insert the
identity operator, in the form of a sum over a complete set of states, between
¢(z) and ¢(y). We choose these states to be eigenstates of the full interacting
Hamiltonian, H. Since the momentum operator P commutes with H, we
can also choose the states to be eigenstates of P. But we can also make
a stronger use of Lorentz invariance. Let |A¢) be an eigenstate of H with
momentum zero: P |A\g) = 0. Then all the boosts of [Ag) are also eigenstates
of H, and these have all possible 3-momenta. Conversely, any eigenstate of H
with definite momentum can be written as the boost of some zero-momentum
eigenstate |Ag). The eigenvalues of the 4-momentum operator P* = (H,P)
organize themselves into hyperboloids, as shown in Fig. 7.1.

Recall from Chapter 2 that the completeness relation for the one-particle
states is-

dPp 1
(l)l—particle = /—(571.1;_32—@— Ip) (p|. (7.1)

We can write an analogous completeness relation for the entire Hilbert space
with the aid of a bit of notation. Let |Ap) be the boost of |Ag) with momen-
tum p, and assume that the states |\p), like the one-particle states |p), are
relativistically normalized. Let Ep(\) = 1/[p|? + m3, where m, is the “mass”
of the states |\p), that is, the energy of the state |\o). Then the desired com-
pleteness relation is

3
=20+ E [ oiam, P Ol (72)

where the sum runs over all zero-momentum states |Ag).

We now insert this expansion between the operators in the two-point
function. Assume for now that z° > ¢°. Let us drop the uninteresting constant
term (Q] ¢(z) |Q) (2] d(y) |Q). (This term is usually zero by symmetry; for
higher-spin fields, it is zero by Lorentz invariance.) The two-point function is
then

oo 2 =3 [ gm0 e Dol i) (7
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multiparticle
H\ continuum

one particle
in motion

one particle at rest

Figure 7.1. The eigenvalues of the 4-momentum operator P* = (H,P) oc-
cupy a set of hyperboloids in energy-momentum space. For a typical theory
the states consist of one or more particles of mass m. Thus there is a hyper-
boloid of one-particle states and a continuum of hyperboloids of two-particle
states, three-particle states, and so on. There may also be one or more bound-
state hyperboloids below the threshold for creation of two free particles.

We can manipulate the matrix elements as follows:
(21 6(z) | Ap) = (2 &7 7(0)e™ " |Ap)
= (Q] 6(0) Ap) e 7| o _p (7.4)
= (20 $(0) o) 7P| o -

The last equality is a result of the Lorentz invariance of (Q| and ¢(0): Insert
factors of U~1U, where U is the unitary operator that implements a Lorentz
boost from p to 0, and use Up(0)U~! = ¢(0). (For a field with spin, we would
need to keep track of its nontrivial Lorentz transformation.) Introducing an
integration over p°, our expression for the two-point function (still for z° > y°)
becomes

(@900 W) = 3 [ o e IO M. ()

Note the appearance of the Feynman propagator, Dp(z — y), but with m
replaced by my. ‘
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p(M?) &
1-particle
states
bound
states
2-particle
states
m? (2m)? M?

Figure 7.2. The spectral function p(M?) for a typical interacting field the-
ory. The one-particle states contribute a delta function at m? (the square of
the particle’s mass). Multiparticle states have a continuous spectrum begin-
ning at (2m)?. There may also be bound states.

Analogous expressions hold for the case y° > z°. Both cases can be sum-
marized in the following general representation of the two-point function (the
Kallén-Lehmann spectral representation):

F a2
@ITo(@ow)19) = [ G- M) De@ -5 M),  (16)

0

where p(M?) is a positive spectral density function,

p(M2) = 3" (2m)8(M? — m3)|(Q] $(0) [Xo)|”. (7.7)
A

The spectral density p(M?) for a typical theory is plotted in Fig. 7.2.
Note that the one-particle states contribute an isolated delta function to the
spectral density:

p(M?) = 21 §(M? — m?) - Z + (nothing else until M? % (2m)?),  (7.8)

where Z is some number given by the squared matrix element in (7.7). We
refer to Z as the field-strength renormalization. The quantity m is the exact
mass of a single particle—the exact energy eigenvalue at rest. This quantity
will in general differ from the value of the mass parameter that appears in the
Lagrangian. We will refer to the parameter in the Lagrangian as mg, the bare
mass, and refer to m as the physical mass of the ¢ boson. Only the physical
mass m is directly observable.

The spectral decomposition (7.6) yields the following form for the Fourier



7.1 Field-Strength Renormalization 215

Ll
m? (2m)?
L 4 *—o
isolated poles from branch cut
pole bound
states

Figure 7.3. Analytic structure in the complex p2-plane of the Fourier trans-
form of the two-point function for a typical theory. The one-particle states
contribute an isolated pole at the square of the particle mass. States of two
or more free particles give a branch cut, while bound states give additional
poles.

transform of the two-point function:

[o0)

[dwers @ro@oio = [ B ) b
2 p2—M?2+ie
0
. (7.9)
iZ dM? N i
T p2—m2+ie + / 27 (M )p2—M2+ie'
~4m?2

The analytic structure of this function in the complex p?-plane is shown in
Fig. 7.3. The first term gives an isolated simple pole at p?> = m2, while the
second term contributes a branch cut beginning at p? = (2m)2. If there are
any two-particle bound states, these will appear as additional delta functions
in p(M?) and thus as additional poles below the cut.

In Section 2.4, we found an explicit result for the two-point correlation
function in the theory of a free scalar field:

/d4:1: e (0| To(z)$(0) |0) =

i
Pt (7.10)
We interpreted this formula, for z° > 0, as the amplitude for a particle to
propagate from O to z. Equation (7.9) shows that the two-point function
takes a similar form in the most general theory of an interacting scalar field.
The general expression is essentially a sum of scalar propagation amplitudes
for states created from the vacuum by the field operator ¢(0). There are
two differences between (7.9) and (7.10). First, Eq. (7.9) contains the field-
strength renormalization factor Z = | (Ao| ¢(0) |2) |2, the probability for ¢(0)
to create a given state from the vacuum. In (7.10), this factor is included
implicitly, since (p| #(0) [0) = 1 in free field theory. Second, Eq. (7.9) contains
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contributions from multiparticle intermediate states with a continuous mass
spectrum. In free field theory, ¢(0) can create only a single particle from the
vacuum. With these two differences, (7.9) is a direct generalization of (7.10).

It will be important in our later analysis that the contributions to (7.9)
from one-particle and multiparticle intermediate states can be distinguished
by the strength of their analytic singularities. The poles in p? come only from
one-particle intermediate states, while multiparticle intermediate states give
weaker branch cut singularities. We will see in the next section that this rather
formal observation generalizes to higher-point correlation functions and plays
a crucial role in our derivation of the diagrammatic formula for S-matrix
elements.

‘The analysis of this section generalizes directly to two-point functions of
higher-spin fields. The main complication comes in the generalization of the
manipulation (7.4), since now the field has a nontrivial transformation law
under boosts. In general, several invariant spectral functions are required to
represent the multiparticle states. But this complication does not affect the
major result that a pole in p? can arise only from the contribution of a single-
particle state created by the field operator. The two-point function of Dirac
fields, for example, has the structure

/d4z e (Q| Ty (x)9(0) ) =

_ 1Z2(F+ m)
© p?—m?+ie

223, (0 (0) |

p? —m?2 +ie

(7.11)

?

where the omitted terms give the multiparticle branch cut. As in the scalar
case, the constant Z, is the probability for the quantum field to create or
annihilate an exact one-particle eigenstate of H:

(Q$(0)|p, s) = V22w’ (p). (7.12)

(For an antiparticle, replace v with ©.) At the pole, the Dirac two-point func-
tion is exactly that of a free field with the physical mass, aside from the
rescaling factor Zs.

An Example: The Electron Self-Energy

This nonperturbative analysis of the two-point correlation function has been
very different from our usual direct analysis of Feynman diagrams. But since
this derivation was done in complete generality, the singularity structure of
the two-point function that it implies ought also to be visible in a Feynman
diagram computation. In the rest of this section we will explicitly check our
results for the electron two-point function in QED.

The electron two-point function is equal to the sum of diagrams

QT = ——— + L0 4 )

Y T Y
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Each of these diagrams, according to the Feynman rules for correlation func-
tions, contains a factor of e~ (*~¥) for the two external points and an in-
tegration [(d*p/(27)*) over the momentum p carried by the initial and final
propagators. We will consistently omit these factors in this section; in other
words, each diagram will denote the corresponding term in the Fourier trans-
form of the two-point function.

The first diagram is just the free-field propagator:

i(F+mo
3 _ _Wtm) (7.14)
P p° —mg + 1€

Throughout this calculation, we will write mq instead of m as the mass in the
electron propagator. This makes explicit the fact noted above that the mass
appearing in the Lagrangian differs, in general, from the observable rest energy
of a particle. However, if a perturbation expansion is applicable, the leading-
order expression for the propagator should approximate the exact expression.
Indeed, the function (7.14) has a pole, of just the form of (7.11), at p? = m2.
We therefore expect that the complete expression for the two-point function
also has a pole of this form, at a slightly shifted location m? = mZ + O(«).

The second diagram in (7.13), called the electron self-energy, is somewhat
more complicated:

- p—k
(g4 mg) w i(# + mo)
p k p
where ,
, , d*k i(¥ + mq) —t
—ix = (- 2/ H . .
i2(p) = (—ie) (2m)* T m2 + ie Tu (p—k)? — p2 + ie (7.16)

(The notation X indicates that this is the second-order (in e) contribution to
a quantity ¥ that we will define below.) The integral 32 has an infrared
divergence, which we have regularized by adding a small photon mass pu.
Outside this integral, the diagram seems to have a double pole at p? = m2.
All in all, the form of this correction is quite unpleasant. But let us press on
and try to evaluate 3(p) using the calculational techniques developed for the
vertex correction in the Section 6.3. ’

First introduce a Feynman parameter to combine the two denominators:

1

1 1 / 1
- — = [dz
k?—mj+ie (p—k)?—p+ie ) [k*—2zk-ptap? —zp2—(1—z)m3+ie]”
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Now complete the square and define a shifted momentum ¢ = k—xp. Dropping
the term linear in ¢ from the numerator, we have

d*e —2x]/+ 4myg
— — 1
iXa(p e / / AT (7.17)

where A = —z(1—x)p? + zpu? + (1—z)m32. The integral over £ is divergent. To
evaluate it, we first regulate it using the Pauli-Villars procedure (6.51):
1 1 1
— - .
(p—k)2 —p2+ie  (p—k)2—p?2+ie (p—k)?2—A2+ie
The second term will have the same form as (7.17), but with x replaced by A.

As in Section 6.3, we now Wick-rotate and substitute the Euclidean variable
£, = —if°. This gives

d4r 1 i T 2 2
[ mar = wr / (g e~ e aT)

= (4+)2 log(%), (7.18)

where
Ap = —2(1—2)p* + zA% + (1—z)m3 P A%

The final result is therefore
1

A2
Yop) = % /da: (2mg — zp) log( z
0

(1—z)mf + zp? — z(1-xz)p? ) - (7.19)

Before discussing the divergences in this expression, let us work out its
analytic behavior as a function of p?. The logarithm in (7.19) has a branch
cut when its argument becomes negative, and for any fixed z this will occur
for sufficiently large p?. More exactly, the cut begins at the point where

(1—z)m2 + zp® — z(1—x)p* = 0.

Solving this equation for z, we find

s toms o PP Ami—p?)? mg
T2 Top2 2p? 4p* p?
T2 9p? 2p?

The branch cut of Eg(p ) begins at the minimum value of p? such that this
equation has a real solution for z between 0 and 1. This occurs when p? =
(mo + p)?, that is, at the threshold for creation of a two-particle (electron
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plus photon) state. In fact, it is a simple exercise in relativistic kinematics to
show that the square root in (7.20), written in the form

/[ = (mo + 2] [ — (mo — 7],

2./p? ,

is precisely the momentum in the center-of-mass frame for two particles of
mass mg and p and total energy \/1? It is natural that this momentum be-
comes real at the two-particle threshold. The location of the branch cut is
exactly where we would expect from the Kéllén-Lehmann spectral represen-
tation.t ‘

‘We have now located the two-particle branch cut predicted by the Kéallén-
Lehmann representation, but we have not found the expected simple pole at
p?> = m2. To find it we must actually include an infinite series of Feynman
diagrams. Fortunately, this series will be easily summed.

Let us define a one-particle irreducible (1PI) diagram to be any diagram
that cannot be split in two by removing a single line:

% is 1PI, while @ o is not.

Let —iX(p) denote the sum of all 1PI diagrams with two external fermion
lines:

_in(p) = —{IPl)~

T & O

(Although each diagram has two external lines, the Feynman propagators for
these lines are not to be included in the expression for X(p).) To leading order
in o we see that X = X.

The Fourier transform of the two-point function can now be written as

k=

/ d'z (T (x)(0) |0) e =

i(f + (¢ + o L+
- TR TR (7.22)

In real QED, p = 0 and the two-particle branch cut merges with the one-particle
pole. This subtlety plays a role in the full treatment of the cancellation of infrared
divergences, but it is beyond the scope of our present analysis.
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The first diagram has a simple pole at p? = m2. Each diagram in the second
class has a double pole at p> = m2. Each diagram in the third class has a
triple pole. The behavior near p> = m2 gets worse and worse as we include
more and more diagrams. But fortunately, the sum of all the diagrams forms
a geometric series. Note that X(p) commutes with g, since X(p) is a function
only of pure numbers and g. In fact, we can consider X(p) to be a function
of ¥, writing p? = (%)%2. Then we can rewrite each electron propagator as
i/(# — mp) and express the above series as

[dta @iTvpo)9) e
i i () i S(H) \2
= + + +o
¥ —mo ]f—mg(pf—m() I/—mo(ﬁ—mo)
_ 1
F—mo—X(#)
The full propagator has a simple pole, which is shifted away from mg by 3(#).

