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the G function (but not necessarily the value of A,), the slope B at the zero,
and the value of the anomalous dimension at the fixed point should all be
independent of the conventions used to compute [ and 7.

12.4 Renormalization of Local Operators

The analysis of the previous two sections has been restricted to quantum field
theories with only dimensionless coefficients, that is, strictly renormalizable
field theories in the massless limit. It is not difficult to generalize this for-
malism to theories with mass terms and other operators whose coefficients
have mass dimension. However, it is worthwhile to first devote some attention
to an intermediate step, by analyzing the renormalization group properties
of matrix elements of local operators. This is an interesting problem in its
own right, and we will devote considerable space to the applications of this
formalism in Chapter 18.

Matrix elements of local operators appear often in quantum field theory
calculations. Typically one considers a set of interacting particles that couple
weakly to an additional particle, which mediates new forces. Consider, for
example, the theory of strongly interacting quarks perturbed by the effects of
weak decay processes. The weak interaction is mediated by a massive vector
boson, the W. Let us write the interaction of the quarks with the W very
schematically as

g

oL = ﬁwﬂw(l — 5, (12.98)

and assign the W boson the propagator

—igtv
qc —my, + 1€

(We will discuss this interaction more correctly in Section 18.2 and in Chap-
ter 20.) Exchange of a W boson leads to the interaction shown in Fig. 12.5.
For momentum transfers small compared to my, we can ignore the g2 in the
W propagator and write this interaction as the matrix element of the operator

2
2—7%(’)(33), where O(z) = ¥y*(1 — 3P ¥y, (1 — ¥°)9. (12.100)
In the spirit of Wilson’s renormalization group procedure, we can say that, on
distance scales larger than m;vl, the W boson can be integrated out, leaving
over the interaction (12.100).

How would we analyze the effects of the operator (12.100) on strongly
interacting particles composed of quarks and antiquarks? A useful way to
begin is to compute the Green’s function of the operator O together with
fields that create and destroy quarks. If we approximate the theory of quarks
by a theory of free fermions, it is easy to compute these Green’s functions; for
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w

Figure 12.5. Interaction of quarks generated by the exchange of a W boson.

example:

(Y(p1)¥(—p2)¥(p3)¥(—pa)O(0))
= Sr(p )" (1 — 7°)Sr(p2) Sr(p3)Yu(l — ¥°)SF(ps).-

However, in an interacting field theory, the answer will be much more compli-
cated. Some of these complications will involve the low-energy interactions of
quarks, and we will leave them outside of the present discussion. However, in
a renormalizable theory of quark interactions, one will also find that Green’s
functions containing O have new ultraviolet divergences. The one-loop correc-
tions to (12.101) will contain diagrams that evaluate to the right-hand side of
(12.101) times a divergent integral. These diagrams can be interpreted as field
strength renormalizations of the operator 0. As with correlation functions of
elementary fields, we can obtain finite and well-defined matrix elements of
local operators only if we establish conventions for the normalization of lo-
cal operators and introduce operator rescalings in the form of counterterms,
order by order in perturbation theory, to preserve these conventions. More
specifically, in a massless, renormalizable field theory of the fermions v, we
should make the convention that Eq. (12.101) is exact at some spacelike nor-
malization point for which p? = p2 = p% = p? = —M?2. Then we should add a
counterterm of the form 6pO(z), and adjust this counterterm at each order
of perturbation theory to insure that these relations are preserved. We refer
to the operator satisfying the normalization condition (12.101) at M? as Q.

The renormalized operator O, is a rescaled version of the operator Qg
built of bare fields,

Oo(z) = Yo" (1 = ¥*)%0Poru(1 — 7°) 0. (12.102)

As we did for the elementary fields, we can write this relation as

(12.101)

0o = Zo(M)Ows. (12.103)

This allows us to write the generalization of the relation (12.35) between
Green’s functions of bare and renormalized fields. Let us return to the lan-
guage of scalar field theories and consider O(z) to be a local operator in a
scalar field theory. Define

GV (py, - puik) = (8(p1) -+ $(pn)Ona(R)) (12.104)
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Then G(™1) is related to a Green’s function of bare fields by

GV (py,- -, pi k) = Z(M) ™2 Zo (M) {¢o(p1) - - ¢0(pn) Oo (k) -
(12.105)
Repeating the derivation of Egs. (12.63) and (12.64), we find that the Green’s
functions containing a local operator obey the Callan-Symanzik equation

[M o4 B+ (Y 4 70 =, (12.106)
where

Yo = log Zo(M). (12.107)

8

BM

It often happens that a quantum field theory contains several operators
with the same quantum numbers. For example, in quantum electrodynamics,
the operators Tp['y“D” ++* D*]3p and F*FY, are both symmetric tensors with
zero electric charge; in addition, both operators have mass dimension 4. Such
operators, with the same quantum numbers and the same mass dimension,
can be mixed by quantum corrections.* For such a set of operators {O'}, the
relation of renormalized and bare operators must be generalized to

O = Z3(M)03,. (12.108)

This relation in turn implies that the anomalous dimension function yo in
the Callan-Symanzik equation must be generalized to a matrix,

0
oM
Most of our applications of (12.106) in Chapter 18 will require this general-
ization.

On the other hand, there are some operators for which the rescaling and
anomalous dimensions are especially simple. If O is the quark number current
¥y"1p, its normalization is fixed once and for all because the associated charge

Q= / Bz

is just the conserved integer number of quarks minus antiquarks in a given
state. More generally, for any conserved current J#, Z;(M) =1 and v; = 0.
The same argument applies to the energy-momentum tensor. Thus, in the
QED example above, the specific linear combination

18 = 251 (M) * M [Zo(M)]*. (12.109)

T %Tp[y“D” + 4 DM — FHAFYy (12.110)

receives no rescaling and no anomalous dimension. This linear combination of
operators must be an eigenvector of the matrix v with eigenvalue zero.

*Qur assumption that we are working in a massless field theory constrains the pos-
sibilities for operator mixing. In a massive field theory, operators of a given dimension
can also mix with operators of lower dimension.
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So far, our discussion of operator matrix elements has been rather ab-
stract. To make it more concrete, we will construct a formula for computing
~vo to leading order from one-loop counterterms, and then apply this formula
to a simple example in ¢* theory.

To find a simple formula for v¢, we follow the same path that took us from
Eq. (12.52) to the formula (12.53) for the § function. Consider an operator

whose normalization condition is based on a Green’s function with m scalar
fields:

G = ($(p1) -~ (D) Onas (K)) - (12.111)

To compute this Green’s function to one-loop order, we find the set of dia-
grams:

The last diagram is the counterterm 6» needed to maintain the renormal-
ization condition. Notice that the counterterm 6z also appears. If we insist
that this sum of diagrams satisfies the Callan-Symanzik equation (12.106) to
leading order in A, we find, analogously to (12.53), the relation

Yo(A) = MBiM (~5o + %62). (12.112)
As a specific example of the use of this formula, let us compute the anoma-
lous dimension yo of the mass operator ¢2 in ¢* theory. There is a small
subtlety involved in this computation. The Feynman diagrams of ¢* theory
generate an additive mass renormalization, which must be removed by the
mass counterterm at each order in perturbation theory. We would like to de-
fine the mass operator as a perturbation which we can add to the massless
theory defined in this way. To clarify the distinction between the underlying
mass, which is renormalized to zero, and the explicit mass perturbation, we
will analyze a Green’s function of ¢? in which this operator carries a specific
nonzero momentum. We thus choose to define the normalization of ¢? by the
convention

= ($()d(0)#* (k) = ;?:2‘2? 2 (12.113)
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The one-particle-irreducible one-loop correction to (12.113) is
k
_ Li/ d’r (—iA) = —
M T e ot TR )
q D (12.114)
3 A I(2-9)
=7 [ Gmp aran )
where A is a function of the external momenta. At —M?, this contribution
must be canceled by a counterterm diagram,
1

]
= ——2642. 12.115
q//®\\p P ( )

Thus, the counterterm must be

A r2-%)
82 = :
2(47)2 (M?2)2-4/2

(12.116)

Since 6z is finite to order A, this is the only contribution to (12.112), and we
find
A

~ 16n2
This function can be used together with the v and 8 functions of pure massless

¢* theory to discuss the scaling of Green’s functions that include the mass
operator.

Vo2 (12.117)

12.5 Evolution of Mass Parameters

Finally, we discuss the renormalization group for theories with masses. We
note, though, that although we treat these masses as arbitrary parameters,
we will continue to use renormalization conventions that are independent of
mass, and we will often treat the masses as small parameters. This approach
breaks down at momentum scales much less than the scale of masses, but
it is sufficient, and simpler than alternative approaches, for most practical
applications of the renormalization group.

In the previous section, we worked out the scaling of Green’s functions
containing one power of the mass operator. It is a small step to generalize
this discussion to include an arbitrary number ¢ of mass operators; one sim-
ply finds the equation (12.106) with the coefficient ¢ in front of the term vo.
Now consider what would happen if we add the mass operator directly to the
Lagrangian of the massless ¢* theory, treating this operator as a perturba-
tion. If £y is the massless Lagrangian renormalized at the scale M, the new
Lagrangian will be

L — smP iy (12.118)
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The Green’s function of n scalar fields in the theory (12.118) could be ex-
pressed as a perturbation series in the mass parameter m2. The coefficient
of (m?)¢ would be a joint correlation function of the n scalar fields with
¢ powers of ¢32,, and would therefore satisfy the Callan-Symanzik equation
(12.106) with the extra factor ¢ as noted above. In general, we can use the
operator m?(8/8m?) to count the number of insertions ¢ of ¢?. Then the
Green’s functions of the massive ¢* theory, renormalized according to the
mass—independent scheme, satisfy the equation

[ P TR +n7()‘)+’7¢2m2%]G(")({pz‘}§M,)\,m2)=0. (12.119)

This argument extends to any perturbation of massless ¢* theory. In the
general case,

L(C;) = L + C;04(2), (12.120)
and the Green’s functions of this perturbed theory satisfy
(Moo + ) 5=+ m +§jm@cn—ﬁam<@&wmx{aw=w.
(12.121)

To interpret this equation, it will help to make a slight change to bring
the notation in line with our new viewpoint. Let d; be the mass dimension of
the operator O%. Then rewrite (12.120) by representing each coefficient C; as
a power of M and a dimensionless coefficient p;:

L(pi) = Ly + piM*~% O}y (). (12.122)

The size of each p; indicates the importance of the corresponding operator at
the scale M. This new convention introduces further explicit M dependence

into the Green’s functions, which is compensated by a rescaling of the p;.
Thus (12.121) must be modified to

[Ma%+6%+m+zi[%( ) +di—4]p BB}G(M({”’}M”“}FO'

(12.123)
The meaning of this equation becomes clearer if we define

Bi = (di — 4+ 7i)pi- (12.124)
Then

0 9 ,8 (n) . ) —
Wﬁfﬁﬁ+gﬂﬁ+mp (i M, A {pi}) =0.  (12.125)

Now all of the coupling constants p; appear on the same footing as A. We can
solve this generalized Callan-Symanzik equation using the same method as in
Section 12.3, by introducing bacteria, which now live in a multidimensional
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velocity field (8, 3;). The solution will depend on a set of running coupling
constants which obey the equations

d
dlog(p/M)
It is interesting to examine this flow of coupling constants for the case
where all the dimensionless parameters A, p; are small, so that we are close

to the free scalar field Lagrangian. In this situation, we can ignore the contri-
bution of v; to 3;; then

pi = Bi(pis A)- ' (12.126)

d
po=ld; —4+--]p,. (12.127)
dlog(p/M)" [
The solution to this equation is
_ p 4t
B = pi(ﬁ) : (12.128)

Operators with mass dimension greater than 4, corresponding to nonrenor-
malizable interactions, become less important as a power of p as p — 0. This
is exactly the behavior that we found in Eq. (12.27) using Wilson’s method.
Since we have now generalized the Callan-Symanzik equation to incorporate
the most general perturbation of the free-field Lagrangian, it is pleasing that
we recover the full structure of the Wilson flow of coupling constants. In ad-
dition, this more formal method gives us a way to compute the corrections to
the Wilson flow due to A\¢* interactions, order by order in ), using Feynman
diagrams.

We can move one step closer to the generality of Section 12.1 by moving
from four dimensions to an arbitrary dimension d. We require only two small
changes in the formalism. First, the operator ¢* acquires a dimensionful co-
efficient when d # 4, and we must take account of this. We have seen in the
discussion below Eq. (10.13) that a scalar field has mass dimension (d — 2)/2.
Thus, the operator ¢* has mass dimension (2d — 4), and so its coefficient has
dimension 4 — d. To implement the renormalization group, we redefine \ so
that this coefficient remains dimensionless in d dimensions. We treat the mass
term similarly, replacing m? — p,, M?2. Thus the expansion of the Lagrangian
about the free scalar field theory L reads:

1 1
L="Lo— §pmM2¢§4 - ZAM‘*-%‘}W 4+ (12.129)

The second required change in the formalism is that of recomputing the
(3 and v functions in the new dimension. To order A, the result is surprisingly
innocuous. Consider, for example, the computation of v42, Eq. (12.114). This
computation, which was performed in dimensional regularization, is essentially
unchanged. For general values of d, the derivative of the counterterm d42 with
respect to log M still involves the factor

8 ([ I(2-9) '
Mg ((Mz)—zfd/?> =-24+0(4—d). (12.130)
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This observation holds for all of the v;, and the 8 function is shifted only by
the contribution of the mass dimension of A. Thus, for d near 4,

B=(d—A+BIN) +---,
= [~2+ 752 lom + (12.131)
Bi=ld;i —d++")pi+ -,

where the functions with a superscript (4) are the four-dimensional results
obtained earlier in this section, and the omitted correction terms are of order
A-(d—4). The precise form of these corrections depends on the renormalization
scheme.f

Using the explicit four-dimensional result (12.46) for 3, we now find

322
1672’
For d > 4, this function is positive and predicts that the coupling constant
flows smoothly to zero at large distances. However, when d < 4, this () has
the form shown in Fig. 12.4(b). Thus it generates just the coupling constant
flow that we discussed from Wilson’s viewpoint below Eq. (12.29). At small
values of A, the coupling constant increases in importance with increasing
distance, as dimensional analysis predicts. However, at larger A, the coupling
constant decreases as a result of its own nonlinear effects. These two tendencies
come into balance at the zero of the beta function,

B=—(4—d)A+ (12.132)

_ 1672
-3

which gives a nontrivial fixed point of the renormalization group flows in scalar
field theory for d < 4. If we formally consider values of d close to 4, this fixed
point occurs in a region where the coupling constant is small and we can use
Feynman diagrams to investigate its properties. This fixed point, which was
discovered by Wilson and Fisher,* has important consequences for statistical
mechanics, which we will discuss in Chapter 13.

A

(4 - d), (12.133)

Critical Exponents: A First Look

As an application of the formalism of this section, let us calculate the renor-
malization group flow of the coefficient of the mass operator in ¢* theory. This
is found by integrating Eq. (12.126), using the value of 3, from (12.131):

d
dlogp

P = [=2+ 75 (V)] (12.134)

tThis expansion is displayed to rather high order in E. Brezin, J. C. Le Gillou,
and J. Zinn-Justin, Phys. Rev. D9, 1121 (1974).

tK. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972).
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For A'= 0, this equation gives the trivial relation

2
b, = pm(%) . (12.135)
p
If we recall that we originally defined p,, = m?/M?, this is just a complicated
way of saying that, when p becomes of order m, the mass term becomes an
important term in the Lagrangian. At this point, the correlations in the ¢
field begin to die away exponentially. The characteristic range of correlations,
which in statistical mechanics would be called the correlation length £, is given
by
£€~pyt, where p,,(po) = 1. (12.136)

If we evaluate this criterion, we find € ~ (M?p,,)"'/2, that is, £ ~ m™!, as
we would have expected.
However, the application of this criterion at the fixed point A. gives a

much more interesting result. If we set A = A,, then Eq. (12.134) has the
solution

_ M\ 2—742(Xs)
B = pm(—) = (12.137)
p
This gives a nontrivial relation
€~ put, (12.138)
where the exponent v is given formally by the expression
1
V= ———————. 12.139
2 =52 (M) ( )

Using the results (12.133) and (12.117), we can evaluate this explicitly for d

near 4:
1

v l=2- g(4—d). (12.140)
Wilson and Fisher showed that this expression can be extended to a systematic
expansion of v in powers of € = (4 — d).

Because the exponent v has an interpretation in statistical mechanics, it is
directly measurable in the realistic case of three dimensions. In the statistical
mechanical interpretation of scalar field theory, p,, is just the parameter that
one must adjust finely to bring the system to the critical temperature. Thus p,,
is proportional to the deviation from the critical temperature, (T' — T¢). Our
field theoretic analysis thus implies that the correlation length in a magnet
grows as T — T¢ according to the scaling relation

£~ (T—To)™". (12.141)

It also gives a definite, and somewhat unusual, prediction for the value of v.
It predicts that v is close to the value 1/2 suggested by the Landau approx-
imation studied in Chapter 8 (Eq. (8.16)), but that v differs from this value
by some systematic corrections.



12.5 Evolution of Mass Parameters 437

A scaling behavior of the type (12.141) is observed in magnets, and it is
known that several definite scaling laws occur, depending on the symmetry of
the spin ordering. Magnets can be characterized by the number of fluctuating
spin components: N=1 for magnets with a preferred axis, N=2 for magnets
with a preferred plane, and N=3 for magnets that are isotropic in three-
dimensional space. The experimental value of v depends on this parameter.
The ¢* field theory discussed in this chapter contained only one fluctuating
field; this is the analogue of a magnet with one spin component. In Chapter 11,
we considered a generalization of ¢? theory to a theory of N fields with O(IV)
symmetry. We might guess that this system models magnets of general V.

If this correspondence is correct, Eq. (12.140) gives a prediction for the
value of v in magnets with a preferred axis. In Section 13.1, we will repeat
the analysis leading to this equation in the O(NN)-symmetric ¢* theory and
derive the formula

vl=2-_""S(4—4), (12.142)

valid for general N to first order in (4 — d). For the cases V = 1,2,3 and
d = 3, this formula predicts

v =0.60, 0.63, 0.65. (12.143)

For comparison, the best current experimental determinations of v in magnetic
systems give*
v =0.64, 0.67, 0.71 (12.144)

for N =1,2,3. The prediction (12.143) gives a reasonable first approximation
to the experimental results.

The ability of quantum field theory to predict the critical exponents gives
a concrete application both of the formal connection between quantum field
theory and statistical mechanics and of the flows of coupling constants pre-
dicted by the renormalization group. However, there is another experimental
aspect of critical behavior that is even more remarkable, and more persua-
sive. Critical behavior can be studied not only in magnets but also in fluids,
binary alloys, superfluid helium, and a host of other systems. It has long been
known that, for systems with this disparity of microscopic dynamics, the scal-
ing exponents at the critical point depend only on the dimension N of the
fluctuating variables and not on any other detail of the atomic structure.
Fluids, binary alloys, and uniaxial magnets, for example, have the same crit-
ical exponents. To the untutored eye, this seems to be a miracle. But for a
quantum field theorist, this conclusion is the natural outcome of the renor-
malization group idea, in which most details of the field theoretic interaction
are described by operators that become irrelevant as the field theory finds its
proper, simple, large-distance behavior.

*For further details, see Table 13.1 and the accompanying discussion.
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Problems

12.1 Beta functions in Yukawa theory. In the pseudoscalar Yukawa theory stud-
ied in Problem 10.2, with masses set to zero,

1 A - .=
L= 5(0u0)? ~ 56" + 0P — ighy v,
compute the Callan-Symanzik 3 functions for A and g:

B/\()‘»g)7 ﬁg(A’g)i

to leading order in coupling constants, assuming that A and g? are of the same order.
Sketch the coupling constant flows in the \-g plane.