The location of this pole, the physical mass m, is the solution of the
equation

(7.23)

[¥—mo—2(#)] | ,_,,= O (7.24)

Notice that, if 3(p) is defined by the convention (7.21), then a positive con-
tribution to ¥ yields a positive shift of the electron mass. Close to the pole,
the denominator of (7.23) has the form

- (1- 5

Thus the full electron propagator has a single-particle pole of just the form
(7.11), with m given by (7.24) and

) +0((#-m)?). (7.25)

p=m

ds
Zyt=1-—| . (7.26)

Our explicit calculation of Yo allows us to compute the first corrections
to m and Zs. Let us begin with m. To order «, the mass shift is

6m=m—m0 :EQ(¢= m) %22(¢= mo). (727)
Thus, using (7.19),

1

a TA?
_ o _ . 7.28
om 5,0 /d:v (2—-2x) 10g<(1—a:)2m8 n x,u2> (7.28)
0

. The mass shift is ultraviolet divergent; the divergent term has the form

3a A2

A—o0
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Is it a problem that m differs from mg by a divergent quantity? This question
has two levels, those of concept and practice.

On the conceptual level, we should fully expect the mass of the electron
to be modified by its coupling to the electromagnetic field. In classical elec-
trodynamics, the rest energy of any charge is increased by the energy of its
electrostatic field, and this energy shift diverges in the case of a point charge:

1 e \° a [dr

In fact, it is puzzling why the divergence in (7.29) is so weak, logarithmic in
A rather than linear as in (7.30). To understand this feature, suppose that mq
were set to 0. Then the two helicity components of the electron field ¢, and
1r would not be coupled by any term in the QED Hamiltonian. This would
imply that perturbative corrections could never induce a coupling of v and
1R, nor, in particular, an electron mass term. In other words, ém must vanish
when mg = 0. The mass shift must therefore be proportional to mg, and so,
by dimensional analysis, it can depend only logarithmically on A.

On a practical level, the infinite mass shift casts doubt on our perturbative
calculations. For example, all of the theoretical results in Chapter 5 should
technically involve mg rather than m. To compare theory to experiment we
must eliminate mg in favor of m, using the relation mo = m+ O(«). Since the
“small” O(a) correction is infinite, the validity of this procedure is far from
obvious. The validity of perturbation theory would be more plausible if we
could compute Feynman diagrams using the propagator i/( — m), which has
the correct pole location, instead of i/(#—my). In Chapter 10 we will see how
to rearrange the perturbation series in such a way that myq is systematically
eliminated in favor of m and the zeroth-order propagator has its pole at the
physical mass. In the remainder of this chapter, we will continue to simply
replace mgy by m in expressions for order-a corrections.

Finally, let us examine the perturbative correction to Z,. From (7.26), we
find that the order-a correction §Z; = (Z3 — 1) is

d¥,
6Zy = o

p=m
1 ) ( ) ) (7.31)
a A z(l—x)m
= — [dz|-z] — .
27 / x[ v708 (1—x)2m?2 + op? +2(2-2) (1—z)2m? + zu?
0

This expression is also logarithmically ultraviolet divergent. We will discuss
the observability of this divergent term at the end of Section 7.2. However, it
is interesting to note, even before that discussion, that (7.31) is very similar
in form to the value of the ad hoc subtraction that we made in our calculation
of the electron vertex correction in Section 6.3. From Eq. (6.56), the value of
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this subtraction was

6F1(0) = / da dy dz §(z+y+2—1)
0

« o ( zA? ) (1—4z+2%)m?
& (1—2)2m2 + zp? (1—2)2m2 + zp?

1
=% /dz(l—z) [log((l_z) A 5)+ ((1_4z+z )mzz]. (7.32)

2m? + zu 1-2)2m2 + zp

Using the integration by parts

1

A? 2(1—2)m? — p?
/dz (1-22) log((1 gy o zu /dzz (1-2)——————— A—22m? 2.2
0

= ‘O/dz [(1—2) - ((11—,:))2(111;—212;;]’

it is not hard to show that 6F;(0) + 6Z2 = 0. This identity will play a crucial
role in justifying the ad hoc subtraction of Section 6.3.

7.2 The LSZ Reduction Formula

In the last section we saw that the Fourier transform of the two-point corre-
lation function, considered as an analytic function of p?, has a simple pole at
the mass of the one-particle state:

/ d*z e (Q Th(z)(0) |2 e iz (7.33)

m2 p? —m? +ie’

(Here and throughout this section we use the symbol ~ to mean that the poles
of both sides are identical; there are additional finite terms, given in this case
by Eq. (7.9).) In this section we will generalize this result to higher correlation
functions. We will derive a general relation between correlation functions and
S-matrix elements first obtained by Lehmann, Symanzik, and Zimmermann
and known as the LSZ reduction formula.} This result, combined with our
Feynman rules for computing correlation functions, will justify Eq. (4.103),
our master formula for S-matrix elements in terms of Feynman diagrams. For
simplicity, we will carry out the whole analysis for the case of scalar fields.

'H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo Cimento 1, 1425 (1955).
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The strategy of the argument will be as follows. To calculate the S-matrix
element for a 2-body — n-body scattering process, we begin with the corre-
lation function of n + 2 Heisenberg fields. Fourier-transforming with respect
to the coordinate of any one of these fields, we will find a pole of the form
(7.33) in the Fourier-transform variable p%. We will argue that the one-particle
states associated with these poles are in fact asymptotic states, that is, states
given by the limit of well-separated wavepackets as they become concentrated
around definite momenta. Taking the limit in which all n + 2 external parti-
cles go on-shell, we can then interpret the coefficient of the multiple pole as
an S-matrix element.

To begin, let us Fourier-transform the (n + 2)-point correlation function
with respect to one argument x. We must then analyze the integral

/d% e? T (QT{p(x)p(21)b(22) -~} 1) -

We would like to identify poles in the variable p°. To do this, divide the
integral over z° into three regions:

oo T T_
/dxo = /dmo + /d:vo + /da:g, (7.34)
T+ T_ —0o0

where T’ is much greater than all the 20 and 7_ is much less than all the 2.
Call these three intervals regions I, II, and III. Since region II is bounded and
the integrand depends on p® through the analytic function exp(ip®z®), the
contribution from this region will be analytic in p°. However, regions I and
I11, which are unbounded, may develop singularities in p°.

Consider first region 1. Here z° is the latest time, so ¢(x) stands first in
the time ordering. Insert a complete set of intermediate states in the form of

(7.2):
1—2/ s 3 P

The integral over region I then becomes

/de/d3xeiP z° —szZ/ d? q3 2E1 (Q](f)(ﬂ:) ')\ > (735)

T4
X (Aq|T{¢(21)¢(22) - } 12) .
Using Eq. (7.4),

<Q| ¢(‘7") |>‘q> = <Q| ¢(0) I)\()) e—‘iq-x|q0:Eq(>‘),
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and including a factor e~<*” to insure that the integral is well defined, this
integral becomes

Z/ /(27|- 3 2E P a:oe_iqozoe_ea;o (QI ¢(0) l/\0> (27!‘)36(3) (p _ q)
Aal T{d(z1) -} )

1ei(P — Bpti) 1

=;2EP(A)p T i (U90 ) [do) Ap| T{d(z1)---} Q).  (7.36)

The denominator is just that of Eq. (7.5): p?> — m3. There is an analytic
singularity in p°; as in Section 7.1, this singularity will be either a pole or
a branch cut depending upon whether or not the rest energy my is isolated.
The one-particle state corresponds to an isolated energy value p? = E;, =

V|p[? + m?, and at this point Eq. (7.36) has a pole:

/ diz e Q| T{d(x)(z) -} |9)
; (7.37)
~ T L0 .
A LR CCIRR I
The factor v/Z is the same field strength renormalization factor as in Eq. (7.8),
since it replaces the same matrix element as in (7.7).
To evaluate the contribution from region III, we would put ¢(z) last in the
operator ordering, then insert a complete set of states between T{qb(zl) . }
and ¢(z). Repeating the above argument produces a pole as p® — —FEp:

[z @i{s@t) - 119

~  (QT{¢(z1)}|-p)

pO_.,._

i (7.38)
—m2+ie

Next we would like to Fourier-transform with respect to the remaining
field coordinates. To keep the various external particles from interfering, how-
ever, we must isolate them from each other in space. Let us therefore repeat
the preceding calculation using a wavepacket rather than a simple Fourier
transform. In Eq. (7.35), replace

3 . .
/d4x e’ emipx _, /—(ZTI; /d“x P’ gmikox o(k), (7.39)

where (k) is a narrow distribution centered on k = p. This distribution con-
strains z to lie within a band, whose spatial extent is that of the wavepacket,
about the trajectory of a particle with momentum p. With this modification,
the right-hand side of (7.36) has a more complicated singularity structure:

1 1
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a3k ;
po:j,Ep/(gﬂ)a ok )~2 ,:lQ_HG\/_ (k| T{¢(z1)---} 1), (7.40)

where, in the second line, p = (po, k). The one-particle singularity is now a
branch cut, whose length is the width in momentum space of the wavepacket
(k). However, if ¢(k) defines the momentum narrowly, this branch cut
is very short, and (7.40) has a well-defined limit in which ¢(k) tends to
(2m)36®) (k — p) and the singularity of (7.40) sharpens up to the pole of
(7.36). The singularity due to single-particle states in the far past, Eq. (7.38),
is modified in the same way.

Now consider integrating each of the coordinates in the (n + 2)-point
correlation function against a wavepacket, to form*

(1:[ / (‘f;r’“)g / d4zieiﬁi-xi(pi(ki)> QT {p(x1)d(z2) -} Q). (7.41)

The wavepackets should be chosen to overlap in a region around z = 0 and to
separate in the far past and the far future. To analyze this integral, we choose
a large positive time Ty such that all of the wavepackets are well separated
for 20 > T, and we choose a large negative time T_ such that all of the
wavepackets are well separated for 20 < T_. Then we can break up each of
the integrals over z¥ into three regions as in (7.34). The integral of any z{
over the bounded region II leads to an expression analytic in the corresponding
energy pj, so we can concentrate on the case in which all of the z? are placed
at large past or future times.

For definiteness, consider the contribution in which only two of the time
coordinates, = and 3, are in the future. In this case, the fields ¢(z;) and
¢(z2) stand to the left of the other fields in time order. Inserting a complete
set of states |Ak), the integrations in (7.41) over the coordinates of these two
fields take the form

dBK 1 iBazs
ZfzﬂszEK(H/z )3/‘“’ “”(k))
% (O T{$(a1)d(22)} ) e T{8() -} 9.

The state |MAk) is annihilated by two field operators constrained to lie in
distant wavepackets. It must therefore consist of two distinct excitations of
the vacuum at two distinct locations. If these excitations are well separated,

*As in Section 4.5, the product symbol applies symbolically to the integrations as
well as to the other factors within the parentheses; the x; integrals apply to what lies
outside the parentheses as well.
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they should be independent of one another, so we can approximate

5 [ st AT st} i O

3 3
- Z / 271?)13 21;’q (6;:—1)23 Q;q (Q ¢(z1) [ Aqr) (U B(22) [Aqs) (Aay Ags ] -

The sums over A; and Ag in this equation run over all zero-momentum
states, but only single-particle states will contribute the poles we are looking
for. In this case, the integrals over =¥ and q; produce a sharp singularity in
p{ of the form of (7.40), and the integrals over zJ and g produce the same
singular behavior in p3. The term in (7.41) with both singularities is

(IL/ dSks% n22+ - \/E) (kika| T{d(zs) -} 9.

In the limit in which the wavepackets tend to delta functions concentrated at
definite momenta p; and ps, this expression tends to

( 11 - ‘/Z) out{P1P2| T{¢(23) -} ).

22
i=1,2p’ me+ie

The state (p1p2| is precisely an out state as defined in Section 4.5, since it
is the definite-momentum limit of a state of particles constrained to well-
separated wavepackets. Applying the same analysis to the times z{ in the far
past gives the result that the coefficient of the maximally singular term in
the corresponding p? is a matrix element with an in state. This most singular
term in (7.41) thus has the form

i i
(11_11,2 pi?—m?+ie . \/Z> (111—3:,[ pi?—m?2+ie ‘ \/Z) 0ut<P1P2| Ps .>in.
The last factor is just an S-matrix element.

We have now shown that we can extract the value of an S-matrix ele-
ment by folding the corresponding vacuum expectation value of fields with
wavepackets, extracting the leading singularities in the energies p?, and then
taking the limit as these wavepackets become delta functions of momenta.
However, the computation would be made much simpler if we could do these
operations in the reverse order—first letting the wavepackets become delta
functions, returning us to the simple Fourier transform, and then extracting
the singularities. In fact, the result for the leading singularity is not changed
by this switch of the order of operations. It is, however, rather subtle to argue
this point. Roughly, the explanation is the following: In the language of the
analysis just completed, new singularities might arise because, in the Fourier
transform, z; and x2 can become close together in the far future. However,
in this region, the exponential factor is close to exp[i(p1+p2) - z1], and thus
the new singularities are single poles in the variable (p$ + p3), rather than
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being products of poles in the two separate energy variables. A more care-
ful argument (unfortunately, couched in a rather different language) can be
found in the original paper of Lehmann, Symanzik, and Zimmermann cited
at the beginning of this section.

Given the ability to make this reversal in the order of operations, we
obtain a precise relation between Fourier transforms of correlation functions
and S-matrix elements. This is the LSZ reduction formula:

H /d4:c,~ Gip"'zi H /d4yj e—ik"'yj <Ql T{¢($1) ot ¢(xn)¢(y1) e ¢(ym)} |Q>
1 1

~ copal STy ko)
each p?—+Ep, (l - p? m2+ze) (H k- m2+ze) (p1---Pal Slks m)

each k) —+Ei; (7.42)

The quantity Z that appears in this equation is exactly the field-strength
renormalization constant, defined in Section 7.1 as the residue of the single-
particle pole in the two-point function of fields. Each distinct particle will
have a distinct renormalization factor Z, obtained from its own two-point
function. For higher-spin fields, each factor of v/Z comes with a polarization
factor such as u®(p), as in Eq. (7.12). The polarization s must be summed
over in the second line of (7.42).