12.2 Beta function of the Gross-Neveu model. Compute ((g) in the two-
dimensional Gross-Neveu model studied in Problem 11.3,

L= ;idb; + %92(17%%)2,

with ¢ = 1,..., N. You should find that this model is asymptotically free. How was
that fact reflected in the solution to Problem 11.37

12.3 Asymptotic symmetry. Consider the following Lagrangian, with two scalar
fields ¢1 and ¢9:

1 A 5
£ = 5((0u61)? + 0ud2)?) - 5 (#1 + ¢3) - 7 (#163).

Notice that, for the special value p = ), this Lagrangian has an O(2) invariance rotating
the two fields into one another.-

(a) Working in four dimensions, find the 3 functions for the two coupling constants
A and p, to leading order in the coupling constants.

(b) Write the renormalization group equation for the ratio of couplings p/A. Show
that, if p/A < 3 at a renormalization point M, this ratio flows toward the
condition p = X at large distances. Thus the O(2) internal symmetry appears
asymptotically.

(c) Write the 8 functions for A and p in 4 — € dimensions. Show that there are
nontrivial fixed points of the renormalization group flow at p/A = 0,1,3. Which
is the most stable? Sketch the pattern of coupling constant flows. This flow
implies that the critical exponents are those of a symmetric two-component
magnet.
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Critical Exponents and Scalar Field Theory

The idea of running coupling constants and renormalization-group flows gives
us a new language with which to discuss the qualitative behavior of scalar
field theory. In our first discussion of ¢* theory, each value of the coupling
constant—and, more generally, each form of the potential and each spacetime
dimension—gave a separate problem to be explored. But in Chapter 12, we
saw that ¢* theories with different values of the coupling are connected by
renormalization-group flows, and that the pattern of these flows changes con-
tinuously with the spacetime dimension. In this context, it makes sense to ask
the very general question: How does ¢* theory behave as a function of the
dimension? This chapter will give a detailed answer to this question.

The central ingredient in our analysis will be the Wilson-Fisher fixed point
discussed in Section 12.5. This fixed point exists in spacetime dimensions d
with d < 4; in those dimensions it controls the renormalization group flows of
massless ¢* theory. The scalar field theory has manifest or spontaneously bro-
ken symmetry according to the sign of the mass parameter m?. Near m? = 0,
the theory exhibits scaling behavior with anomalous dimensions whose val-
ues are determined by the renormalization group equations. For d > 4, the
Wilson-Fisher fixed point disappears, and only the free-field fixed point re-
mains. Again, the theory exhibits two distinct phases, but now the behavior
at the transition is determined by the renormalization group flows near the
free-field fixed point, so the scaling laws are those that follow from simple
dimensional analysis.

The continuation of these results to Euclidean space has important im-
plications for the theory of phase transitions in magnets and fluids. As we
discussed in the previous chapter, the ideas of the renormalization group im-
ply that the power-law behaviors of thermodynamic quantities near a phase
transition point are determined by the behavior of correlation functions in a
Euclidean ¢* theory. The results stated in the previous paragraph then im-
ply the following conclusions for critical scaling laws: For statistical systems
in a space of dimension d > 4, the scaling laws are just those following from
simple dimensional analysis. These predictions are precisely those of Landau
theory, which we discussed in Chapter 8. On the other hand, for d < 4, the
critical scaling laws are modified, in a way that we can compute using the
renormalization group.

439
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In d = 4, we are on the boundary between the two types of scaling behav-
ior. This corresponds to the situation in which ¢* theory is precisely renor-
malizable. In this case, the dimensional analysis predictions are corrected, but
only by logarithms. We will analyze this case specifically in Section 13.2.

Though it is not obvious, the case d = 2 provides another boundary. Here
the transition to spontaneous symmetry breaking is described by a different
quantum field theory, which becomes renormalizable in two dimensions. In
Section 13.3, we will introduce that theory, called the nonlinear sigma model,
and show how its renormalization group behavior merges smoothly with that
of ¢* theory. By combining all of the results of this chapter, we will obtain
a quantitative understanding of the behavior of ¢* theory, and of critical
phenomena, over the whole range of spacetime dimensions.

13.1 Theory of Critical Exponents

At the end of Chapter 12, we used properties of the renormalization group
for scalar field theory to make a prediction about the behavior of correla-
tions near the critical point of a thermodynamic system. We argued that the
range of correlations, the correlation length £, should increase to infinity as
one approaches the critical point, according to the scaling law (12.141). The
exponent in this equation, called v, should depend only on the symmetry of
the order parameter. We argued, further, that this exponent is related to the
anomalous dimension of a local operator in ¢* theory, and that it can be
computed from Feynman diagrams. In this section, we will show that similar
conclusions apply more generally to a large number of scaling laws associated
with a critical point.

To begin, we will define systematically a set of critical exponents, expo-
nents of scaling laws that describe the thermodynamic behavior in the vicinity
of the critical point. We will then show, using the Callan-Symanzik equation,
that all these exponents can be reduced to two basic anomalous dimensions.
Finally, we will compare this remarkable prediction of quantum field theory
to experiment.

In suggesting a set of critical scaling laws, we begin with the behavior of
the correlation function of fluctuations of the ordering field. For definiteness,
we will use the language appropriate to a magnet, as in Chapter 8. We will
compute classical thermal expectation values as correlation functions in a
Euclidean quantum field theory, as explained in Section 9.3. The fluctuating
field will be called the spin field s(x), its integral will be the magnetization M,
and the external field that couples to s(z) will be called the magnetic field H.
(In deference to the magnetization, we will denote the renormalization scale
in the Callan-Symanzik equation by p in this section.)

Define the two-point correlation function by

G(z) = (s(x)s(0)) , (13.1)

or by the connected expectation value, if we are in the magnetized phase where
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(s(z)) # 0. Away from the critical point, G(z) should decay exponentially,
according to

G(z) ~ exp[—|z|/¢]. (13.2)
The approach to the critical point is characterized by the parameter
T-Tc
t= . 13.
TC (13.3)

Then we expect that, as t — 0, the correlation length should increase to
infinity. Define the exponent v, (12.141), by the formula

€~ Jtv. (13.4)

Just at t = 0, the correlation function should decay only as a power law.
Define the exponent 7 by the formula

1
~—
|z|d-2+n°

G(z) (13.5)
where d is the Euclidean space dimension.

The behaviors of thermodynamic quantities near the critical point define
a number of additional exponents. Typically, the specific heat of the thermo-
dynamic system diverges as t — 0; define the exponent a by the formula for
the specific heat at fixed external field H = 0:

Cy ~ [t|°. (13.6)

Since the ordering sets in at ¢ = 0, the magnetization at zero field tends to
zero as t — 0 from below. Define the exponent § (not to be confused with the
Callan-Symanzik function) by

M ~ |t]®. (13.7)

Even at ¢ = 0 one has a nonzero magnetization at nonzero magnetic field.
Write the law by which this magnetization tends to zero as H — 0 as the
relation

M ~ HYS. (13.8)

Finally, the magnetic susceptibility diverges at the critical point; we write this
divergence as the relation
X~ [t 7. (13.9)

Equations (13.4)—(13.9) define a set of critical exponents «, 3, v, 8, v, n, which
can be measured experimentally for a variety of thermodynamic systems.*
In Chapter 12 we argued, following Wilson, that a thermodynamic system
near its critical point can be described by a Euclidean quantum field theory.
At the level of the atomic scale, the Lagrangian of this quantum field theory
may be complicated; however, when we have integrated out the small-scale

* A variety of further critical exponents and relations are presented in M. E. Fisher,
Repts. Prog. Phys. 30, 615 (1967).
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degrees of freedom, this Lagrangian simplifies. If we adjust a parameter of the
theory to insure the presence of long-range correlations, the Lagrangian must
closely approach a fixed point of the renormalization group. Generically, the
Lagrangian will approach the fixed point with a single unstable or relevant
direction, corresponding to the mass parameter of ¢* theory. In d < 4, this
is the Wilson-Fisher fixed point. In d > 4, it is the free-field fixed point. For
definiteness, we will assume d < 4 in the following discussion.

Exponents of the Spin Correlation Function

In this setting, we can study the behavior of the spin-spin correlation function
G(z). By the argument just reviewed, G(x) is proportional to the two-point
correlation function of a Euclidean scalar field theory. The technology intro-
duced in the previous chapter can be applied directly. The correlation function
obeys the Callan-Symanzik equation (12.125),

0 0
9 9 Q]G cu, {pi}) = 0. 13.10
[uau +Xi:ﬂ’api + 27| G5, {pi}) (13.10)
Here we include the ¢* coupling A among the generalized couplings p;.

By dimensional analysis, in d dimensions,

1
G(z) = WQ(#LTL {pi}), (13.11)
where g is an arbitrary function of the dimensionless parameters. (This is
the Fourier transform of the statement that G(p) ~ p~2 times a dimension-
less function.) From this starting point, we can solve the Callan-Symanzik
equation (13.10) by the method of Section 12.3, and find
|z]

G(sc):m%ham(x)})-exp[ﬂ / dlog(i/)+({p()})|,  (13.12)

1/p

where h is a dimensionless initial condition. The running coupling constants
p; obey the differential equation

d
Wpi = Bi({pj}) (13.13)
We studied the solution to this equation in Section 12.5. We saw there
that, for flows that come to the vicinity of the Wilson-Fisher fixed point, the
dimensionless coefficient of the mass operator grows as one moves toward large
distances, while the other dimensionless parameters become small. Let A, be
the location of the fixed point. Then we can write more explicitly

P = P (pla])2 72

! (13.14)
p; = pi(plz]) ™™,



13.1 Theory of Critical Exponents 443

where A; > 0 for ¢ # m. If the deviation of X from the fixed point is treated
as one of the p;, by defining

pr=A— A, (13.15)

this parameter also decreases in importance as a power of |z|, as we demon-
strated in Eq. (12.96). In the language of Section 12.1, all of the parameters
p; multiply irrelevant operators, except for p,,, which multiplies a relevant
operator.