In words, the LSZ formula says that an S-matrix element can be computed
as follows. Compute the appropriate Fourier-transformed correlation function,
look at the region of momentum space where the external particles are near
the mass shell, and identify the coefficient of the multiparticle pole. For fields
with spin, one must also multiply by a polarization spinor (like u®(p)) or
vector (like e"(k)) to project out the desired spin state.

Our next goal is to express this procedure in the language of Feynman
diagrams. Let us analyze the relation between the diagrammatic expansion of
the scalar field four-point function and the S-matrix element for 2-particle —
2-particle scattering. We will consider explicitly the fully connected Feynman
diagrams contributing to the correlator. By a similar analysis, it is easy to
confirm that disconnected diagrams should be disregarded because they do
not have the singularity structure, with a product of four poles, indicated on
the right-hand side of (7.42).

The exact four-point function

(f[ / diz; eipi.z,) (f[ / d4yie—iki~yi> QU T{d(z1)p(z2)d(y1)B(y2) } )

has the general form shown in Fig. 7.4. In this figure, we have indicated
explicitly the diagrammatic corrections on each leg; the shaded circle in the
center represents the sum of all amputated four-point diagrams.

We can sum up the corrections to each external leg just as we did for the
electron propagator in the previous section. Let —iM?(p?) denote the sum of
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Figure 7.4. Structure of the exact four-point function in scalar field theory.

all one-particle-irreducible (1PI) insertions into the scalar propagator:

‘-Z'MQ(pQ) — O + 8 + @ 4+ e = _({@7

Then the exact propagator can be written as a geometric series and summed
as in Eq. (7.23):

T Lo (i
— & i . g e ! . ..
+ —{1PT— + —f\@ﬁ@-— +

i
— + M) 4
2 p2—m(2)( )p2—mg

)
" - mg - M)

(7.43)

Notice that, as in the case of the electron propagator, our sign convention
for the 1P1I self-energy M?(p?) implies that a positive contribution to M?2(p?)
corresponds to a positive shift of the scalar particle mass. If we expand each
resummed propagator about the physical particle pole, we see that each ex-
ternal leg of the four-point amplitude contributes
i iz
-~ ~ ———— + (regular). 7.44
p2—m3—M2p°~Epp2—m2+( gular) (49
Thus, the sum of diagrams contains a product of four poles:
iz iz iz A
—m? p3 —m?2 k¥ —m? kZ —m?’

p?

This is exactly the singularity on the second line of (7.42). Comparing the
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coefficients of this product of poles, we find the relation

4 Y4t b2
(P1p2| S [kike) = (VZ) @ ,

ki ko

where the shaded circle is the sum of amputated four-point diagrams and Z
is the field-strength renormalization factor.

An identical analysis can be applied to the Fourier transform of the (n +
2)-point correlator in a general field theory. The relation between S-matrix
elements and Feynman diagrams then takes the form

(7.45)

(If the external particles are of different species, each has its own renormal-
ization factor v/Z; if the particles have nonzero spin, there will be additional
polarization factors such as u*(k) on the right-hand side.) This is almost pre-
cisely the diagrammatic formula for the S-matrix that we wrote down in
Section 4.6. The only new feature is the appearance of the renormalization
factors v/Z. The Z factors are irrelevant for calculations at the leading order
of perturbation theory, but are important in the calculation of higher-order
corrections. ’

Up to this point, we have performed only one full calculation of a higher-
order correction, the computation of the order-a corrections to the electron
form factors. We did not take into account the effects of the electron field-
strength renormalization. Let us now add in this factor and examine its effects.

Since the expressions (6.28) and (6.30) for electron scattering from a heavy
target were derived using our previous, incorrect formula for S-matrix ele-
ments, we should correct these formulae by inserting factors of /Z5 for the
initial and final electrons. Equation (6.33) for the structure of the exact vertex
should then read

iohvq,
ZTH (0, p) = v File) + 5L Fale?), (7-48)
with T#(p’, p) the sum of amputated electron-photon vertex diagrams.
We can use this equation to reevaluate the form factors to order a. Since
Zy = 1+ O(a) and F; begins in order «, our previous computation of F is
unaffected. To compute F, write the left-hand side of (7.46) as

ZoTH = (14 82Z5)(Y* + 6TH) = 4# + 8T% + y# . 6Z,,

where 6Z; and 6I'* denote the order-a corrections to these quantities. Com-
paring to the right-hand side of (7.46), we see that Fj(g?) receives a new
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contribution equal to §Z;. Now let §F;(q?) denote the (unsubtracted) correc-
tion to the form factor that we computed in Section 6.3, and recall from the
end of-Section 7.1 that §Z; = —6F1(0). Then

Fi(¢®) = 1+ 6F1(¢°) + 82, = 1 + [6F1(¢%) — 6F1(0)).

This is exactly the result we claimed, but did not prove, in Section 6.3. The
inclusion of field-strength renormalization justifies the subtraction procedure
that we applied on an ad hoc basis there.

At this level of analysis, it is difficult to see how the cancellation of di-
vergences in Fj will persist to higher orders. Worse, though we argued in
Section 6.3 for the general result Fy(0) = 1, our verification of this result in
order a seems to depend on a numerical coincidence.

We can state this problem carefully as follows: Define a second rescaling
factor Z; by the relation

TH(g =0) = Z; "7, (7.47)

where T'* is the complete amputated vertex function. To find F;(0) = 1,
we must prove the identity Z; = Zs, so that the vertex rescaling exactly
compensates the electron field-strength renormalization. We will prove this
identity to all orders in perturbation theory at the end Section 7.4.

We conclude our discussion of the LSZ reduction formula with one fur-
ther formal observation. The LSZ formula distinguishes in and out particles
only by the sign of the Fourier transform momentum p{ or k?. This means
that, by analytically continuing the residue of the pole in p? from positive
to negative p°, we can convert the S-matrix element with ¢(p) in the final
state into the S-matrix element with the antiparticle ¢*(—p) in the initial
state. This is exactly the statement of crossing symmetry, which we derived
diagrammatically in Section 5.4:

(@IS Mo =[S g7 (R) ).

Since the proof of the LSZ formula does not depend on perturbation theory, we
see that the crossing symmetry of the S-matrix is a general result of quantum
theory, not merely a property of Feynman diagrams.

7.3 The Optical Theorem

In Section 7.1 we saw that the two-point correlation function of quantum
fields, viewed as an analytic function of the momentum p?, has branch cut
singularities associated with multiparticle intermediate states. This conclusion
should not be surprising to those familiar with nonrelativistic scattering the-
ory, since it is already true there that the scattering amplitude, as a function
of energy, has a branch cut on the positive real axis. The imaginary part of
the scattering amplitude appears as a discontinuity across this branch cut. By
the optical theorem, the imaginary part of the forward scattering amplitude is
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Figure 7.5. The optical theorem: The imaginary part of a forward scattering
amplitude arises from a sum of contributions from all possible intermediate-
state particles.

proportional to the total cross section. We will now prove the field-theoretic
version of the optical theorem and illustrate how it arises in Feynman diagram
calculations.

The optical theorem is a straightforward consequence of the unitarity of
the S-matrix: STS = 1. Inserting S = 1 + 47 as in (4.72), we have

—i(T - T =T'T. (7.48)

Let us take the matrix element of this equation between two-particle states
|p1p2) and |kikg). To evaluate the right-hand side, insert a complete set of
intermediate states:

g 1
(P1p2| T'T [kiks) = H/ q32E P1P2|T1|{Qi}><{Qi}|T|k1k2>~

Now express the T-matrix elements as invariant matrix elements M times
4-momentum-conserving delta functions. Identity (7.48) then becomes

_ i[M(klkz — p1p2) — M*(p1pz — k1k2)]
- Z H/ (;71-‘1)13 2_}5 M*(p1p2 — {g:})M(k1ke — {q:})

X (271')46(4) (k1+k2— E Qi)»

times an overall delta function (27)46*¥) (k;+ky—p1—p2). Let us abbreviate
this identity as

CiMa—b) - Mo a)] =Y /dnf Mb— M(a— f), (7.49)
f

where the sum runs over all possible sets f of final-state particles. Although
we have so far assumed that a and b are two-particle states, they could equally
well be one-particle or multiparticle asymptotic states.

For the important special case of forward scattering, we can set p; =
k; to obtain a simpler identity, shown pictorially in Fig. 7.5. Supplying the
kinematic factors required by (4.79) to build a cross section, we obtain the
standard form of the optical theorem,

Im M(kla k2 - kl) k2) = 2Ecmpcm0'tot(k1a k2 - a'nything)’ (7'50)



232 Chapter 7 Radiative Corrections: Some Formal Developments

where E.p, is the total center-of-mass energy and pcn, is the momentum of ei-
ther particle in the center-of-mass frame. This equation relates the forward
scattering amplitude to the total cross section for production of all final states.
Since the imaginary part of the forward scattering amplitude gives the atten-
uation of the forward-going wave as the beam passes through the target, it is
natural that this quantity should be proportional to the probability of scat-
tering. Identity (7.50) gives the precise connection.

The Optical Theorem for Feynman Diagrams

Let us now investigate how this identity for the imaginary part of an S-
matrix element arises in the Feynman diagram expansion. It is easily checked
(in QED, for example) that each diagram contributing to an S-matrix element
M is purely real unless some denominators vanish, so that the ie prescription
for treating the poles becomes relevant. A Feynman diagram thus yields an
imaginary part for M only when the virtual particles in the diagram go on-
shell. We will now show how to isolate and compute this imaginary part.

For our present purposes, let us define M by the Feynman rules for per-
turbation theory. This allows us to consider M(s) as an analytic function of
the complex variable s = E2_, even though S-matrix elements are defined
only for external particles with real momenta.

We first demonstrate that the appearance of an imaginary part of M(s)
always requires a branch cut singularity. Let so be the threshold energy for
production of the lightest multiparticle state. For real s below sy the interme-
diate state cannot go on-shell, so M(s) is real. Thus, for real s < sy, we have
the identity

M(s) = [M(sM)]". (7.51)

Each side of this equation is an analytic function of s, so it can be analytically
continued to the entire complex s plane. In particular, near the real axis for
s > so, Eq. (7.51) implies

Re M(s + i) = Re M(s — ie);
Im M(s + i€) = —Im M(s — ie).

There is a branch cut across the real axis, starting at the threshold energy so;
the discontinuity across the cut is

Disc M(s) = 2iIm M(s + te).

Usually it is easier to compute the discontinuity of a diagram than to compute
the imaginary part directly. The ie prescription in the Feynman propagator
indicates that physical scattering amplitudes should be evaluated above the
cut, at s 4 te.

We already saw in Section 7.1 that the electron self-energy diagram has
a branch cut beginning at the physical electron-photon threshold. Let us now
study more general one-loop diagrams, and show that their discontinuities
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give precisely the imaginary parts required by (7.49). The generalization of
this result to multiloop diagrams has been proven by Cutkosky,! who showed
in the process that the discontinuity of a Feynman diagram across its branch
cut is always given by a simple set of cutting rules.?

We begin by checking (7.49) in ¢* theory. Since the right-hand side of
(7.49) begins in order A%, we expect that Im M should also receive its first
contribution from higher-order diagrams. Consider, then, the order-A? dia-
gram

[STE

—q §+q k=k + ko
kl kg

with a loop in the s-channel. (It is easy to check that the corresponding ¢- and
u-channel diagrams have no branch cut singularities for s above threshold.)
The total momentum is k = k; + k2, and for simplicity we have chosen the
symmetrical routing of momenta shown above. The value of this Feynman
diagram is

; A2 d*q 1 1
M=y / (2m)% (k/2 — @)% — m2 +ie (k/2 + q)* — m? + i€ (7.52)

When this integral is evaluated using the methods of Section 6.3, the Wick
rotation produces an extra factor of 7, so that, below threshold, é M is purely
real.

We would like to verify that the integral (7.52) has a discontinuity across
the real axis in the physical region k° > 2m. It is easiest to identify this
discontinuity by computing the integral for k¥° < 2m, then increasing k° by
analytic continuation. It is not difficult to compute the integral directly using
Feynman parameters (see Problem 7.1). However, it is illuminating to use a
less direct approach, as follows.

Let us work in the center-of-mass frame, where k = (k% 0). Then the
integrand of (7.52) has four poles in the integration variable ¢°, at the locations

=Lk £ (Eq—ie), ¢" =LK+ (Eq—ie).

'R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).

tThese rules are simple only for singularities in the physical region. Away from
the physical region, the singularities of three- and higher-point amplitudes can become
quite intricate. This subject is reviewed in R. J. Eden, P. V. Landshoff, D. I. Olive,
and J. C. Polkinghorne, The Analytic S-Matrix (Cambridge University Press, 1966).
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Two of these poles lie above the real ¢° axis and two lie below, as shown:

~1K0-Eq  3°-Eq ‘ ra

\ i
y

[ ] [ ]
—1kO+Eq KO+ Eq

We will close the integration contour downward and pick up the residues of the
poles in the lower half-plane. Of these, only the pole at ¢° = —(1/2)k? + Eq4
will contribute to the discontinuity. Note that picking up the residue of this
pole is equivalent to replacing

1
(k/2+ q)2 —m? + ie

— —2mi§((k/2 + q)® —m?) (7.53)

under the dq® integral.
The contribution of this pole yields the integral

X [ d3q 1 1
M = — 2mis
oM ™% ] @n)i2E, (K — Eq)? — B2
v 1 1 (7.54)
m
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The integrand in the second line has a pole at Eq = k°/2. When k° < 2m,
this pole does not lie on the integration contour, so M is manifestly real.
When k® > 2m, however, the pole lies just above or below the contour of
integration, depending upon whether k° is given a small positive or negative
imaginary part:

: | =

- > or ‘ o*—> —

m [ ]

Thus the integral acquires a discontinuity between k2 + ie and k? — ie. To
compute this discontinuity, apply
1
— =P
kO — 2Eq £ i€ kO —2Eq

T imé(k° — 2Eq)

(where P denotes the principal value). The discontinuity is given by replacing
the pole with a delta function. This in turn is equivalent to replacing the
original propagator by a delta function:
1
(k/2 —q)2 —m? +ie

— —2mib((k/2 — q)* — m?). (7.55)
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Figure 7.6. Two contributions to the optical theorem for Bhabha scattering.

Let us now retrace our steps and see what we have proved. Go back to
the original integral (7.52), relabel the momenta on the two propagators as
p1, p2 and substitute

4 4 4
/ (3734 - / (t;f)l‘l / ((;:)24 (2m)*6™ (p1 + p2 — k).

We have shown that the discontinuity of the integral is computed by replacing
each of the two propagators by a delta function:

1
p? —m?2 + e

— —2mib(p? — m?). (7.56)

The discontinuity of M comes only from the region of the d*q integral in which
the two delta functions are simultaneously satisfied. By integrating over the
delta functions, we put the momenta p; on shell and convert the integrals
d*p; into integrals over relativistic phase space. What is left over in expres-
sion (7.52) is just the factor A2, the square of the leading-order scattering
amplitude, and the symmetry factor (1/2), which can be reinterpreted as the
symmetry factor for identical bosons in the final state. Thus we have shown
that, to order A? on each side of the equation,

Disc M (k) = 2i Im M(k)

J d? p1 1 d3 D
B (27r)13 2E; (27) 23 2E, | M(k) | (2m)*6W (py + p2 — k).

This explicitly verifies (7.49) to order A2 in ¢* theory.

The preceding argument made no essential use of the fact that the two
propagators in the diagram had equal masses, or of the fact that these propa-
gators connected to a simple point vertex. Indeed, the analysis can be applied
to an arbitrary one-loop diagram. Whenever, in the region of momentum in-
tegration of the diagram, two propagators can simultaneously go on-shell, we
can follow the argument above to compute a nonzero discontinuity of M.
The value of this discontinuity is given by making the substitution (7.56) for
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each of the two propagators. For example, in the order-o? Bhabha scattering
diagrams shown in Fig. 7.6, we can compute the imaginary parts by cutting
through the diagrams as shown and putting the cut propagators on shell using
(7.56). The poles of the additional propagators in the diagrams do not con-
tribute to the discontinuities. By integrating over the delta functions as in the
previous paragraph, we derive the indicated relations between the imaginary
parts of these diagrams and contributions to the total cross section.

Cutkosky proved that this method of computing discontinuities is com-
pletely general. The physical discontinuity of any Feynman diagram is given
by the following algorithm:

1. Cut through the diagram in all possible ways such that the cut propaga-
tors can simultaneously be put on shell.

2. For each cut, replace 1/(p?—m?+i€) — —2mié(p?—m?) in each cut prop-
agator, then perform the loop integrals.

3. Sum the contributions of all possible cuts.

Using these cutting rules, it is possible to prove the optical theorem (7.49) to
all orders in perturbation theory.

Unstable Particles

The cutting rules imply that the generalized optical theorem (7.49) is true
not only for S-matrix elements, but for any amplitudes M that we can define
in terms of Feynman diagrams. This fact is extremely useful for dealing with
unstable particles, which never appear in asymptotic states.

Recall from Eq. (7.43) that the exact two-point function for a scalar par-
ticle has the form
B i

P = M)

We defined the quantity —iM?2(p?) as the sum of all 1PI insertions into the
boson propagator, but we can equally well think of it as the sum of all am-
putated diagrams for 1-particle — 1-particle “scattering”. The LSZ formula
then implies

M(p — p) = —ZM?*(p?). (7.57)

We can use this relation and the generalized optical theorem (7.49) to discuss
the imaginary part of M2(p?).

First consider the familiar case where the scalar boson is stable. In this
case, there is no possible final state that can contribute to the right-hand side
of (7.49). Thus M?(m?) is real. The position of the pole in the propagator is
determined by the equation m? — m2 — M?(m?) = 0, which has a real-valued
solution m. The pole therefore lies on the real p? axis, below the multiparticle
branch cut.

Often, however, a particle can decay into two or more lighter particles.
In this case M?2(p?) will acquire an imaginary part, so we must modify our
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definitions slightly. Let us define the particle’s mass m by the condition
m? —m3 — Re M?*(m?) = 0. (7.58)
Then the pole in the propagator is displaced from the real axis:
iz
p? —m? —iZIm M2(p?)’
If this propagator appears in the s channel of a Feynman diagram, the cross
section one computes, in the vicinity of the pole, will have the form
L i (7.59)
s—m2—iZImM?(s)| )
This expression closely resembles the relativistic Breit-Wigner formula (4.64)
for the cross section in the region of a resonance:

1 2
_—. 7.60
p?2 —m?2 +imll (7.60)

o X

o X

The mass m defined by (7.58) is the position of the resonance. If Im M?(m?) is
small, so that the resonance in (7.59) is narrow, we can approximate Im M?2(s)
as ITm M?(m?) over the width of the resonance; then (7.59) will have precisely
the Breit-Wigner form. In this case, we can identify

r= —% Im M?%(m?). (7.61)

If the resonance is broad, it will show deviations from the Breit-Wigner shape,
generally becoming narrower on the leading edge and broader on the trailing
edge.

To compute Im M?2, and hence I', we could use the definition of M? as the
sum of 1PI insertions into the propagator. The imaginary parts of the relevant
loop diagrams give the decay rate. But the optical theorem (7.49), generalized
to Feynman diagrams by the Cutkosky rules, simplifies this procedure. If we
take (7.57) as the definition of the matrix element M(p — p), and similarly
define the decay matrix elements M(p — f) through their Feynman diagram
expansions, then (7.49) implies

1
Z1m M) = ~TmM(p—p) = =5 3 [dIL M- NP, (762
f
where the sum runs over all possible final states f. The decay rate is therefore
1 2
Y [angme— oy, (7.63)

as quoted in Eq. (4.86).

We stress once again that our derivation of this equation applies only
to the case of a long-lived unstable particle, so that I' < m. For a broad
resonance, the full energy dependence of M?(p?) must be taken into account.
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7.4 The Ward-Takahashi Identity

Of the loose ends listed at the beginning of this chapter, only one remains, the
proof of the Ward identity. Recall from Section 5.5 that this identity states
the following: If M(k) = €,(k)M* (k) is the amplitude for some QED process
involving an external photon with momentum k, then this amplitude vanishes
if we replace €, with k,:

k MP (k) = 0. (7.64)

To prove this assertion, it is useful to prove a more general identity for QED
correlation functions, called the Ward-Takahashi identity. To discuss this more
general case we will let M denote a Fourier-transformed correlation function,
in which the external momenta are not necessarily on-shell. The right-hand
side of (7.64) will contain nonzero terms in this case; but when we apply the
LSZ formula to extract an S-matrix element, those terms will not contribute.

We will prove the Ward-Takahashi identity order by order in «, by looking
directly at the Feynman diagrams that contribute to M(k). The identity is
generally not true for individual Feynman diagrams; we must sum over the
diagrams for M (k) at any given order.

Consider a typical diagram for a typical amplitude M(k):

If we remove the photon v(k), we obtain a simpler diagram which is part
of a simpler amplitude M. If we reinsert the photon somewhere else inside
the simpler diagram, we again obtain a contribution to M(k). The crucial
observation is that by summing over all the diagrams that contribute to My,
then summing over all possible points of insertion in each of these diagrams,
we obtain M(k). The Ward-Takahashi identity is true individually for each
diagram contributing to M, once we sum over insertion points; this is what
we will prove.

- When we insert our photon into one of the diagrams of My, it must attach
either to an electron line that runs out of the diagram to two external points,
or to an internal electron loop. Let us consider each of these cases in turn.

First suppose that the electron line runs between external points. Before
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we insert our photon <y(k), the line looks like this:

/

L Py B2 i X
K

TQn TQ3 TQ2 Tth

The electron propagators have momenta p, p1 = p + q1, P2 = p1 + ¢2, and so
on up to p’ = pn_1 + @». If there are n vertices, we can insert our photon in
n + 1 different places. Suppose we insert it after the ith vertex:

VE

P'j‘k piv1+k  pitk Di P

<% € ¢ —-

T% ?‘h’—{-l qu' Tch

The electron propagators to the left of the new photon then have their mo-
menta increased by k.

Let us now look at the values of these diagrams, with the polarization
vector €, (k) replaced by k,. The product of k, with the new vertex is conve-
niently written:

—iek, Y = —ie[(ﬁi +K-m)— (¥ — m)]
Multiplying by the adjacent electron propagators, we obtain

I/H-;—m (_iek)m%m = e<¢iim - ]jﬁ;_m). (7.65)

The diagram with the photon inserted at position ¢ therefore has the structure

ik

—(;) >\i+1< [ _ i ) i
o PiprtK—m v #i—-m  pitk-m 7

qu' ><< i )7/\1'-1...
Pioi—m

Similarly, the diagram with the photon inserted at position ¢ — 1 has the
structure

i Xit1 i Ai
’ (ml%—m)” (mw—m)”

x ( g - ¢ ) Aic1
Pici—m P tK-—m 7 '

Note that the first term of this expression cancels the second term of the
previous expression. A similar cancellation occurs between any other pair of
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diagrams with adjacent insertions. When we sum over all possible insertion
points along the line, everything cancels except the unpaired terms at the
ends. The unpaired term coming from insertion after the last vertex (on the
far left) is just e times the value of the original diagram; the other unpaired
- term, from insertion before the first vertex, is identical except for a minus sign
and the replacement of p by p + k everywhere. Diagrammatically, our result

1S
q—k q
D p+k

where we have renamed p’ + k — ¢ for the sake of symmetry.

In each diagram on the left-hand side of (7.66), the momentum entering
the electron line is p and the momentum exiting is g. According to the LSZ
formula, we can extract from each diagram a contribution to an S-matrix
element by taking the coefficient of the product of poles

() ()
The terms on the right-hand side of (7.66) each contain one of these poles,
but neither contains both poles. Thus the right-hand side of (7.66) contributes
nothing to the S-matrix.*
To complete the proof of the Ward-Takahashi identity, we must consider

the case in which our photon attaches to an internal electron loop. Before the
insertion of the photon, a typical loop looks like this:

D kur |

insertion
points

\02

*This step of the argument is straightforward only if we have arranged the per-
turbation series so that the propagator contains m rather than mg. We will do this in
Chapter 10.
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The electron propagators have momenta p;, p1 + g2 = p2, and so on up to p,.
Suppose now that we insert the photon (k) between vertices ¢ and i + 1:

\Qi . /q2

pit1+k
qi+1

We now have an additional momentum k running around the loop from the
new vertex; by convention, this momentum exits at vertex 1.

To evaluate the sum over all such insertions into the loop, apply iden-
tity (7.65) to each diagram. For the diagram in which the photon is inserted
between vertices 1 and 2, we obtain

d4p1 ) n 1 2
~¢) @n)e “[(mw—m)”k "'(mw—m)“

g (mz—m - m+;—m)"h]'

The first term will be canceled by one of the terms from the diagram with
the photon inserted between vertices 2 and 3. Similar cancellations take place
between terms from other pairs of adjacent insertions. When we sum over all
n insertion points we are left with

[l =) ) ()

I P W (R v SO LI oS
(ﬁnw—m)” (m_ﬁk—m)” (mk—m)” ]
(7.67)

Shifting the integration variable from p; to p; + k in the second term, we see
that the two remaining terms cancel. Thus the diagrams in which the photon
is inserted along a closed loop add up to zero.

We are now ready to assemble the pieces of the proof. Suppose that the
amplitude M has 2n external electron lines, n incoming and n outgoing. Label
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the incoming momenta p; and the outgoing momenta g;:

M(k;pr Pnsar - gn) =

(The amplitude can also involve an arbitrary number of additional external
photons.) The amplitude M, lacks the photon (k) but is otherwise identical.
To form k,M* from M, we must sum over all diagrams that contribute to
My, and for each diagram, sum over all points at which the photon could be
inserted. Summing over insertion points along an internal loop in any diagram
gives zero. Summing over insertion points along a through-going line in any
diagram gives a contribution of the form (7.66). Summing over all insertion
points for any particular diagram, we obtain

(q1°+qn) (q1---(q:i—k)-) (q1---qn)

Z Fu- |n _k,
insertion
/1

points
(p1°+Pn) (p1++Pn) (1 (pitk)-)

where the shaded circle represents any particular diagram that contributes
to Mp. Summing over all such diagrams, we finally obtain

B MO (ki1 Pai@r - an) = €D [Mo(pr -+ paiar - (a—k) )
i (7.68)
—Mo(pl"'(pi+k)"';QI"'(In)]~

This is the Ward-Takahashi identity for correlation functions in QED. We saw
below (7.66) that the right-hand side does not contribute to the S-matrix; thus
in the special case where M is an S-matrix element, Eq. (7.68) reduces to the
Ward identity (7.64).

Before discussing this identity further, we should mention a potential flaw
in the above proof. In order to find the necessary cancellation in Eq. (7.67),
we had to shift the integration variable by a constant. If the integral diverges,
however, this shift is not permissible. Similarly, there may be divergent loop-
momentum integrals in the expressions leading to Eq. (7.66). Here there is
no explicit shift in the proof, but in practice one does generally perform a
shift while evaluating the integrals. In either case, ultraviolet divergences can
potentially invalidate the Ward-Takahashi identity. We will see an example of
this problem, as well as a general solution to it, in the next section.
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The simplest example of the Ward-Takahashi identity involves, on the left-
hand side, the three-point function with one entering and one exiting electron
and one external photon:

I

The quantities on the right-hand side are exact electron propagators, evalu-
ated at p and (p + k) respectively. Label these quantities S(p) and S(p + k);
from Eq. (7.23),
i

- #-m—-E(p)

The full three-point amplitude on the left-hand side can be rewritten, just
as in Eq. (7.44), as a product of full propagators for the entering and exiting
electrons, times an amputated scattering diagram. In this case, the amputated

function is just the vertex I'“(p + k,p). Then the Ward-Takahashi identity
reads:

S(p)

S(p + k) [—iek, T (p+ k,p)]| S(p) = e(S(p) — S(p + k).