To approach the critical point, we adjust the parameters of the underlying
theory so that, at some scale (1/u) near the atomic scale, p, < 1. If p,
is adjusted by tuning the temperature of the thermodynamic system, then
pm ~ t. The critical scaling laws will be valid if there is a region of distance
scales where p,,, remains small while the other p, can be neglected. The scaling
laws can then be computed by evaluating the solution to the Callan-Symanzik
equation with p,,, given by (13.14) and the other p, set equal to zero. The
corrections to this approximation can be shown to be proportional to positive
powers of t. '

In this approximation, we should evaluate the function y(\) in (13.12) at
px = 0, that is, at the fixed point. Using this value and the solution for p,,,
Eq. (13.12) becomes

Gla) = [oms * Ty - hEulel)* 740, (13.16)

This equation implies the scaling laws (13.5) and (13.4): For the argument of
h sufficiently small, G(z) obeys Eq. (13.5), with
n=27v(A\). (13.17)

At large distances, h must fall off exponentially, since this function is derived
from a scalar field propagator. From the argument of h, we deduce that this
exponential must be of the form

expllal (ut*)), (13.18)
where, as in (12.139),
1
V=——"—"—". 13.19
2 - 'Y¢2()‘*) ( )

This is precisely the scaling law (13.2), (13.4), with the identification of v in
terms of the anomalous dimension of the operator ¢?.

Exponents of Thermodynamic Functions

The thermodynamic critical scaling laws can be derived in a similar way, by
studying the scaling behavior of macroscopic thermodynamic variables. These
are derived from the Gibbs free energy, or, in the language of quantum fields,
from the effective potential of the scalar field theory. Since the effective poten-
tial, and, more generally, the effective action, are constructed from correlation
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functions, these quantities should satisfy Callan-Symanzik equations. We will
now construct those equations and then use them to identify the thermody-
namic critical exponents.

In Eq. (11.96), we showed that the effective action I' depends on the
classical field ¢ in such a way that the nth derivative of I' with respect to
@1 gives the one-particle-irreducible n-point function of the field theory. Thus
we can reconstruct [' from the 1PI functions by writing the Taylor series

Tlpa] =i) % / dzy - de, da (1) - $a(@n) TV (21, 20),  (13.20)
—

where the (™) are the 1PI amplitudes. '

To find the Callan-Symanzik equation satisfied by I'[¢al], it is easiest to
first work out the equation satisfied by I'™). We begin by considering the
irreducible three-point function I'®). This function is defined as

1 o
G (p1)G (p2) G (p3)

Rescaling with factors Z(u), we see that T'®) is related to the irreducible
three-point function of bare fields by

T® (py, pa,p3) = Z(w) 2T (p1, p2, p3).-

Similarly, the irreducible n-point function is related to the corresponding func-
tion of bare fields by

3)(p1>p27p3)- (1321)

T'® (p1,pa, p3) =

™ = z(u)?r. (13.22)

This relation is identical in form to the corresponding relation for the full
Green’s functions, Eq. (12.35), except for the change of sign in the exponent.
From this point, we can follow the logic used to derive the Callan-Symanzik
equation for Green’s functions, Eq. (12.41); the only difference is that the n~y
term enters with the opposite sign. Thus we find

g+ 0035 - mO]rO ey =0 (13.23)

To convert thlS to an equation for the effective action, note that, on the
right-hand side of Eq. (13.20), the function '™ is accompanied by n powers
of the classical field. Then Eq. (13.23), integrated with n powers of ¢ and -
summed over n, is equivalent to the equation

g+ B0 35 =2 [ de ) s

The operator multiplying «(\) counts the number of powers of ¢ in each term
of the Taylor expansion. By specializing Eq. (13.24) to the case of constant
¢c1, we find the Callan-Symanzik equation for Vg:
0 0
g + BN g5 ~ Va5 2 ] (Bt . 0) = 0. (13.25)

] ([Bal; s A) = 0. (13.24)
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To apply Eq. (13.25) to the problem of critical exponents, we first convert
this equation to the notation of statistical mechanics by replacing ¢, with the
magnetization M, the conjugate source J by H, and the effective potential
Vet by the Gibbs free energy G(M). At the same time, we will generalize A
to the full set of couplings p;. Then (13.25) takes the form

0] ad 0
g+ zijﬁia—m — M5 |GM ) =0 (1326)

Now let us find the solution to this equation. As before, we begin from
a statement of dimensional analysis. In d dimensions, the effective potential
has mass dimension d, and a scalar field has mass dimension (d — 2)/2. Thus

G(M, u, {p:}) = M*Y =D 5(Mp=4=2/2 151), (13.27)

where § is a new dimensionless function. Inserting (13.27) into (13.26), we see
that g satisfies

0 d—2 0 2 e (d— '
[ Big, = (557 +7) Mgz —dg=5|(Mu™ 2 (n}) =0, (13.29)
that is,

) 28, 9 4dy o
Mo =2 d=2+27)0p (d—2)(d—2+2'y)]g =0 »(13'29)

7

Solving this equation, we find

G(M) = MY =Dh({p,(M)})

M
4dy _
cexp| - [ dog(M') g o (0|
u(d—2)/2 ( )
13.30
where the running coupling constants p; obey
26:({p;

dlog M" =~ d—2+ 24({p;})

As in our discussion of the spin correlation function, we specialize to the
critical region by assuming that we are on a renormalization group flow that
passes close to the Wilson-Fisher fixed point. We again ignore the effects of
irrelevant operators. Then we should set

- —(d—2)/2\~2(2=742 (M) /(d=2+2v()\.))
p; =0 for i # m,

with p,, ~ t. In this approximation, the Gibbs free energy takes the form
G(M,t) = M24/(d=2) | (Mu—(d—2)/2)’4‘17(**>/(d—2)(d—2+?7(**))

) (13.33)
R(H(Mp(2)/2)"2@=72 O ) /(d=2+2700) )
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where h is a smooth initial condition.
To simplify the form of the exponents in this expression, we anticipate
some of the results below and replace

_d=2+2y()\,)
B 2d L d+2-29(\) '
T d-2+29(\) 0 d—2+2y(\)

We must demonstrate that these new exponents indeed correspond to the
ones we have defined in Eqs. (13.7) and (13.8). With these replacements (and
ignoring the dependence on y from here on), we find for G the scaling formula

G(M,t) = M Sh(tM~Y/F), (13.35)

where h has a smooth limit as ¢t — 0. An equivalent way to represent this
formula is

G(M,t) = tPO+0) f(Mt=P). - (13.36)

The scaling laws for thermodynamic quantities follow immediately from
these relations. Along the line ¢t = 0, we find from (13.35) that

G,
= 227 = hO)M’, (13.37)

which is precisely (13.8). Below the criticial temperature, we find the nonzero
value of the magnetization by minimizing G with respect to M. In the scaling
region, this minimum occurs at the minimum mg of the function f(m) in
(13.36). This leads to relation (13.7), in the form

Mt=P = mg. (13.38)

If we work above T and in zero field, the minimum of f must occur at M = 0.
Then
G(t) ~ tP0+9), (13.39)
To compute the specific heat, we differentiate twice with respect to tempera-
ture; this gives the scaling law (13.6), with
d

2 — ’)’¢2 ()\*) ’

Finally, we must construct the scaling law for the magnetic susceptibility.
From (13.36), the scaling law for H at nonzero t is

oG B6 ¢t -8
oM ERF M) (13.41)

The inverse of this relation is the scaling law

M = tPe(HtP?). (13.42)

2—a=p8(1+6)= (13.40)
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The magnetic susceptibility at zero field is then

oM g — (65—
X:(gﬁlzdmﬁwlw. (13.43)
Thus, we confirm Eq. (13.9), with the identification
2(1 — 'Y(A*))
—(5-1)8= 22N 13.44
v=(-18= 510 (13.44)

We have now found explicit expressions for all of the various critical ex-
ponents in terms of the Callan-Symanzik functions. As the dimensionality d
approaches 4 from below, the fixed point A\, tends to zero. Then the six critical
exponents approach the values that they would attain in simple dimensional
analysis:

n=0 v=g5 a=0 pB=3
vy=1 6=3.

It is no surprise that the values of n, v and 8 given in (13.45) are those that we
derived in Chapter 8 from the the Landau theory of critical phenomena. The
other values can similarly be shown to follow from Landau theory. The renor-
malization group analysis tells us how to systematically correct the predictions
of Landau theory to take proper account of the large-scale fluctuations of the
spin field.

Notice that all of the exponents associated with thermodynamic quan-
tities are constructed from the same ingredients as the exponents associated
with the correlation function. From the field theory viewpoint, this is obvious,
since all of the scaling laws in the field theory must ultimately follow from the
anomalous dimensions of the operators ¢(x) and ¢?(x), which are precisely
v(A«) and v42(As). This result, however, has an interesting experimental con-
sequence: It implies model-independent relations among critical exponents.
For example, in any system with a critical point, this theory predicts

a=2-—dy, B=31(d-2+npw. (13.46)

(13.45)

These relations test the general framework of identifying a critical point with
the fixed point of a renormalization group flow.

In addition, the field theoretic approach to critical phenomena predicts
that critical exponents are universal, in the sense that they take the same
values in condensed matter systems that approach the same scalar field fixed
point in the limit T' — T¢.

Values of the Critical Exponents

Finally, scalar field theory actually predicts the values of v(A,) and 742 (),
either from the expansion in powers of ¢ = 4 — d described in Section 12.5 or
by direct expansion of the 8 and « functions in powers of \. We can use these
expressions to generate quantitative predictions for the critical exponents.
We gave an example of such a prediction at the end of Section 12.5, when we
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presented in Eq. (12.143) the first two terms of an expansion for v. We now
return to this question to give field-theoretic predictions for all of the critical
exponents.

In our discussion at the end of Section 12.5, we remarked that magnets
with different numbers of fluctuating spin components are observed to have
different values for the critical exponents. An optimistic hypothesis would
be that any thermodynamic system with N fluctuating spin components, or,
more generally, N fluctuating thermodynamic variables at the critical point,
would be described by the same fixed point field theory with N scalar fields.
A natural candidate for this fixed point would be the Wilson-Fisher fixed
point of the O(N)-symmetric ¢* theory discussed in Chapter 11. We will now
describe the computation of critical exponents for general values of N in this
theory.

As a first step, we should compute the values of the functions 5(A), ¥(A),
and v42(A) in four dimensions. This computation parallels the analysis done
in Chapter 12 for ordinary ¢* theory, so we will only indicate the changes
that need to be made for this case. Just as in ordinary ¢* theory, the prop-
agator of the massless O(NN)-symmetric theory receives no field strength cor-
rections in one-loop order, and so the one-loop term in y(\) again vanishes.
In Problem 13.2, we compute the leading, two-loop, contribution to () in
O(N)-symmetric ¢* theory:

v = (N+2))‘—2 +0(N®). (13.47)
4(872)2 '
The one-loop contribution to the 3 function in ¢* theory is derived from the
one-loop vertex counterterm 6y, given in Eq. (12.44). For the O(N)-symmetric
case, we computed the divergent part of the corresponding vertex counterterm
in Section 11.2; from Eq. (11.22),

A2 r2-9) .
(5)\ = W(N + S)W + finite. (1348)
Following the logic to Eq. (12.46), or using Eq. (12.54), we find
2
B=(N+ 8))‘— +0(3). (13.49)
872

This reduces to the § function of ¢* theory if we set N = 1 and replace
A — A/6, as indicated below Eq. (11.5). Finally, to compute 742, we must
repeat the computation done at the end of Section 12.4. If we consider, instead
of (12.113), the Green’s function (¢*(p)¢’(q)¢*(k)), and replace the vertex of
¢* theory by the four-point vertex following from the Lagrangian (11.5), the
factor (—¢A) in the first line of (12.114) is replaced by

(—2iN)[69 6% 4 5§78 4 §1667%] . 6% = —2i\(N + 2)6Y.
Then \
> = - A?). 13.50
Te2 = (N +2)g 5 +O(N) (13.50)
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Next, we consider the same theory in (4 — €) dimensions. The  function
now becomes

/\2
- N+8) 13.
Jé] ex+( +8)87r2’ (13.51)
so there is a Wilson-Fisher fixed point at
8m2e
Ak = . 13.52
N +8 ( )
At this fixed point, we find
N+2 , N+2
)= D=ty 13.
v(As) 4(N+8)26 + Y2 (Ax) N+86+ (13.53)

From these two results, we can work out predictions for the whole set of
critical exponents to order e. As an example, inserting (13.53) into (13.19),

we find
N+2

N+8

as claimed at the end of Section 12.5.

In our discussion in Chapter 12, we claimed that the predictions of crit-
ical exponents are in rough agreement with experimental data. However, by
computing to higher order, one can obtain a much more precise comparison
of theory and experiment. The e expansion of critical exponents has now been
worked out through order €3. More impressively, the A expansion for criti-
cal exponents in d = 3 has been worked out through order A\°. By summing
this perturbation series, it is possible to obtain very precise estimates of the
anomalous dimensions y(A.) and ~42(\,) and, through them, precise predic-
tions for the critical exponents.

A comparison of these values to direct determinations of the critical expo-
nents is given in Table 13.1. The column labeled ‘QFT’ gives values of critical
exponents obtained by anomalous dimension calculations using ¢* pertur-
bation theory in three dimensions. The column labeled ‘Experiment’ lists a
selection of experimental determinations of the critical exponents in a variety
of systems. These include the liquid-gas critical point in Xe, CO2, and other
fluids, the critical point in binary fluid mixtures with liquid-liquid phase sepa-
ration, the order-disorder transition in the atomic arrangement of the Cu-Zn
alloy (3-brass, the superfluid transition in *He, and the order-disorder transi-
tions in ferromagnets (EuO, EuS, Ni) and antiferromagnets (RbMnF3). The
agreement between experimental determinations of the exponents in different
systems is a direct test of universality. For the case of systems with a single
order parameter (N = 1), there is a remarkable diversity of physical systems
that are characterized by the same critical exponents.

The column labeled ‘Lattice’ contains estimates of critical exponents in
abstract lattice statistical mechanical models. For these simplified models, the
statistical mechanical partition function can be calculated in an expansion for
large temperature. With some effort, these expansions can be carried out to

v l=2-

€+ O(e?), (13.54)
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Table 13.1. Values of Critical Exponents
for Three-Dimensional Statistical Systems

Critical Exponents and Scalar Field Theory

Exponent Landau QFT Lattice Experiment
N =1 Systems:
y 1.0 1.241 (2) 1.239 (3) 1.240 (7) binary liquid
1.22 (3)  liquid-gas
1.24 (2)  [B-brass
v 0.5 0.630 (2) 0.631 (3) 0.625 (5) binary liquid
0.65 (2)  [-brass
! 0.0 0.110 (5) 0.103 (6) 0.113 (5) binary liquid
0.12 (2)  liquid-gas
08 0.5 0.325 (2) 0.329 (9) 0.325 (5) binary liquid
0.34 (1)  liquid-gas
n 0.0 0.032 (3) 0.027(5) 0.016 (7) binary liquid
0.04 (2)  [-brass
N = 2 Systems:
5 1.0 1.316 (3) 1.32(1)
v 0.5 0.670 (3) 0.674 (6) 0.672 (1) superfluid *He
@ 0.0 —0.007 (6) 0.01 (3) —0.013 (3) superfluid “He
N = 3 Systems:
¥ 1.0 1.386 (4) 1.40 (3) 1.40 (3)  EuO, EuS
1.33 (3) Ni
1.40 (3) RbMnF;
v 0.5 0.705 (3) 0.711(8) 0.70 (2) EuO, EuS
0.724 (8) RbMnF;3
e 0.0 —0.115 (9) —0.09 (6) —0.011 (2) Ni
8 0.5 0.365(3) 0.37 (5) 0.37 (2) EuO, EuS
0.348 (5) Ni
0.316 (8) RbMnFj3
n 00 0.033(4) 0.041 (14)

The values of critical exponents in the column ‘QFT’ are obtained by resumming
the perturbation series for anomalous dimensions at the Wilson-Fisher fixed point in

O(N)-symmetric ¢* theory in three dimensions. The values in the column ‘Lattice’

are based on analysis of high-temperature series expansions for lattice statistical me-
chanical models. The values in the column ‘Experiment’ are taken from experiments
on critical points in the systems described. In all cases, the numbers in parentheses are
the standard errors in the last displayed digits. This table is based on J. C. Le Guil-
lou and J. Zinn-Justin, Phys. Rev. B21, 3976 (1980), with some values updated from
J. Zinn-Justin (1993), Chapter 27. A full set of references for the last two columns can

be found in these sources.
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15 terms or more. By resumming these series, one can obtain direct theoretical
estimates of the critical exponents, with an accuracy comparable to that of
the best experiments. The comparison between these values and experiment
tests the identification of experimental systems with the simple Hamiltonians
that were the starting point for our renormalization group analysis.

The agreement of all three types of determinations of the critical expo-
nents presents an impressive picture. The picture is certainly not perfect, and
a careful inspection of Table 13.1 reveals some significant discrepancies. But,
in general, the evidence is compelling that quantum field theory provides the
basic explanation for the thermodynamic critical behavior of a broad range
of physical systems.

13.2 Critical Behavior in Four Dimensions

Now that we have discussed the general theory of critical exponents for d < 4,
let us concentrate some attention on the case d = 4. This case obviously has
special interest for the applications of quantum field theory to elementary
particle physics. In addition, we now know that d = 4 lies on a boundary at
which the Wilson-Fisher fixed point disappears. We would like to understand
the special behavior of quantum field theory predictions at this boundary.

The most obvious difference between d < 4 and d = 4 is that, while in the
former case the deviation of A from the fixed point multiplies an irrelevant
operator, in the case d = 4, A multiplies a marginal operator. We have seen in
Eq. (12.82) that, at small momenta or large distances, the running value of A
still approaches its fixed point, now located at A = 0. However, this approach
is described by a much slower function, not a power but only a logarithm of
the distance scale. Thus it is normally not correct to ignore the deviation of
A from the fixed point. Including this effect, we find additional logarithmic
terms, analogous to the dependence of correlation functions on logp that we
already know characterizes a renormalizable field theory.

To give a nontrivial illustration of this logarithmic dependence, we return
to a problem that we postponed at the end of Chapter 11. In Eq. (11.81),
we obtained the expression for the effective potential of ¢* theory to second
order in A, in the limit of vanishing mass parameter:

1 A2
Ver = 104 [/\ + G ((N +8) (log(A¢% /M) — 3 + 9log 3)] (13.55)
(Note that we now return to our standard notation, in which M is the renor-
malization scale and p is a mass parameter.) This expression seemed to have
a minimum for very small values of ¢.j, but only at values so small that

| Mog(AgZ/M?)| ~ 1. (13.56)

Since, at the nth order of perturbation theory, one finds n powers of this loga-
rithm, Eq. (13.56) implies that the higher-order terms in A are not necessarily
negligible. What we need is a technique that sums these terms.
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This summation is provided by the Callan-Symanzik equation. From
(13.24) or (13.25), the Callan-Symanzik equation for the effective potential
in the massless limit of four-dimensional ¢* theory is

[M 507 + B0 5 — 26050 Ve (6t M, 0 =0, (13.57)

As before, we can solve for Vg by combining this equation with the predictions
of dimensional analysis. In d = 4,

Vest (e, M, N) = ¢v(da /M, N). (13.58)
Then v satisfies 5 5 8 4
2

— 1+ " ly=0. 13.59

[¢°'a¢d 1+78/\+1+7]U 0 (13.59)

This equation for v can be solved by our standard methods, to give
¢cl

o(6/M,3) = (W exp - [ dlog gu 141 (R(6a) . (13.60)
M

+

where )\ satisfies

4 5_ BN

dlog(¢a/M)"  1++(N)
However, since we are working only to the order of the leading loop correc-
tions, and since () is zero to this order, we can ignore the exponential in
(13.60). In addition, we can ignore the denominator on the right-hand side of
(13.61), so that this equation reduces to the more standard form of the equa-
tion (12.73) for the running coupling constant. Thus, using the leading-order
Callan-Symanzik function, we find

Vet (¢e1) = UO(S‘(¢CI)) 31' (13'62)

The function vy in (13.62) is not determined by the Callan-Symanzik
equation. To find this function, we compare (13.62) to the result (13.55) that
we obtained from our explicit one-loop evaluation of the effective potential.
The precise constraint is the following: After choosing the function vg(),
substitute for X the solution (12.82) to the renormalization group equation,

A
1 — (\/872)(N+8)log(¢et/M)
Then expand the result in powers of A and drop terms of order A% and higher.

If vo is chosen correctly, the result should agree with (13.55). Applying this
criterion, we find the following result for the effective potential:

(13.61)

’—\((pcl) =

(13.63)

32
(4m)?
where X is given by (13.63).