To simplify this equation, multiply, on the left and right respectively, by the
Dirac matrices S~!(p + k) and S~*(p). This gives

—ik,T*(p+k,p) = S~ (p+ k) — S71(p). (7.69)

Often the term Ward-Takahashi identity is used to mean only this special
case.

We can use identity (7.69) to obtain the general relation between the
renormalization factors Z; and Z;. We defined Z; in (7.47) by the relation

TH(p+k,p) = Z 7" as k—0.
We defined Z, as the residue of the pole in S(p):
123
g—m

Setting p near mass shell and expanding (7.69) about k = 0, we find for the
first-order terms on the left and right

—iZ7 K= ~iZ; 'K,

S(p) ~

that is,
Zy = Zs. (7.70)
Thus, the Ward-Takahashi identity guarantees the exact cancellation of infi-

nite rescaling factors in the electron scattering amplitude that we found at
the end of Section 7.2. When combined with the correct formal expression
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(7.46) for the electron form factors, this identity guarantees that F;(0) = 1
to all orders in perturbation theory.

Often, in the literature, the terms Ward identity, current conservation,
and gauge invariance are used interchangeably. This is quite natural, since
the Ward identity is the diagrammatic expression of the conservation of the
electric current, which is in turn a consequence of gauge invariance. In this
book, however, we will distinguish these three concepts. By gauge invariance
we mean the fundamental symmetry of the Lagrangian; by current conserva-
tion we mean the equation of motion that follows from this symmetry; and
by the Ward identity we mean the diagrammatic identity that imposes the
symmetry on quantum mechanical amplitudes.

7.5 Renormalization of the Electric Charge

At the beginning of Chapter 6 we set out to study the order-a radiative
corrections to electron scattering from a heavy target. We evaluated (at least
in the classical limit) the bremsstrahlung diagrams,

S

and also the corrections due to virtual photons:

e

Our discussion of field-strength renormalization in this chapter has finally
clarified the role of the last two diagrams. In particular, we have seen that
the Ward identity, through the relation Z; = Z,, insures that the sum of the
virtual photon corrections vanishes as the momentum transfer g goes to zero.
There is one remaining type of radiative correction to this process:

o

This is the order-a vacuum polarization diagram, also known as the photon
self-energy. It can be viewed as a modification to the photon structure by a
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virtual electron-positron pair. This diagram will alter the effective field A*(x)
seen by the scattered electron. It can potentially shift the overall strength of
this field, and -can also change its dependence on z (or in Fourier space, on
q). In this section we will compute this diagram, and see that it has both of
these effects.

Overview of Charge Renormalization

Before beginning a detailed calculation, let’s ask what kind of an answer we
expect and what its interpretation will be. The interesting part of the diagram
is the electron loop:

k+q
, d*k i i
by v =(ieP-) [ 5 tr[wk_mv .=
k =[5 (q). (7.71)

(The fermion loop factor of (—1) was derived in Eq. (4.120).) More generally,
let us define iIT*¥(g) to be the sum of all 1-particle-irreducible insertions into
the photon propagator,

o v =il1*(q), (7.72)
q

so that IT15”(q) is the second-order (in e) contribution to IT#¥(q).

The only tensors that can appear in IT#¥(q) are g*¥ and g*¢”. The Ward
identity, however, tells us that g,II*"(q) = 0. This implies that II**(q) is
proportional to the projector (g"¥ — g#q"/q?). Furthermore, we expect that
I1*¥(q) will not have a pole at g2 = 0; the only obvious source of such a pole
would be a single-massless-particle intermediate state, which cannot occur in
any 1PI diagram.? It is therefore convenient to extract the tensor structure
from II*¥ in the following way:

" (q) = (¢*g" — ¢"¢")TI(%), (7.73)

where I1(g?) is regular at g2 = 0.
Using this notation, the exact photon two-point function is

= AP + AP A

_ T | ~iGup . 2 oyiT(q2y] ~%9ov
—q—2+q—2[i(q 9*° —4¢q°)(q )] PP +oe

v

tOne can prove that there is no such pole, but the proof is nontrivial. Schwinger
has shown that, in two spacetime dimensions, the singularity in II3 due to a pair of
massless fermions is a pole rather than a cut; this is a famous counterexample to our
argument. There is no such problem in four dimensions.
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G | —1g —1g

= T O APTI(?) + TR AGATTE () + -,
q q q

where Af = 6£ — ¢°q,/q*. Noking that A2AS = Af, we can simplify this

expression to

_ T, e (5o T 2) £ 12(g2) + - - -
= 2t (e q2)(H(q)+H(q)+ )

= a0~ ) @ U)o

In any S-matrix element calculation, at least one end of this exact prop-
agator will connect to a fermion line. When we sum over all places along the
line where it could connect, we must find, according to the Ward identity,
that terms proportional to g, or g, vanish. For the purposes of computing
S-matrix elements, therefore, we can abbreviate

_ _ig/,w

Ny = m (7.75)

Notice that as long as TI(g?) is regular at ¢> = 0, the exact propagator always
has a pole at g?> = 0. In other words, the photon remains absolutely massless
at all orders in perturbation theory. This claim depends strongly on our use of
the Ward identity in (7.73). If, for example, IT#¥(q) contained a term M?2g~”
(with no compensating ¢#¢” term), the photon mass would be shifted to M.
The residue of the g2 = 0 pole is
1
=) - 2

The amplitude for any low-g? scattering process will be shifted by this factor,
relative to the tree-level approximation:

or

Since a factor of e lies at each end of the photon propagator, we can con-
veniently account for this shift by making the replacement e — \/Z3e. This
replacement is called charge renormalization; it is in many ways analogous to
the mass renormalization introduced in Section 7.1. Note in particular that
the “physical” electron charge measured in experiments is /Z3e. We will
therefore shift our notation and call this quantity simply e. From now on we
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will refer to the “bare” charge (the quantity that multiplies A,1y*t in the
Lagrangian) as eg. We then have

(physical charge) = e = \/Z3eg = v/ Z3 - (bare charge). (7.76)

To lowest order, Z3 = 1 and e = eg.

In addition to this constant shift in the strength of the electric charge,
I1(g?) has another effect. Consider a scattering process with nonzero ¢, and
suppose that we have computed I1(q?) to leading order in a: I1(¢?) = M2(q?).
The amplitude for the process will then involve the quantity

(i td) o (i [n2<q22> TT0(0) )

(Swapping e? for e3 does not matter to lowest order.) The quantity in paren-
theses can be interpreted as a g-dependent electric charge. The full effect of
replacing the tree-level photon propagator with the exact photon propagator
is therefore to replace

ed/ar a
1-T1(¢?) 0@ 1 — [Ma(g?) — I2(0)]

ag — aenr(q%) = (7.77)

(To leading order we could just as well bring the II-terms into the numerator;
but we will see in Chapter 12 that in this form, the expression is true to all
orders when IIs is replaced by II.)

Computation of IT,

Having worked so hard to interpret I15(g?), we had better calculate it. Going
back to (7.71), we have

4 . m . o
o0 e )

a2 / d*k kP (k+q)” + k¥ (k+q)* — g (k- (k+q) — m?)
=7 ) ene (k2 = m?) ((k+q) — m?) ‘

(7.78)

We have written e and m instead of eg and mg for convenience, since the
difference would give only an order-o? contribution to II*¥.
Now introduce a Feynman parameter to combine the denominator factors:

1

1 1
(k2 — m2) ((k+q)2 —m?2) /da: (k2 + 22k -q + zq% — m?)?

0
h 1
= /dac 3
J (2 + z(1-z)¢* — m?)
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where ¢ = k + zq. In terms of ¢, the numerator of (7.78) is
Numerator = 2¢#¢* — g ¢* — 2z(1-z)g"q” + g** (m* + z(1—2)q?)
+ (terms linear in £).

Performing a Wick rotation and substituting £° = i¢%,, we obtain

1

" . de

ill4" (q) = —4ie? /dx/ﬁ
0

| T390+ g~ 20(1-2)g g + g (m +3(1-2)0°)
(2 +A)? ’

where A = m? — z(1—x)q?. This integral is very badly ultraviolet divergent.
If we were to cut it off at £g = A, we would find for the leading term,

{15 (q) o< e2AgH,

with no compensating g*¢” term. This result violates the Ward identity; it
would give the photon an infinite mass M « eA.

Our proof of the Ward identity has failed, in precisely the way anticipated
at the end of the previous section: The shift of the integration variable in (7.67)
is not permissible when the integral is divergent. In our present calculation,
the failure of the Ward identity is catastrophic: It leads to an infinite photon
mass,} in conflict with experiment. Fortunately, there is a way to rescue the
Ward identity.

In the above analysis we regulated the divergent integral in the most
straightforward and most naive way: by cutting it off at a large momentum A.
But other regulators are possible, and some will in fact preserve the Ward iden-
tity. In our computations of the vertex and electron self-energy diagrams, we
used a Pauli-Villars regulator. This regulator preserved the relation Z; = Z3,
a consequence of the Ward identity; a naive cutoff does not (see Problem 7.2).
We could fix our present computation by introducing Pauli-Villars fermions.
Unfortunately, several sets of fermions are required, making the method rather
complicated.* We will use a simpler method, dimensional reqularization, due
to 't Hooft and Veltman.! Dimensional regularization preserves the symme-
tries of QED and also of a wide class of more general theories.

The question of which regulator to use has no a prior: answer in quantum
field theory. Often the choice has no effect on the predictions of the theory.

(7.79)

2

fWe could still make the observed photon mass zero by adding a compensating
infinite photon mass term to the Lagrangian. More generally, we could add terms to
the Lagrangian to make the Ward identity valid for any n-point correlation function.
This procedure would give the same results as the one we are about to follow, but
would be much more complicated.

*This method is presented in Bjorken and Drell (1964), p. 154.
tG. *t Hooft and M. J. G. Veltman, Nucl. Phys. B44, 189 (1972).
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When two regulators give different answers for observable quantities, it is gen-
erally because some symmetry (such as the Ward identity) is being violated
by one (or both) of them. In these cases we take the symmetry to be funda-
mental and demand that it be preserved by the regulator. But the validity of
this choice cannot be proven; we are adopting the symmetry as a new axiom.

Dimensional Regularization

The idea of dimensional regularization is very simple to state: Compute the
Feynman diagram as an analytic function of the dimensionality of space-
time, d. For sufficiently small d, any loop-momentum integral will converge
and therefore the Ward identity can be proved. The final expression for any
observable quantity should have a well-defined limit as d — 4.

Let us do a practice calculation to see how this technique works. We
consider spacetime to have one time dimension and (d — 1) space dimensions.
Then we can Wick-rotate Feynman integrals as before, to give integrals over
a d-dimensional Euclidean space. A typical example is

ity 1 aQ, I P
| G @var=/ (W‘O/ Yo iap 730

The first factor in (7.80) contains the area of a unit sphere in d dimensions.
To compute it, use the following trick:

(V)= </dac e_w2>d = /dda: exp(—:1 mf)
i d

= /de dratle™™ = (/de) %/d(m2) (x2)%_le_(z2)
0

0

= ( / de) - 11(d/2).

So the area of a d-dimensional unit sphere is

/ Qg = 2n0? (7.81)
T'(d/2)

This formula reproduces the familiar special cases:

d T'(d/2) [ dQq
1 NS 2

2 1 2

3 V)2 4
4 1 272
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The second factor in (7.80) is

7 p-1 ® (2)8-1
O/d"m—aofd“z)m

where we have substituted z = A/(¢2 + A) in the second line. Using the
definition of the beta function,

/dw 1 (1-2)?"! = B(a, B) = %, (7.82)
0

we can easily evaluate the integral over z. The final result for the d-dimensional
integral is

dg 1 1 T(-$,1\2-%
/(27r)d (62 + A2 (4m)%/2 T(2) (K) '

Since I'(z) has isolated poles at = = 0, —1, —2,..., this integral has
isolated poles at d = 4, 6, 8,.... To find the behavior near d = 4, define
€ =4 —d, and use the approximation?

r@-2) = T(e/2) = % 4+ 0), (7.83)

where v & .5772 is the Euler-Mascheroni constant. (This constant will always
cancel in observable quantities.) The integral is then

d
/% (% _*1_ A)2 ! @(% —log A — v + log(4m) + (9(6)). (7.84)

When we defined this integral with a Pauli-Villars regulator in Eq. (7.18), we

found . )
ditp 1 1 zA .
/ 2m)* (% + A)2 Amoo (47)2 (log » tol ))'

Thus the 1/e pole in dimensional regularization corresponds to a logarith-
mic divergence in the momentum integral. Note the curious fact that (7.84)

{This expansion follows immediately from the infinite product representation

1 Sad z
I, 7 ~ —z/n'
) ze Hl(1+n>e

n=
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involves the logarithm of A, a dimensionful quantity. The scale of the loga-
rithm is hidden in the 1/€ term, and appears explicitly when the divergence
is canceled.

You can easily verify the more general integration formulae,

ddEE 1 1 ]_"(rn_i) 1 n-%.

/(27r)d (62 + A)n = (47)d/2 P(n)z (_A_) ; (7.85)
dg £ 1 dD(n—2-1),1\n—%-1

/(2#)‘1 (4% -:JA)n - (47)d/2 2 F(TZL) (Z) . (7.86)

In d dimensions, g** obeys g,,g*” = d. Thus, if the numerator of a symmetric
integrand contains ¢#¢”, we should replace '

e 532 g, (7.87)

in analogy with Eq. (6.46). In QED, the Dirac matrices can be manipulated
as a set of d matrices satisfying

{¥v*, 4"} = 2¢", tr[l] = 4. (7.88)

In manipulating Eq. (7.78), these rules give the same result as the purely
four-dimensional rules. However, in the evaluation of other diagrams, there
are additional contributions of order €. In particular, the contraction identities
(5.9) are modified in d =4 — € to

VA = —(2—€)y”
VA APy =497 — ey y? (7.89)
YA AV = =297V + ey PO
These extra terms can contribute to the final value of the Feynman diagram
if they multiply a factor ¢! from a divergent integral. In QED at one-loop

order, such extra terms appear in the vertex and self-energy diagrams but
cancel when these diagrams are combined to compute an observable quantity.

Computation of IT;, Continued

Now let us apply these dimensional regularization formulae to the momentum
integral in (7.79). The unpleasant terms with ¢2 in the numerator give

d s (—2 4+ 1)gHve2 1 . )
/ (2”;( @ +)Z)2 “ - (4w)d/z(1—%>F(1—%’>(z) 2o

1 1\2—4
e (3 o

We would have expected a pole at d = 2, since the quadratic divergence in 4
dimensions becomes a logarithmic divergence in 2 dimensions. But the pole
cancels. The Ward identity is working.
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Evaluating the remaining terms in (7.79) and using A = m?

we obtain

- IL’(l—.’L’)q2,

1
) 1 T@2-9
BV(N g2 2
115 (q) = —4ie /d:c (@)1 AT=d/2
0

x [g" (—m® + z(1-2)¢?) + g** (m® + z(1-7)¢®) — 2z(1—2)g"¢"]
= (¢*g™ — ¢"q") - illa(g?),
where

—8e2 ; _d
(g2 = (47T8W /d:c z(l—z) % (7.90)
0

1

2c 2
P dzz(l—a:)(z —logA——'y+log(47r)) (e=4—d).
0

With dimensional regularization, II5”(q) indeed takes the form required by
the Ward identity. But it is still logarithmically divergent.
We can now compute the order-a shift in the electric charge:
2 _ 2
e’ —ej 2a
=623 = I3(0) = ——.
ed 3 o) 2(0) 3e

The bare charge is infinitely larger than the observed charge. But this dif-
ference is not observable. What can be observed is the ¢? dependence of the
effective electric charge (7.77). This quantity depends on the difference

1
~ a 2
fla(g?) = Ta(e?) ~ 1a0) = =2 [doa(i=2) lok(s—r—rz)» (791)
0

which is independent of € in the limit ¢ — 0. For the rest of this section we
will investigate what physics this expression contains.
Interpretation of Il,

First consider the analytic structure of ﬁ2 (g%). For g2 < 0, as is the case when
the photon propagator is in the ¢- or u-channel, ﬁ2(q2) is manifestly real and
analytic. But for an s-channel process, ¢?> will be positive. The logarithm
function has a branch cut when its argument becomes negative, that is, when

m? — z(1-x)q* < 0.
The product z(1—z) is at most 1/4, so I15(g?) has a branch cut beginning at
¢* = 4m?,

at the threshold for creation of a real electron-positron pair.
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Let us calculate the imaginary part of I, for g2 > 4m?. For any fixed ¢2,
the z-values that contribute are between the points = = % + % 3, where 3 =

V1 —4m?/¢?. Since Im[log(—X + ic)] = £, we have
3+38
= 2 . 2OL
Im([Il(¢° +i€)] = - (£m) dzz(l—2x)
B

=
D=

B/2
=TF2a / dy (3 —v%) (y=z—-3)
—B/2
a 4m? 2m?2
e B iy (T 7.92
*3 q? ( * qz) (7.92)

This dependence on ¢? is exactly the same as in Eq. (5.13), the cross section for
production of a fermion-antifermion pair. That is just what we would expect
from the unitarity relation shown in Fig. 7.6(b); the cut through the diagram
for forward Bhabha scattering gives the total cross section for ete™ — ff.
The parameter 3 is precisely the velocity of the fermions in the center-of-mass
frame. N

Next let us examine how II2(¢?) modifies the electromagnetic interaction,
as determined by Eq. (7.77). In the nonrelativistic limit it makes sense to
compute the potential V(r). For the interaction between unlike charges, we
have, in analogy with Eq. (4.126),

_ d3q iq-x _62
V(x) = / np et PR L (7.93)

Expanding I, for |g?| < m?, we obtain

a  4a?
Vix)=—— -
(x) r 15m?2
The correction term indicates that the electromagnetic force becomes much
stronger at small distances. This effect can be measured in the hydrogen atom,
where the energy levels are shifted by

2 2
88 [ vl (557 679) = 5z O

The wavefunction 1(x) is nonzero at the origin only for s-wave states. For the
28 state, the shift is

63 (x). (7.94)

402  oPmd a®m 7
— . = — =-1.123 x 10™ " eV.
5m?  8r 307 e

This is a (small) part of the Lamb shift splitting listed in Table 6.1.

AE =
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Q
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Figure 7.7. Contour for evaluating the effective strength of the electromag-
netic interaction in the nonrelativistic limit. The pole at Q = iu gives the
Coulomb potential. The branch cut gives the order-a correction due to vac-
uum polarization.

The delta function in Eq. (7.94) is only an approximation; to find the true
range of the correction term, we write Eq. (7.93) in the form

.9 F iQr R
Vo) = g [ Qs 1+Ta(-@)] (@=la,

where we have inserted a photon mass p to regulate the Coulomb potential. To
perform this integral we push the contour upward (see Fig. 7.7). The leading
contribution comes from the pole at Q = iy, giving the Coulomb potential,
—a/r. But there is an additional contribution from the branch cut, which
begins at @ = 2mi. The real part of the integrand is the same on both sides
of the cut, so the only contribution to the integral comes from the imaginary
part of II. Defining ¢ = —i@Q, we find that the contribution from the cut is

—e2 7 —qr ~
6V (r) = ° /dq € . Im TI5(q* — i€)]

2m

a2 [ T o 4m? 2m?

=-2Z |4 Y S il § L

rvr/qq3 q2(+q2)
2m

When r > 1/m, this integral is dominated by the region where ¢ ~ 2m.
Approximating the integrand in this region and substituting t = q — 2m, we

find
o0
2 e~ tH2m)r o [t /3
=_-.z - 2 =(: t
sv(r) r ﬂ/dt 2m 3 m(2)+0()
0
L O I il
T r 4T (mr)3/2
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Figure 7.8. Virtual eTe™ pairs are effectively dipoles of length ~ 1/m,
which screen the bare charge of the electron.

so that

V(T‘)Z—%(lﬁ-%%'k”')' (7.95)

Thus the range of the correction term is roughly the electron Compton wave-
length, 1/m. Since hydrogen wavefunctions are nearly constant on this scale,
the delta function in Eq. (7.94) was a good approximation. The radiative
correction to V(r) is called the Uehling potential.

We can interpret the correction as being due to screening. At r 2 1/m,
virtual ete™ pairs make the vacuum a dielectric medium in which the apparent
charge is less than the true charge (see Fig. 7.8). At smaller distances we begin
to penetrate the polarization cloud and see the bare charge. This phenomenon
is known as vacuum polarization.

Now consider the opposite limit: small distance or —¢? > m?. Equation
(7.91) then becomes

1
(%) ~ Q?Q b/dxz(l—x) [log(—m—(f) +log(z(1-2)) + (9(1:;—22)]

2 2
o —q 5 m
- (D) -3 0]
37T[Og m?2 3+0(q2)
The effective coupling constant in this limit is therefore

(67

2
e (q°) = , (7.96)
(1)
3r B\ Am?
where A = exp(5/3). The effective electric charge becomes much larger

at small distances, as we penetrate the screening cloud of virtual electron-
positron pairs.
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Figure 7.9. Differential cross section for Bhabha scattering, ete™ — eTe™,
at Ecm = 29 GeV, as measured by the HRS collaboration, M. Derrick, et. al.,
Phys. Rev. D34, 3286 (1986). The upper curve is the order-a? prediction
derived in Problem 5.2, plus a very small (~2%) correction due to the weak
interaction. The lower curve includes all QED radiative corrections to order
a® except the vacuum polarization contribution; note that these corrections
depend on the experimental conditions, as explained in Chapter 6. The middle
curve includes the vacuum polarization contribution as well, which increases
the effective value of o2 by about 10% at this energy.

The combined vacuum polarization effect of the electron and of heavier
quarks and leptons causes the value of a.g(q?) to increase by about 5% from
q = 0 to ¢ = 30 GeV, and this effect is observed in high-energy experiments.
Figure 7.9 shows the cross section for Bhabha scattering at E ., = 29 GeV,
and a comparison to QED with and without the vacuum polarization diagram.

We can write a.g as a function of r by setting ¢ = 1/r. The behavior of
o, (r) for all r is sketched in Fig. 7.10. The idea of a distance-dependent (or
“scale-dependent” or “running”) coupling constant will be a major theme of
the rest of this book.
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Figure 7.10. A qualitative sketch of the effective electromagnetic coupling
constant generated by the one-loop vacuum polarization diagram, as a func-
tion of distance. The horizontal scale covers many orders of magnitude.

Problems

7.1 In Section 7.3 we used an indirect method to analyze the one-loop s-channel
diagram for boson-boson scattering in ¢* theory. To verify our indirect analysis, eval-
uate all three one-loop diagrams, using the standard method of Feynman parameters.
Check the validity of the optical theorem.

7.2 Alternative regulators in QED. In Section 7.5, we saw that the Ward identity
can be violated by an improperly chosen regulator. Let us check the validity of the
identity Z; = Za, to order a, for several choices of the regulator. We have already
verified that the relation holds for Pauli-Villars regularization.

(a) Recompute 677 and 6Z3, defining the integrals (6.49) and (6.50) by simply plac-
ing an upper limit A on the integration over £g. Show that, with this definition,
621 # 623.

(b) Recompute §Z; and §Z5, defining the integrals (6.49) and (6.50) by dimensional
regularization. You may take the Dirac matrices to be 4 x 4 as usual, but note
that, in d dimensions,

gty =d.
Show that, with this definition, §Z1 = §Z5.

7.3 Consider a theory of elementary fermions that couple both to QED and to a
Yukawa field ¢:
A - _
3 3
Hint = /d xﬁ¢1/n/)+/d ze Ay, by .
(a) Verify that the contribution to Z; from the vertex diagram with a virtual ¢

equals the contribution to Z2 from the diagram with a virtual ¢. Use dimensional
regularization. Is the Ward identity generally true in this theory?
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(b) Now consider the renormalization of the ¢yt vertex. Show that the rescaling
of this vertex at g2 = 0 is not canceled by the correction to Zs. (It suffices to
compute the ultraviolet-divergent parts of the diagrams.) In this theory, the ver-
tex and field-strength rescaling give additional shifts of the observable coupling
constant relative to its bare value.
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Radiation of Gluon Jets

Although we have discussed QED radiative corrections at length in the last
two chapters, so far we have made no attempt to compute a full radiatively
corrected cross section. The reason is of course that such calculations are quite
lengthy. Nevertheless it would be dishonest to pretend that one understands
radiative corrections after computing only isolated effects as we have done.
This “final project” is an attempt to remedy this situation. The project is the
computation of one of the simplest, but most important, radiatively corrected
cross sections. You should finish Chapter 6 before starting this project, but
you need not have read Chapter 7.

Strongly interacting particles—pions, kaons, and protons—are produced
in eTe~ annihilation when the virtual photon creates a pair of quarks. If one
ignores the effects of the strong interactions, it is easy to calculate the total
cross section for quark pair production. In this final project, we will analyze
the first corrections to this formula due to the strong interactions.

Let us represent the strong interactions by the following simple model:
Introduce a new massless vector particle, the gluon, which couples universally
to quarks:

AH = /d3xg1zfi7“¢fi3u.

Here f labels the type (“flavor”) of the quark (u, d, s, c, etc.) and 7 = 1,2,3
labels the color. The strong coupling constant ¢ is independent of flavor and
color. The electromagnetic coupling of quarks depends on the flavor, since the
u and ¢ quarks have charge Q5 = +2/3 while the d and s quarks have charge
Qs = —1/3. By analogy to a, let us define

g2

4’
In this exercise, we will compute the radiative corrections to quark pair pro-
duction proportional to ayg.
This model of the strong interactions of quarks does not quite agree with
the currently accepted theory of the strong interactions, quantum chromody-
namics (QCD). However, all of the results that we will derive here are also

Qg
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correct in QCD with the replacement

4
Qg — 5043.
We will verify this claim in Chapter 17.

Throughout this exercise, you may ignore the masses of quarks. You may
also ignore the mass of the electron, and average over electron and positron
polarizations. To control infrared divergences, it will be necessary to assume
that the gluons have a small nonzero mass p, which can be taken to zero
only at the end of the calculation. However (as we discussed in Problem 5.5),
it is consistent to sum over polarization states of this massive boson by the

replacement:
Z eVt — _guu;
this also implies that we may use the propagator

1 —igh?
BrBY = ———.
k% — p? + ie
(a) Recall from Section 5.1 that, to lowest order in « and neglecting the
effects of gluons, the total cross section for production of a pair of quarks
of flavor f is
e - Ama?
e” —4q) = —5-
Compute the diagram contributing to ete™ — gqg involving one virtual
gluon. Reduce this expression to an integral over Feynman parameters,
and renormalize it by subtraction at ¢ = 0, following the prescription
used in Eq. (6.55). Notice that the resulting expression can be considered
as a correction to Fiy(q?) for the quark. Argue that, for massless quarks,
to all orders in g4, the total cross section for production of a quark pair
unaccompanied by gluons is

ole . BQ?(.

_ B 4 2
tem - qq) = —— 3|Fi(¢° = 9)|,

ole s

With Fl(q2 = 0) = Qf.

(b) Before we attempt to evaluate the Feynman parameter integrals in part
(a), let us put this contribution aside and study the process ete™ —
qqg, quark pair production with an additional gluon emitted. Before we
compute the cross section, it will be useful to work out some kinematics.
Let g be the total 4-momentum of the reaction, let k; and k; be the 4-
momenta, of the final quark and antiquark, and let k3 be the 4-momentum
of the gluon. Define

2k; - q
o

; i=1,2,3;

Iy =




(c)
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this is the ratio of the center-of-mass energy of particle i to the maximum
available energy. Then show (i) > z; = 2, (ii) all other Lorentz scalars
involving only the final-state momenta can be computed in terms of the
z; and the particle masses, and (iii) the complete integral over 3-body
phase space can be written as

2
DAs@ (g - gy =

Find the region of integration for z; and z, if the quark and antiquark
are massless but the gluon has mass p.