Vet (dc1) = %asﬁl [X + ((N+8) (log A — 3) +9log 3)] (13.64)
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The error in Eq. (13.64) comes in the determination of vy as a power

series in . Thus this error is of order A°. As éa — 0, X — 0, and so the
representation (13.64) becomes more and more accurate. Thus this formula
successfully sums the powers of the dangerous logarithm (13.56). Viewed as
a function of ¢¢, (13.64) has its minimum at ¢ = 0. Thus the apparent
symmetry-breaking minimum of (13.55) is indeed an artifact of the incomplete
perturbation expansion and disappears in a more complete treatment. This
resolves the question that we raised in Section 11.4. We should note that,
in more complicated examples, an apparent symmetry-breaking minimum of
the effective potential found in the one-loop order of perturbation theory can
survive a renormalization-group analysis. An example is given in the Final
Project for Part II.

The procedure we have followed in this argument is called the renor-
malization group improvement of perturbation theory. The technique can be
applied equally well to the computation of correlation functions and other pre-
dictions of Feynman diagram perturbation theory: One compares the solution
of the Callan-Symanzik equation to the result of a straightforward perturba-
tion theory computation to the same order in the coupling constant, choosing
the undetermined function in the renormalization group solution in such a
way as to reproduce the perturbation theory result. In this way, one finds a
more compact formula in which large logarithms such as those in (13.56) are
resummed into running coupling constants. This resummation produces the
dependence of correlation functions on the logarithm of the mass scale that
characterizes a field theory with a marginal or renormalizable perturbation.

In the case of ¢* theory, the running coupling constant goes to zero at
small momenta and becomes large at large momenta. Since the error term
in improved perturbation theory is a power of \, the improved perturbation
theory becomes accurate at small momenta but goes out of control at large
momenta. This accords with our physical intuition: We would expect pertur-
bation theory to be accurate only when the running coupling constant stays
small.

In an asymptotically free theory, where the running coupling constant be-
comes small at large momenta, we can find accurate expressions for correlation
functions at large momenta using renormalization-group-improved perturba-
tion theory. In Chapters 17 and 18 we will use this idea as our major tool in
analyzing the short-distance behavior of the strong interactions.
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13.3 The Nonlinear Sigma Model

To complete our study of scalar field theory, we will discuss a nonlinear theory
of scalar fields, whose structure is very different from that of ¢* theory. This
theory, called the nonlinear sigma model, was first proposed as an alternative
description of spontaneous symmetry breaking. It will be interesting to us for
three reasons. First, it provides a simple explicit example of an asymptotically
free theory. Second, it will give us a second dimensional expansion with which
we can study the Wilson-Fisher fixed point. Then we can see where the Wilson-
Fisher fixed point goes in the space of Lagrangians for dimensions d well below
4. Finally, we will show that the nonlinear sigma model is exactly solvable in
a limit that is different from the standard weak-coupling limit. This solution
will give us further insight into the dependence of symmetry breaking on
spacetime dimensionality.

The d = 2 Nonlinear Sigma Model

We begin our study in two dimensions. In d = 2, a scalar field is dimensionless;
thus, any theory of scalar fields ¢ with a Lagrangian of the form

L= fi;({¢'})0up 0"’ (13.65)

has dimensionless couplings and so is renormalizable. Since any function
f({#'}) leads to a renormalizable theory, this class of scalar field theories
contains an infinite number of marginal parameters. To restrict these possible
parameters, we must impose some symmetries on the theory.

A simple choice is to take the scalar fields ¢* to form an N-component
unit vector field n*(z), constrained to satisfy

N
S i)’ =1. (13.66)
i=1

If we insist that the field theory has O(IN) symmetry, the function f in (13.65)
can depend only on the invariant length of 7i(x), which is constrained by
(13.66). Thus, the most general possible choice for f is a constant. Similarly,
the only possible nonderivative interaction g({n‘}) that one might add to
(13.65) is a constant, and this would have no effect on the Green’s functions
of ©i. With these restrictions, the most general Lagrangian one can build from
7i(x) with two derivatives and O(N) symmetry is

1 L2
L= 2—g2’6“n| . (13.67)

This theory has a straightforward physical interpretation. It is a phe-
nomenological description of a system with O(IN) symmetry spontaneously
broken by the vacuum expectation value of a field that transforms as a vector
of O(N). Consider, for example, the situation in N-component ¢* theory in
its spontaneously broken phase. The field ¢* acquires a vacuum expectation
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value, which we can write in terms of a magnitude and a direction parame-
terized by a unit vector

(¢*) = gon‘(2). (13.68)

The fluctuations of ¢y correspond to a massive field, the field called o in Chap-
ter 11. The fluctuations of the direction of the unit vector 7i(z) correspond to
the N — 1 Goldstone bosons. Notice that 7 has N components subject to the
one constraint (13.66), and so contains N — 1 degrees of freedom. Formally,
the nonlinear sigma model is the limit of ¢* theory as the mass of the o field
is taken to infinity while ¢ is held constant.

Despite this suggestive connection, we will first analyze the nonlinear
sigma model on its own footing as an independent quantum field theory. It
is convenient to solve the constraint and parametrize @7 by N — 1 Goldstone
boson fields 7*:

n' = (at,--, 7V 1 0), (13.69)

where, by definition,
o=(1-n%)Y2 (13.70)
The configuration 7% = 0 corresponds to a uniform state of spontaneous

symmetry breaking, oriented in the N direction. The representation (13.69)
implies that

12 L2, (T-9,7)°
ont|" = ks .71
|0un’[” = |0u7]" + = (13.71)
Then the Lagrangian (13.67) takes the form
1 2 (7 3#7?)2

Notice that there is no mass term for the field 7, as required by Goldstone’s
theorem.

The perturbation theory for the 7* field can be read off straightforwardly
by expanding the Lagrangian in powers of 7*:

1

1 L2
£=ﬁ|8,ﬂr| +2_g2

(7 0ui)2+ -, (13.73)
This leads to the Feynman rules shown in Fig. 13.1, plus additional vertices
with all even numbers of 7* fields. Since the Lagrangian (13.67) is the most
general O(N)-symmetric Lagrangian with dimensionless coefficients that can
be built out of these fields, the theory can be made finite by renormalization of
the coupling constant g and O(N)-symmetric rescaling of the fields 7% and o.
In renormalized perturbation theory, there are divergences and counterterms
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11— = 2 _§u
p p?
k /¢ .
¢ 6ij6kl
NP Ll s+
D1 D2 + (p1 +p3) - (P2 +p4)6"k63"3
i J + (p1 +p4) - (P2 +p3)6'£6]k]

Figure 13.1. Feynman rules for the nonlinear sigma model.

for each possible 2n-m vertex; however, these counterterms are all related by
the basic requirement that the bare Lagrangian preserve the O(N) symmetry.

We now compute the Callan-Symanzik functions for this theory. Since
the theory is renormalizable, its Green’s functions obey the Callan-Symanzik
equation for some functions 3, . Explicitly,

(M7 + 8@ 55+ m@]6™ =0, (13.74)

where G(™) is a Green’s function of n fields 7% or ¢. To identify the 3 and
functions, to the leading order in perturbation theory, we compute two simple
Green’s functions to one-loop order and then see what forms are necessary if
the Callan-Symanzik equation is to be satisfied.

The first Green’s function we consider is

G = (o(x)). (13.75)
Expanding the definition (13.70), we find

(@(0)) =1-2(x?(0))+--- = 1 — %~©. (13.76)

To evaluate this formula, we use the propagator of Fig. 13.1 to compute

Atk ig?
(7*(0) Q iR 6. (13.77)

We have added a small mass p as an infrared cutoff. Then

2

(T Or0) = s e D) g (13.78)

Using this result in our expression for (o) and then subtracting at the mo-
mentum scale M, we find

1 1
(o) =1- ( 1)( )d/2 (1_%)((u2)1—d/2 - (M2)1~d/2> +0(g")
e 1- g___z(JS\/;r— ) log %2— + O(g*). (13.79)
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This expression satisfies the Callan-Symanzik equation to order g2 only if

a2(N —
v(g) =L (i\; D

Next, consider the 7* two-point function,

(r*(p)r'(-p)) = —<— + g 2 +

19 51ce 92( sz)Zg ...
p?

In evaluating IT¥¢ from the Feynman rules in Fig. 13.1, we again encounter
the integral (13.77), and also the integral

ddk ,,:92]{:2 k¢
H =
(9, 7*(0)847*(0)) /(%)dkz —

_ g9’ %F(‘%) ke
()77 (u?) 472

This formula has no pole at d = 0, and for d > 0 it is proportional to a positive
power of u?; hence, we can set this contraction to zero. Then

1 Ta-%

+0(g%). (13.80)

(13.81)

(13.82)

KE( N _ _ gké 2
% (p) = —6*%p G T (13.83)
Subtracting at M as above and taking the limit d — 2, we find
: 2 1 M2\ ia?
(o)t (p) = 04 1 0 (P Lorog ) g
p p dm " pf /) p 13.84
i M? (13.84)
Y ocke g
—p26 (g i logu +0(g ))
Applylng the Callan-Symanzik equation to this result gives
9 k ¢
[M8M+B(g)— +27(g) ] (" (p)n*(-p)) =0, .
_26“[ 94+5()2+22()] ()
= 7 [Ty 168(9) 20+ 20%(9)].
Inserting the result (13.80) for v(g), we find
3
Blg) = ~(N-2)2= + O("). (13.36)

At N = 2 precisely, the beta function vanishes. This is not an accident
but rather is a nontrivial check of our calculation. For N = 2, we can make
the change of variables 7! = sinf; then ¢ = cos#, and the Lagrangian takes
the form 1

L=
292

(0,6)*. (13.87)
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This is a free field theory for the field §(z), so it can have no renormalization
group flow.

For N > 2, the 3 function is negative: This theory is asymptotically free.
The running coupling constant g becomes small at small distances and grows
large at large distances.

In quantum electrodynamics, we found an appealing physical picture for
the sign of the coupling constant evolution. As we discussed in Section 7.5, the
process of virtual pair creation makes the vacuum a dielectric medium, which
screens electric charge. One would therefore expect the effective Coulomb
interaction of charge to decrease at large distances and increase at small dis-
tances. It is easy to imagine that a similar screening phenomenon might occur
in any quantum field theory. Thus, it is surprising that, in this theory, we
have found by explicit calculation that the coupling constant evolution has
the opposite sign. What is the physical explanation for this?