Draw the Feynman diagrams for the process ete™ — gqg, to leading
order in o and a4, and compute the differential cross section. You may
throw away the information concerning the correlation between the initial
beam axis and the directions of the final particles. This is conveniently
done as follows: The usual trace tricks for evaluating the square of the
matrix element give for this process a result of the structure

1 14
/dl'Ig ZZ|M|2 :L,w/aln3 H*,

where L, represents the electron trace and H*¥ represents the quark
trace. If we integrate over all parameters of the final state except x; and
x9, which are scalars, the only preferred 4-vector characterizing the final
state is ¢#. On the other hand, H,, satisfies

quHm/ = pwqu =0.

Why is this true? (There is an argument based on general principles;
however, you might find it a useful check on your calculation to verify
this property explicitly.) Since, after integrating over final-state vectors,
f H*¥ depends only on ¢* and scalars, it can only have the form

/dl‘I3 H = (g - q,;_g,,) H,

where H is a scalar. With this information, show that

L#u /dH3 H® = %(g‘wLuu) ’ /dH3 (gpaHpa)'
Using this trick, derive the differential cross section

do
dacldxz

- Ama? o oy x4 73
(e e _’qqg) - 33 3Qf om (1-[1:1)(1"'.'172)
in the limit 4 — 0. If we assume that each original final-state particle is
realized physically as a jet of strongly interacting particles, this formula
gives the probability for observing three-jet events in e*e™ annihilation
and the kinematic distribution of these events. The form of the distribu-
tion in the z; is an absolute prediction, and it agrees with experiment. The
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(d)

(e)

(f)

Final Project

normalization of this distribution is a measure of the strong-interaction
coupling constant.

Now replace p # 0 in the formula of part (c) for the differential cross
section, and carefully integrate over the region found in part (b). You
may assume u? < ¢2. In this limit, you will find infrared-divergent terms
of order log(q?/u?) and also log®(q?/u?), finite terms of order 1, and
terms explicitly suppressed by powers of (u2?/q?). You may drop terms
of the last type throughout this calculation. For the moment, collect and
evaluate only the infrared-divergent terms.

Now analyze the Feynman parameter integral obtained in part (a), again
working in the limit u? < ¢2. Note that this integral has singularities in
the region of integration. These should be controlled by evaluating the
integral for g spacelike and then analytically continuing into the physical
region. That is, write Q% = —q?, evaluate the integral for @% > 0, and
then carefully analytically continue the result to Q? = —q? —ie. Combine
the result with the answer from part (d) to form the total cross section for
ete™ — strongly interacting particles, to order oy. Show that all infrared-
divergent logarithms cancel out of this quantity, so that this total cross
section is well-defined in the limit 4 — O.

Finally, collect the terms of order 1 from the integrations of parts (d) and
(e) and combine them. To evaluate certain of these terms, you may find

“the following formula useful:

1
_ 2
/dxM=_”_.
T 6
0

(It is not hard to prove this.) Show that the total cross section is given,
to this order in oy, by

e g or dag) = 72 g (1.4 299)
o(eTe” — gq or qq9) = s - 3Q7% (1+ 1)
This formula gives a second way of measuring the strong-interaction cou-
pling constant. The experimental results agree (within the current exper-
imental errors) with the results obtained by the method of part (c). We
will discuss the measurement of a; more fully in Section 17.6.
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Chapter 8

Invitation: Ultraviolet Cutoffs
and Critical Fluctuations

The main purpose of Part II of this book is to develop a general theory of
renormalization. This theory will explain the origin of ultraviolet divergences
in field theory and will indicate when these divergences can be removed sys-
tematically. It will also give a way to convert the divergences of Feynman
diagrams from a problem into a tool. We will apply this tool to study the
asymptotic large- or small-momentum behavior of field theory amplitudes.

When we first encountered an ultraviolet divergence in the calculation of
the one-loop vertex correction in Section 6.3, it seemed an aberration that
ought to disappear before it caused us too much discomfort. In Chapter 7 we
saw further examples of ultraviolet-divergent diagrams, enough to convince us
that such divergences occur ubiquitously in Feynman diagram computations.
Thus it is necessary for anyone studying field theory to develop a point of
view toward these divergences. Most people begin with the belief that any
theory that contains divergences must be nonsense. But this viewpoint is
overly restrictive, since it excludes not only quantum field theory but even
the classical electrodynamics of point particles.

With some experience, one might adopt a more permissive attitude of
peaceful coexistence with the divergences: One can accept a theory with di-
vergences, as long as they do not appear in physical predictions. In Chapter 7
we saw that all of the divergences that appear in the one-loop radiative cor-
rections to electron scattering from a heavy target can be eliminated by con-
sistently eliminating the bare values of the mass and charge of the electron in
favor of their measured physical values. In Chapter 10, we will argue that all
of the ultraviolet divergences of QED, in all orders of perturbation theory, can
be eliminated in this way. Thus, as long as one is willing to consider the mass
and charge of the electron as measured parameters, the predictions of QED
perturbation theory will always be free of divergences. We will also show in
Chapter 10 that QED belongs to a well-defined class of field theories in which
all ultraviolet divergences are removed after a fixed small number of physical
parameters are taken from experiment. These theories, called renormalizable
quantum field theories, are the only ones in which perturbation theory gives
well-defined predictions.

Ideally, though, one should take the further step of trying to understand

265
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physically why the divergences appear and why their effects are more se-
vere in some theories than in others. This direct approach to the divergence
problem was pioneered in the 1960s by Kenneth Wilson. The crucial insights
needed to solve this problem emerged from a correspondence, discovered by
Wilson and others, between quantum field theory and the statistical physics
of magnets and fluids. Wilson’s approach to renormalization is the subject
of Chapter 12. The present chapter gives a brief introduction to the issues
in condensed matter physics that have provided insight into the problem of
ultraviolet divergences.

Formal and Physical Cutoffs

Ultraviolet divergences signal that quantities calculated in a quantum field
theory depend on some very large momentum scale, the ultraviolet cutoff.
Equivalently, in position space, divergent quantities depend on some very
small distance scale.

The idea of a small-distance cutoff in the continuum description of a sys-
tem occurs in classical field theories as well. Typically the cutoff is at the
scale of atomic distances, where the continuum description no longer applies.
However, the size of the cutoff manifests itself in certain parameters of the
continuum theory. In fluid dynamics, for instance, parameters such as the
viscosity and the speed of sound are of just the size one would expect by com-
bining typical atomic radii and velocities. Similarly, in a magnet, the magnetic
susceptibility can be estimated by assuming that the energy cost of flipping
an electron spin is on the order of a tenth of an eV, as we would expect from
atomic physics. Each of these systems possesses a natural ultraviolet cutoff
at the scale of an atom; by understanding the physics at the atomic scale, we
can compute the parameters that determine the physics on larger scales.

In quantum field theory, however, we have no precise knowledge of the
fundamental physics at very short distance scales. Thus, we can only measure
parameters such as the physical charge and mass of the electron, not compute
them from first principles. The presence of ultraviolet divergences in the rela-
tions between these physical parameters and their bare values is a sign that
these parameters are controlled by the unknown short-distance physics.

Whether we know the fundamental physics at small distance scales or
not, we need two kinds of information in order to write an effective theory for
large-distance phenomena. First, we must know how many parameters from
the small distance scale are relevant to large-distance physics. Second, and
more importantly, we must know what degrees of freedom from the underlying
theory appear at large distances.

In fluid mechanics, it is something of a miracle, from the atomic point of
view, that any large-distance degrees of freedom even exist. Nevertheless, the
equations that express the transport of energy and mass over large distances
do have smooth, coherent solutions. The large-distance degrees of freedom are
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the flows that transport these conserved quantities, and sound waves of long
wavelength.

In quantum field theory, the large-distance physics involves only those
particles that have masses that are very small compared to the fundamental
cutoff scale. These particles and their dynamics are the quantum analogues of
the large-scale flows in fluid mechanics. The simplest way to naturally arrange
for such particles to appear is to make use of particles that naturally have zero
mass. So far in this book, we have encountered two types of particles whose
mass is precisely zero, the photon and the chiral fermion. (In Chapter 11
we will meet one further naturally massless particle, the Goldstone boson.)
We might argue that QED exists as a theory on scales much larger than
its cutoff because the photon is naturally massless and because the left- and
right-handed electrons are very close to being chiral fermions.

There is another way that particles of zero or almost zero mass can arise
in quantum field theory: We can simply tune the parameters of a scalar field
theory so that the scalar particles have masses small compared to the cut-
off. This method of introducing particles with small mass seems arbitrary
and unnatural. Nevertheless, it has an analogue in statistical mechanics that
is genuinely interesting in that discipline and can teach us some important
lessons.

Normally, in a condensed matter system, the thermal fluctuations are
correlated only over atomic distances. Under special circumstances, however,
they can have much longer range. The clearest example of this phenomenon
occurs in a ferromagnet. At high temperature, the electron spins in a magnet
are disorganized and fluctuating; but at low temperature, these spins align to
a fixed direction.* Let us think about how this alignment builds up as the
temperature of the magnet is lowered. As the magnet cools from high tem-
perature, clusters of correlated spins become larger and larger. At a certain
point—the temperature of magnetization—the entire sample becomes a sin-
gle large cluster with a well-defined macroscopic orientation. Just above this
temperature, the magnet contains large clusters of spins with a common orien-
tation, which in turn belong to still larger clusters, such that the orientations
on the very largest scale are still randomized through the sample. This situ-
ation is illustrated in Fig. 8.1. Similar behavior occurs in the vicinity of any
other second-order phase transition, for example, the order-disorder transi-
tion in binary alloys, the critical point in fluids, or the superfluid transition
in Helium-4.

The natural description of these very long wavelength fluctuations is in
terms of a fluctuating continuum field. At the lowest intuitive level, we might

*In a real ferromagnet, the long-range magnetic dipole-dipole interaction causes
the state of uniform magnetization to break up into an array of magnetic domains.
In this book, we will ignore this interaction and think of a magnetic spin as a pure
orientation. It is this idealized system that is directly analogous to a quantum field
theory.
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Figure 8.1. Clusters of oriented spins near the critical point of a ferromag-
net.

substitute quantum for statistical fluctuations and try to describe this sys-
tem as a quantum field theory. In Section 9.3 we will derive a somewhat more
subtle relation that makes a precise connection between the statistical and
the quantum systems. Through this connection, the behavior of any statis-
tical system near a second-order phase transition can be translated into the
behavior of a particular quantum field theory. This quantum field theory has
a field with a mass that is very small compared to the basic atomic scale and
that goes to zero precisely at the phase transition.

But this connection seems to compound the problem of ultraviolet diver-
gences in quantum field theory: If the wealth of phase transitions observed in
Nature generates a similar wealth of quantum field theories, how can we pos-
sibly define a quantum field theory without detailed reference to its origins in
physics at the scale of its ultraviolet cutoff? Saying that a quantum field the-
ory makes predictions independent of the cutoff would be equivalent to saying
that the statistical fluctuations in the neighborhood of a critical point are in-
dependent of whether the system is a magnet, a fluid, or an alloy. But is this
statement so obviously incorrect? By reversing the logic, we would find that
quantum field theory makes a remarkably powerful prediction for condensed
matter systems, a prediction of universality for the statistical fluctuations
near a critical point. In fact, this prediction is verified experimentally.

A major theme of Part II of this book will be that these two ideas—cutoff
independence in quantum field theory and universality in the theory of critical
phenomena—are naturally the same idea, and that understanding either of
these ideas gives insight into the other.
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Landau Theory of Phase Transitions

To obtain a first notion of what could be universal in the phenomena of phase
transitions, let us examine the simplest continuum theory of second-order
phase transitions, due to Landau.

First we should review a little thermodynamics and clarify our nomen-
clature. In thermodynamics, a first-order phase transition is a point across
which some thermodynamic variable (the density of a fluid, or the magneti-
zation of a ferromagnet) changes discontinuously. At a phase transition point,
two quite distinct thermodynamic states (liquid and gas, or magnetization
parallel and antiparallel to a given axis) are in equilibrium. The thermody-
namic quantity that changes discontinuously across the transition, and that
characterizes the difference of the two competing phases, is called the order
parameter. In most circumstances, it is possible to change a second thermo-
dynamic parameter in such a way that the two competing states move closer
together in the thermodynamic space, so that at some value of this parameter,
these two states become identical and the discontinuity in the order parame-
ter disappears. This endpoint of the line of first-order transitions is called a
second-order phase transition, or, more properly, a critical point. Viewed from
the other direction, a critical point is a point at which a single thermodynamic
state bifurcates into two macroscopically distinct states. It is this bifurcation
that leads to the long-ranged thermal fluctuations discussed in the previous
section.

A concrete example of this behavior is exhibited by a ferromagnet. Let us
assume for simplicity that the material we are discussing has a preferred axis
of magnetization, so that at low temperature, the system will have its spins
ordered either parallel or antiparallel to this axis. The total magnetization
along this axis, M, is the order parameter. At low temperature, application
of an external magnetic field H will favor one or the other of the two possible
states. At H = 0, the two states will be in equilibrium; if H is changed from
a small negative to a small positive value, the thermodynamic state and the
value of M will change discontinuously. Thus, for any fixed (low) temperature,
there is a first-order transition at H = 0. Now consider the effect of raising
the temperature: The fluctuation of the spins increases and the value of |M|
decreases. At some temperature T the system ceases to be magnetized at
H = 0. At this point, the first-order phase transition disappears and the
two competing thermodynamic states coalesce. The system thus has a critical
point at T = T¢. The location of these various transitions in the H-T plane
is shown in Fig. 8.2.

Landau described this behavior by the use of the Gibbs free energy G;
this is the thermodynamic potential that depends on M and T, such that

oG

He suggested that we concentrate our attention on the region of the critical
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HA M >0

first-order phase transition

critical point

M<O0

Figure 8.2. Phase diagram in the H-T plane for a uniaxial ferromagnet.

point: T =~ Te, M = 0. Then it is reasonable to expand G(M) as a Taylor
series in M. For H = 0, we can write

G(M) = A(T) + B(T)M? + C(T)M* + - --. (8.2)

Because the system has a symmetry under M — —M, G(M) can contain only
even powers of M. Since M is small, we will ignore the higher terms in the
expansjon. Given Eq. (8.2), we can find the possible values of M at H = 0 by
solving

oG 3

0=—-—— =2B(T)M +4C(T)M". (8.3)

oM
If B and C are positive, the only solution is M = 0. However, if C > 0 but
B is negative below some temperature T, we have a nontrivial solution for
T < T¢, as shown in Fig. 8.3. More concretely, approximate for T' ~ T¢:

B(T) =b(T - T¢), C(T)=c (8.4)
Then the solution to Eq. (8.3) is
0 for T > T¢;
= 1/2 (8.5)
+[(b/2¢)(Tc — T)] for T < Tc.

This is just the qualitative behavior that we expect at a critical point.

To find the value of M at nonzero external field, we could solve Eq. (8.1)
with the left-hand side given by (8.2). An equivalent procedure is to minimize
a new function, related to (8.2). Define

G(M,H) = A(T) + B(T)M? + C(T)M* — HM. (8.6)

Then the minimum of G(M, H) with respect to M at fixed H gives the value
of M that satisfies Eq. (8.1). The minimum is unique except when H = 0 and
T < T¢, where we find the double minimum in the second line of (8.5). This
is consistent with the phase diagram shown in Fig. 8.2.
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Figure 8.3. Behavior of the Gibbs free energy G(M) in Landau theory, at
temperatures above and below the critical temperature.

To study correlations in the vicinity of the phase transition, Landau gen-
eralized this description further by considering the magnetization M to be the
integral of a local spin density:

M = /d%s(x). (8.7)

Then the Gibbs free energy (8.6) becomes the integral of a local function of

5(x),
' G= /d3$ [%(Vs)2 +b(T — Tg)s? + cs* — Hs], (8.8)

which must be minimized with respect to the field configuration s(x). The
first term is the simplest possible way to introduce the tendency of nearby
spins to align with one another. We have rescaled s(x) so that the coefficient
of this term is set to 1/2. In writing this free energy integral, we could even
consider H to vary as a function of position. In fact, it is useful to do that; we
can turn on H(x) near £ = 0 and see what response we find at another point.

The minimum of the free energy expression (8.8) with respect to s(x) is
given by the solution to the variational equation

0 = 6G[s(x)] = —=V2s + 2b(T — T¢)s + 4cs® — H(x). (8.9)

For T > T¢, where the macroscopic magnetization vanishes and so s(x) should
be small, we can find the qualitative behavior by ignoring the s® term. Then
s(x) obeys a linear equation,

(=V%+2b(T — T¢)) s(x) = H(x). (8.10)
To study correlations of spins, we will set

H(x) = Ho6® (x). (8.11)
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The resulting configuration s(x) is then the Green’s function of the differential
operator in Eq. (8.10), so we call it D(x):

(=V2+2b(T — Tc)) D(x) = Ho6® (x). (8.12)

This Green’s function tells us the response at x when the spin at x = 0 is
forced into alignment with H. In Sections 9.2 and 9.3 we will see that D(x) is
also proportional to the zero-field spin-spin correlation function in the thermal
ensemble,

D(x) x (s(x)s(0)) = > s(x)s(0)e”/*T, (8.13)

all s(x)

where H is the Hamiltonian of the magnetic system.
The solution to Eq. (8.12) can be found by Fourier transformation:

d3k HO eik~x
D) = / @) kP + 2b(T —To)’ (8.14)

This is just the integral we encountered in our discussion of the Yukawa po-
tential, Eq. (4.126). Evaluating it in the same way, we find

Hol _,
D(x):ﬁ;e /t, (8.15)

where

¢ =[2b(T - To)] ? (8.16)
is the correlation length, the range of correlated spin fluctuations. Notice that
this length diverges as T — T¢.

The main results of this analysis, Egs. (8.5) and (8.16), involve unknown
constants b, ¢ that depend on physics at the atomic scale. On the other hand,
the power-law dependence in these formulae on (T' — T) follows simply from
the structure of the Landau equations and is independent of any details of
the microscopic physics. In fact, our derivation of this dependence did not
even use the fact that G describes a ferromagnet; we assumed only that G
can be expanded in powers of an order parameter and that G respects the
reflection symmetry M — —M. These assumptions apply equally well to
many other types of systems: binary alloys, superfluids, and even (though the
reflection symmetry is less obvious here) the liquid-gas transition. Landau
theory predicts that, near the critical point, these systems show a universal
behavior in the dependence of M, £, and other thermodynamic quantities on
(T —Tc).

Critical Exponents

The preceding treatment of the Landau theory of phase transitions emphasizes
its similarity to classical field theory. We set up an appropriate free energy and
found the thermodynamically preferred configuration by solving a classical
variational equation. This gives only an approximation to the full statistical -
problem, analogous to the approximation of replacing quantum by classical
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dynamics in field theory. In Chapter 13, we will use methods of quantum field
theory to account properly for the fluctuations about the preferred Landau
thermodynamic state. These modifications turn out to be profound, and rather
counterintuitive.

To describe the form of these modifications, let us write Eq. (8.15) more
generally as

(s(98(0)) = Az fr/6), (817)

where A is a constant and f(y) is a function that satisfies f(0) = 1 and
fly) — 0 as y — oo. Landau theory predicts that n = 0 and f(y) is a sim-
ple exponential. This expression has a form strongly analogous to that of a
Green’s function in quantum field theory. The constant A can be absorbed into
the field-strength renormalization of the field s(x). The correlation length § is,
in general, a complicated function of the atomic parameters, but in the contin-
uum description we can simply trade these parameters for €. It is appropriate
to consider & as a cutoff-independent, physical parameter, since it controls the
large-distance behavior of a physical correlation. In fact, the analogy between
Eq. (8.15) and the Yukawa potential suggests that we should identify £~ with
the physical mass in the associated quantum field theory. Then Eq. (8.17) gives
a cutoff-independent, continuum representation of the statistical system.

If we were working in quantum field theory, we would derive corrections
to Eq. (8.17) as a perturbation series in the parameter ¢ multiplying the
nonlinear term in (8.9). This would generalize the Landau result to

(5605(0)) = ~F(r/¢,c). (818)

The perturbative corrections would depend on the properties of the contin-
uum field theory. For example, F(y, ¢) would depend on the number of com-
ponents of the field s(x), and its series expansion would differ depending on
whether the magnetization formed along a preferred axis, in a preferred plane,
or isotropically. For order parameters with many components, the expansion
would also depend on higher discrete symmetries of the problem. However, we
expect that systems described by the same Landau free energy (for example,
a single-axis ferromagnet and a liquid-gas system) should have the same per-
turbation expansion when this expansion is written in terms of the physical
mass and coupling. The complete universality of Landau theory then becomes
a more limited concept, in which systems have the same large-distance cor-
relations if their order parameters have the same symmetry. We might say
that statistical systems divide into distinct universality classes, each with a
characteristic large-scale behavior.

If this were the true behavior of systems near second-order phase transi-
tions, it would already be a wonderful confirmation of the ideas required to
formulate cutoff-independent quantum field theories. However, the true be-
havior of statistical systems is still another level more subtle. What one finds
experimentally is a dependence of the form of Eq. (8.17), where the function
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f(y) is the same within each universality class. There is no need for an auxil-
iary parameter c. On the other hand, the exponent 1 takes a specific nonzero
value in each universality class. Other power-law relations of Landau theory
are also modified, in a specific manner for each universality class. For example,
Eq. (8.5) is changed, for T' < T, to

M x (Te = T), (8.19)

where the exponent 3 takes a fixed value for all systems in a given universality
class. For three-dimensional single-axis magnets and for fluids, 5 = 0.313. The
powers in these nontrivial scaling relations are called critical exponents.

The modification from Eq. (8.18) to Eq. (8.17) does not imperil the idea
that a condensed matter system, in the vicinity of a second-order phase tran-
sition, has a well-defined, cutoff-independent, continuum behavior. However,
we would like to understand why Eq. (8.17) should be expected as the cor-
rect representation. The answer to this question will come from a thorough
analysis of the ultraviolet divergences of the corresponding quantum field the-
ory. In Chapter 12, when we finally conclude our explication of the ultraviolet
divergences, we will find that we have in hand the tools not only to justify
Eq. (8.17), but also to calculate the values of the critical exponents using
Feynman diagrams. In this way, we will uncover a beautiful application of
quantum field theory to the domain of atomic physics. The success of this ap-
plication will guide us, in Part III, to even more powerful tools, which we will
need in the relativistic domain of elementary particles.



Chapter 9

Functional Methods

Feynman once said that* “every theoretical physicist who is any good knows
six or seven different theoretical representations for exactly the same physics.”
Following his advice, we introduce in this chapter an alternative method of de-
riving the Feynman rules for an interacting quantum field theory: the method
of functional integration.

Aside from Feynman’s general principle, we have several specific reasons
for introducing this formalism. It will provide us with a relatively easy deriva-
tion of our expression for the photon propagator, completing the proof of the
Feynman rules for QED given in Section 4.8. The functional method gener-
alizes more readily to other interacting theories, such as scalar QED (Prob-
lem 9.1), and especially the non-Abelian gauge theories (Part III). Since it
uses the Lagrangian, rather than the Hamiltonian, as its fundamental quan-
tity, the functional formalism explicitly preserves all symmetries of a theory.
Finally, the functional approach reveals the close analogy between quantum
field theory and statistical mechanics. Exploiting this analogy, we will turn
Feynman’s advice upside down and apply the same theoretical representation
to two completely different areas of physics.

9.1 Path Integrals in Quantum Mechanics

We begin by applying the functional integral (or path integral) method to
the simplest imaginable system: a nonrelativistic quantum-mechanical particle
moving in one dimension. The Hamiltonian for this system is
2
p
H=—+V(x).
oy TV (@)

Suppose that we wish to compute the amplitude for this particle to travel
from one point (z,) to another (z;) in a given time (7). We will call this
amplitude U(zg,,xp; T); it is the position representation of the Schrédinger
time-evolution operator. In the canonical Hamiltonian formalism, U is given
by

U(za,zp;T) = (xp| e HT/M |2,) . (9.1)

*The Character of Physical Law (MIT Press, 1965), p. 168.
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(For the next few pages we will display all factors of h explicitly.)

In the path-integral formalism, U is given by a very different-looking
expression. We will first try to motivate that expression, then prove that it is
equivalent to (9.1).

Recall that in quantum mechanics there is a superposition principle: When
a process can take place in more than one way, its total amplitude is the
coherent sum of the amplitudes for each way. A simple but nontrivial example
is the famous double-slit experiment, shown in Fig. 9.1. The total amplitude
for an electron to arrive at the detector is the sum of the amplitudes for
the two paths shown. Since the paths differ in length, these two amplitudes
generally differ, causing interference.

For a general system, we might therefore write the total amplitude for
traveling from x, to x; as

Uga,onT) = Y ¢ Phas) = / Da(t) et (Phese), (9.2)
all paths

To be democratic, we have written the amplitude for each particular path as
a pure phase, so that no path is inherently more important than any other.
The symbol [ Dz(t) is simply another way of writing “sum over all paths”;
since there is one path for every function z(t) that begins at z, and ends at
Zp, the sum is actually an integral over this continuous space of functions.

We can define this integral as part of a natural generalization of the
calculus to spaces of functions. A function that maps functions to numbers is
called a functional. The integrand in (9.2) is a functional, since it associates
a complex amplitude with any function z(t). The argument of a functional
F[z(t)] is conventionally written in square brackets rather than parentheses.
Just as an ordinary function y(z) can be integrated over a set of points z, a
functional F[z(t)] can be integrated over a set of functions z(t); the measure
of such a functional integral is conventionally written with a script capital D,
as in (9.2). A functional can also be differentiated with respect to its argument
(a function), and this functional derivative is denoted by §F/éz(t). We will
develop more precise definitions of this new integral and derivative in the
course of this section and the next.

What should we use for the “phase” in Eq. (9.2)? In the classical limit,
we should find that only one path, the classical path, contributes to the to-
tal amplitude. We might therefore hope to evaluate the integral in (9.2) by
the method of stationary phase, identifying the classical path z(¢) by the
stationary condition,
=0.

Tcl

6—;5“—)(phase[x<t)])

But the classical path is the one that satisfies the principle of least action,

5$ ox(t) (S[ ])

=0,

Tcl
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detector

monochromatic
electron
source

Figure 9.1. The double-slit experiment. Path 2 is longer than path 1 by an
amount d, and therefore has a phase that is larger by 27d/)\, where A = 27h/p
is the particle’s de Broglie wavelength. Constructive interference occurs when
d =0, A, ..., while destructive interference occurs when d = A/2, 3A/2, ....

where S = [ Ldt is the classical action. It is tempting, therefore, to identify
the phase with S, up to a constant. Since the stationary-phase approximation
should be valid in the classical limit—that is, when S > h—we will use S/h
for the phase. Our final formula for the propagation amplitude is thus

(@] e HT/M 20) = Ulwa, 23 T) = / Da(t) SEOVA (9.3)

We can easily verify that this formula gives the correct interference pattern
in the double-slit experiment. The action for either path shown in Fig. 9.1 is
just (1/2)muv?t, the kinetic energy times the time. For path 1 the velocity is
v1 = D/t, so the phase is mD?/2ht. For path 2 we have vo = (D+d)/t, so the
phase is m(D+d)?/2ht. We must assume that d < D, so that v; = vy (i.e.,
the electrons have a well-defined velocity). The excess phase for path 2 is then
mDd/ht =~ pd/h, where p is the momentum. This is exactly what we would
expect from the de Broglie relation p = h/\, so we must be doing something
right.

To evaluate the functional integral more generally, we must define the
symbol [ Dz(t) in the case where the number of paths z(t) is more than two
(and, in fact, continuously infinite). We will use a brute-force definition, by
discretization. Break up the time interval from 0 to 7" into many small pieces
of duration €, as shown in Fig. 9.2. Approximate a path z(t) as a sequence of
straight lines, one in each time slice. The action for this discretized path is

= Ji (o) — E [l ()

k
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