In fact, the original derivation of the asymptotic freedom of the nonlin-
ear sigma model, due to Polyakov,’ gave a clear physical argument for the
sign of the evolution. Now that we have derived the § function by the au-
tomatic method of the Callan-Symanzik equation, let us review Polyakov’s
more physical derivation.

Polyakov analyzed the nonlinear sigma model using Wilson’s momentum-
slicing technique, which we discussed in Section 12.1. Consider, then, the
nonlinear sigma model defined with a momentum cutoff in place of the di-
mensional regulator. As in Section 12.1, we work in Euclidean space with
initial cutoff A.

The original integration variables are the Fourier components of the unit
vector field n(z). We wish to integrate out of the functional integral those
Fourier components corresponding to momenta k in the range bA < |k| < A. If
the remaining components are Fourier-transformed back to coordinate space,
they describe a coarse-grained average of the original unit vector field. This
averaged field can be rescaled so that it is again a unit vector at each point.
Call this averaged and rescaled field 72¢. Then we can write the relation of n’
and 7’ as follows:

N-1

n'(z) = i'(z)(1— )2+ Y ¢alz)ey(2). (13.88)

a=1

In this equation, the vectors €,(z) form a basis of unit vectors orthogonal
to 7(z). In Polyakov’s picture, n(x) and the €,(z) are slowly varying. On
the other hand, the coefficients ¢, (x) contain only Fourier components in the
range bA < |k| < A. These are the variables we integrate over to achieve the
renormalization group transformation.

tA. M. Polyakov, Phys. Lett. 59B, 79 (1975).
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To set up the integral over ¢,, we first work out

Bt = B (1 — )2 n( % ) + 0,bac, + daduci.  (13.89)

By the definition of 71, €, these vectors satisfy

A2 =1, @-& =0. (13.90)
Taking the derivative of these identities, we find

By =0; - 0uE, + Ouit- & = 0. (13.91)
Using the identities in (13.90) and (13.91), we can compute the Lagrangian
of the nonlinear sigma model through terms quadratic in the ¢,:
1 W2 1 =312 2 2 > >
L= 59_2|8un "= 2¢2 [laun I“(1 = ¢%) + (0ua)” + 2(0a0" 1) (€q - Duéh)
0 6uBui -y + Gatn T B+ | (13.92)

We will consider the second term of (13.92) to be the zeroth-order La-

grangian for ¢,. Thus,

1
Lo = 53(0u00)" (13.93)

which gives the propagator

2
(¢a(P)b(—p)) = %6@, (13.94)

restricted to the momentum region bA < |p| < A. This propagator can be used
to integrate the remaining terms of the Lagrangian over the ¢,. Borrowing
the integrals from the derivation of (13.84), we can set

(9 (0)0,04(0)) = (0% 64(0)9,:64(0)) = 0 (13.95)
and , A2
(6a(0)00(0)) = Ban 108 755 (13.96)

Then, after the integral over ¢, the new Lagrangian is given approximately
by

1 . o ~,
Leg = Eg [|8,m|2(1 — <¢2>) + (Patpp) Ou€, - 0% € + (9(g4)], (13.97)
where the expectation values of ¢, are given by (13.96).
To simplify this further, we must simplify the structure (8,€,)? that ap-
pears in the second term of (13.97). Introduce a complete basis of vectors:

(0,€a)? = (- 0,8.)2 + (. - 0,€a)°. (13.98)

The second term on the right is a new structure, associated with the torsion
of the coordinate system for e,; it turns out to correspond to an irrelevant
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operator induced by the renormalization procedure. The first term, however,
can be put into a familiar form by using the two identities (13.91):

(7t 0,80)% = (84 - Ou1)% = (9,7)% (13.99)

Then
1 12 ¢, 1 g4 1
Lor =3 (18,7 (1 - (v - 1Y log o5 + 1 log =)+ | o100
iy, ¢ 1 -1 9
=5 (P+ LN -2logy ) 18P
The quantity in parentheses is the square of a running coupling constant. To
the order of our calculation, this quantity satisfies

d
dlogb

in agreement with (13.86).

In this calculation, the sign of the coupling constant renormalization
comes from the fact that the effective length of the unit vector 7 is reduced by
averaging over short-wavelength fluctuations. This lowers the effective action
associated with a configuration in which the direction of 77 changes over a dis-
placement Az (see Fig. 13.2). Looking back at (13.67), we see that a decrease
of the magnitude of £ for the same configuration of 77 can be interpreted as
an increase of the effective coupling. Thus the nonlinear sigma model is more
strongly coupled, or, in terms of the physical configuration of the 7 field, more
disordered, at large distances.

Our calculation implies that, if any two-dimensional statistical system
apparently has spontaneously broken symmetry and Goldstone bosons, then,
at large distances, the ordering disappears. This is an unexpected conclusion.
However, this conclusion is in accord with a theorem proved by Mermin and
Wagner! that a two-dimensional system with a continuous symmetry cannot
support an ordered state in which a symmetry-breaking field has a nonzero
vacuum expectation value. This theorem applies to the case N = 2 as well as
to N > 2. We have motivated this theorem in Problem 11.1.

3

g=-(N-2)—, (13.101)

QI

The Nonlinear Sigma Model for 2 < d < 4

We now extend the results of this analysis to dimensions d > 2. In general d,
we will continue to define the action of the nonlinear sigma model by

1
/ dix L = / d%ax 2—92(6“73)2, (13.102)

where 7 is still dimensionless, since it obeys the constraint || = 1. Thus
g has the dimensions (mass)(?~%/2, We define a dimensionless coupling by

IN. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
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/d2:z: %( d,n)? e /de == (0 7)?

Figure 13.2. Averaging of the direction of 7, and its 1nterpretat10n as an
increase of the running coupling constant.

writing
T =g*M¥2, (13.103)

just as we did in (12.122). If (13.102) is viewed as the Boltzmann weight of
a partition function, then T is a dimensionless variable proportional to the
temperature.

From (13.103), we can find the 3 function for T' in d dimensions, in analogy
to Eq. (12.131):

B(T) = (d - 2)T +298®)(g), (13.104)
where the factor of 2g in the second term comes from the definition T ~ g2

Since 7 is dimensionless, the v function is unchanged from the two-dimensional
result when expressed in terms of dimensionless couplings. Thus, in d = 2+ ¢,

T2
B(T) = +eT — (N-2) o
T m’ (13.105)
AWT) = (N-1) .

Notice that the § function for T' has a nontrivial zero, which approaches
T =0 as € — 0. This zero is located at

2me
N-2

The form of the 3 function is sketched in Fig. 13.3. In contrast to the Wilson-
Fisher zero in d = 4 — ¢, discussed in Section 12.5, this is an ultraviolet-stable
fixed point. The flows to the infrared go out from this fixed point. Since T is
proportional to the temperature of the corresponding statistical system, t — 0
is the state of complete order, while ¢ > 1 is the state of complete disorder.
This agrees with the intuition that accompanied Polyakov’s derivation of the
B function. The fixed point T, corresponds to the critical temperature. Thus,
the critical temperature tends to zero as d — 2, in accord with the Mermin-
Wagner theorem.

T, =

(13.106)
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LB(T)

~T
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Figure 13.3. The form of the 3 function in the nonlinear sigma model for
d> 2.

We can now compute the critical exponents of the nonlinear sigma model
in an expansion in € = d — 2. The exponent 7 is given straightforwardly by

€

=2v(T,) = ——.
To find the second exponent v, we need to identify the relevant perturbation
that corresponds to the renormalization group flow away from the fixed point

for T' # T¢. This is just the deviation of T from T:
pr =T —T.. (13.108)

From the renormalization group equation for the running coupling constant,
we find that the running pr obeys

(13.107)

d _ d i
dlogp”™ [ﬁﬂ(T)L:T,] " Pr- (13.109)

The quantity in brackets is negative. As in Egs. (12.134) and (12.137), we can
identify this quantity with (—1/v): At a momentum p < M,

o) =or (L) (13.110)

thus p(p) becomes of order 1 at a momentum that is the inverse of £ ~
(T-T.)~ ¥, as required. Using the explicit form of the 3 function from (13.105),
we find

v=-, (13.111)
€

independent of N to this order in e. (Of course, these results apply only for
N > 3.) The thermodynamic critical exponents can be found from (13.107)
and (13.111) using the model-independent relations derived in Section 13.1.
When the values found here for v and 7 are extrapolated to d = 3 (that is,
e = 1), the agreement with experiment is not spectacular, but the results at
least suggest that the fixed point we have found here may be the continuation
of the Wilson-Fisher fixed point to the vicinity of two dimensions.
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Exact Solution for Large N

It is possible to obtain further insight into the nature of this fixed point
by attacking the nonlinear sigma model using another approach. Since the
nonlinear sigma model depends on a parameter N, the number of components
of the unit vector, it is reasonable to ask how this model behaves as N — oo.
We now show that if we take this limit holding g2 N fixed, we can obtain an
exact solution to the model with nontrivial behavior.

The manipulations that lead to this solution are most clear if we work in
Euclidean space, regarding the Lagrangian as the Boltzmann weight of a spin
system. Then we must compute the functional integral

_ / D exp [— / diz 5;1,2(‘9“”)2} T é0n@) - 1), (13.112)

Here go is the bare value of the coupling constant, while the product of delta
functions, one at each point, enforces the constraint. Introduce an integral
representation of the delta functions; this requires a second functional integral
over a Lagrange multiplier variable a(x):

=/DaDn exp[—/ 2 = /dda:a n —1] (13.113)

Now the variable n is unconstrained and appears in the exponent only
quadratically. Thus, we can integrate over n, to obtain

= [ o (detf-0 + ia(a)) M exp 5y [dtea)
0

. (13.114)
N 2 ¢ d
= /Da exp[———trlog(—(') +ia) + /d xa].
2 296
Since we are taking the limit N — oo with gZN held fixed, both terms
in the exponent are of order N. Thus it makes sense to evaluate the integral
by steepest descents. This entails dominating the integral by the value of the
function a(z) that minimizes the exponent. To determine this configuration,
we compute the functional derivative of the exponent with respect to a(x).
This gives the variational equation

N 1 1

— —_— = —. 13.115
3 O e 1) = 5 ( )
The left-hand side of this equation must be constant and real; thus, we should
look for a solution in which a(z) is constant and pure imaginary. Write

a(z) = —im?; (13.116)

then m? obeys
dik 1 1

T —— = —5- 13.117
(2m)d k2 +m?  gd ( )
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We will study this equation first in d = 2. If we define the integral in
(13.117) with a momentum cutoff, we can evaluate this integral and find the
equation for m:

N A 1
—log — = —. 13.118
o &m g2 ( )
We can make this equation finite by the renormalization
1 1 N A
— ==+ —log— 13.119
@ g? + o B ( )

which introduces an arbitrary renormalization scale M. Then we can solve for
m, to find
27
m= Mexp[ g2N]’ (13.120)
This is a nonzero, O(N)-invariant mass term for the N unconstrained com-
ponents of 7i. In this solution, (7} = 0 and the symmetry is unbroken, for any
value of g% or T.

The solution of the theory does depend on the arbitrary renormalization
scale M; this dependence simply reflects the arbitrariness of the definition
of the renormalized coupling constant. The statement that m follows unam-
biguously from an underlying theory with fixed bare coupling and cutoff is
precisely the statement that m obeys the Callan-Symanzik equation with no
overall rescaling:

9
oM
Using the large-N limit of (13.86),

[M ﬂ(gz)%]m(g2, M) =0. (13.121)

9°N
Blg) =~ (13.122)
it is easy to check that (13.121) is satisfied. Conversely, the validity of (13.121)
with (13.122) tells us that Eq. (13.122) is an ezact representation of the
function to all orders in g2 in the limit of large N. The corrections to (13.122)
are of order (1/N) or, equivalently, of order g2 with no compensatory factor of
N. Equation (13.122) agrees with our earlier calculation (13.86) to this order.
Now let us redo this exercise in d > 2. In this case, the integral in (13.117)
diverges as a power of the cutoff. Even when the dependence on A is removed
by renormalization, this change in behavior leads to a change in the depen-
dence of the integral on m, which has important physical implications.
It is not difficult to work out the integral in (13.117) as an expansion in
(A/m). One finds:

/ddk 1 _{ClAd‘2—Cgmd—2-|--~ for d < 4,

_t - 13.123
(2m)d k2 +m? C1A%2 — Com2A4=4 + ... ford >4, ( )



13.3 The Nonlinear Sigma Model 465

where C1, Co, Cs are some functions of d. In particular,
d—1 -1
_ [9d—1,_(d+1)/2 _
Ch [2 T I‘(——2 )(d 2)] . (13.124)

In d > 4, the first derivative of the integral with respect to m? is smooth as
m? — 0; this is the reason for the change in behavior.

In the case d = 2, the left-hand side of (13.117) covered the whole range
from 0 to oo as m was varied; thus, we could always find a solution for any
value of g2. In d > 2, this is no longer true. Equation (13.117) can be solved
for m only if Ng? is greater than the critical value

NgZ = (CA*2) 7 (13.125)

Just at the boundary, m = 0. For bare couplings weaker than (13.125), it is
possible to lower the value of the effective action by giving one component of
71 a vacuum expectation value while keeping the other components massless.
Thus (13.125) is the criterion for the second-order phase transition in this
model. Equation (13.124) implies that the critical value of g2, which is pro-
portional to the critical temperature, goes to zero as d — 2, in accord with
our renormalization-group analysis.

In the symmetric phase of the nonlinear sigma model, the mass m de-
termines the exponential fall-off of correlations, so ¢ = m~!. Thus we can
determine the exponent v by solving for the dependence of m on the devia-
tion of g2 from the critical temperature. Write

_ 9% —g¢
9¢

Then, in 2 < d < 4, we can use (13.123) to solve (13.117) for m for small
values of ¢t. This gives

t

. (13.126)

1

o d—2
which implies m ~ t¥ with
1
= —— 2<d . 13.
V=g <d<4 (13.128)
Similarly,
1
V=73, d>4. (13.129)

The discontinuity in the dependence of v on d is exactly what we predicted
from renormalization group analysis. For d > 4, the value of v. goes over to
the prediction of naive dimensional analysis. The value of v given by (13.128)
is in precise agreement with (13.111), in the expansion € = d — 2, and with
the N — oo limit of (12.142), in the expansion ¢ = 4 — d. Apparently, all of
our results for critical exponents mesh in a very satisfying way.

By combining all of our results, we arrive at a pleasing picture of the be-
havior of scalar field theory as a function of spacetime dimensionality. Above
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four dimensions, any scalar field interaction is irrelevant and the expected
behavior is trivial. Just at four dimensions, the coupling constant tends to
zero only logarithmically at large scale, giving rise to a renormalizable the-
ory with predictions such as those in Section 13.2. Below four dimensions,
the theory is intrinsically a theory of interacting scalar fields, dominated by
the Wilson-Fisher fixed point. The coupling at this fixed point is small near
four dimensions but grows large as the dimensionality decreases. Finally (for
N > 2), as d — 2, the fixed-point theory approaches the weak-coupling limit
of a completely different Lagrangian with the same symmetries, the nonlinear
sigma model.

This evolution of the behavior of the model as a function of d illustrates
the main point of the previous two chapters: The qualitative behavior of a
quantum field theory is determined not by the fundamental Lagrangian, but
rather by the nature of the renormalization group flow and its fixed points.
These, in turn, depend only on the basic symmetries that are imposed on the
family of Lagrangians that flow into one another. This conclusion signals, at
the deepest level, the importance of symmetry principles in determining the
fundamental laws of physics.

Problems

13.1 Correction-to-scaling exponent. For critical phenomena in 4 — € dimensions,
the irrelevant contributions that disappear most slowly are those associated with the
deviation of the coupling constant A from its fixed-point value. This gives the most im-
portant nonuniversal correction to the scaling laws derived in Section 13.1. By studying
the solution of the Callan-Symanzik equation, show that if the bare value of A differs
slightly from A,, the Gibbs free energy receives a correction

G(M,1) = G(M, 1) - (1+ (A= A k(tM /7)),

This formula defines a new critical exponent w, called the correction-to-scaling expo-
nent. Show that

w=-—0 =e+0(e2).

*

13.2 The exponent 7. By combining the result of Problem 10.3 with an appropriate
renormalization prescription, show that the leading term in () in #* theory is
)\2

Y= St

12(4m)%

Generalize this result to the O(N)-symmetric ¢* theory to derive Eq. (13.47). Compute
the leading-order (¢2) contribution to 7.

13.3 The CPY model. The nonlinear sigma model discussed in the text can be
thought of as a quantum theory of fields that are coordinates on the unit sphere.
A slightly more complicated space of high symmetry is complex projective space,
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CPN . This space can be defined as the space of (N + 1)-dimensional complex vectors

(21, -

.,ZN+1) subject to the condition

DIzl =1,
J

with points related by an overall phase rotation identified, that is,

(eiazl,...,eio‘zN_l_l) identified with (21,...,2N+1)-

In this problem, we study the two-dimensional quantum field theory whose fields are
coordinates on this space.

()

(b)

(c)

One way to represent a theory of coordinates on CPY is to write a Lagrangian
depending on fields z;(z), subject to the constraint, which also has the local
symmetry ]
zj(x) — e""(x)zj(x),
independently at each point x. Show that the following Lagrangian has this
symmetry:
L 2 2
L= g_2“8”2j| — |2} Ozl ).

To prove the invariance, you will need to use the constraint on the z;, and its
consequence

2j0uzj = —(0u2])zj-
Show that the nonlinear sigma model for the case N = 3 can be converted to
the CPYN model for the case N = 1 by the substitution

n' = z%*o'z,
where o' are the Pauli sigma matrices.

To write the Lagrangian in a simpler form, introduce a scalar Lagrange multiplier
A which implements the constraint and also a vector Lagrange multiplier 4, to
express the local symmetry. More specifically, show that the Lagrangian of the
CPYN model is obtained from the Lagrangian

1
L= g_2[|Duzj|2 - Mz - 1),

where Dy, = (8, +1A,), by functionally integrating over the fields A and A,,.

We can solve the CPYN model in the limit N — oo by integrating over the fields
zj. Show that this integral leads to the expression

Z= /DAmexp [—Ntrlog(—rﬂ -+ ;—2 /d2 :v/\],

where we have kept only the leading terms for N — oo, g2 N fixed. Using meth-
ods similar to those we used for the nonlinear sigma model, examine the condi-
tions for minimizing the exponent with respect to A and A,. Show that these
conditions have a solution at A, = 0 and A = m?2 > 0. Show that, if g2 is
renormalized at the scale M, m can be written as

szexp[—%].
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(d) Now expand the exponent about A, = 0. Show that the first nontrivial term
in this expansion is proportional to the vacuum polarization of massive scalar
fields. Evaluate this expression using dimensional regularization, and show that
it yields a standard kinetic energy term for A,. Thus the strange nonlinear
field theory that we started with is finally transformed into a theory of (N + 1)
massive scalar fields interacting with a massless photon.



Final Project

The Coleman-Weinberg Potential

In Chapter 11 and Section 13.2 we discussed the effective potential for an
O(N)-symmetric ¢* theory in four dimensions. We computed the perturbative
corrections to this effective potential, and used the renormalization group to
clarify the behavior of the potential for small values of the scalar field mass.
After all this work, however, we found that the qualitative dependence of the
theory on the mass parameter was unchanged by perturbative corrections.
The theory still possessed a second-order phase transition as a function of
the mass. The loop corrections affected this picture only in providing some
logarithmic corrections to the scaling behavior near the phase transition.

However, loop corrections are not always so innocuous. For some sys-
tems, they can change the structure of the phase transition qualitatively. This
Final Project treats the simplest example of such a system, the Coleman-
Weinberg model. The analysis of this model draws on a broad variety of topics
discussed in Part II; it provides a quite nontrivial application of the effec-
tive potential formalism and the use of the renormalization group equation.
The phenomenon displayed in this exercise reappears in many contexts, from
displacive phase transitions in solids to the thermodynamics of the early uni-
verse.

This problem makes use of material in starred sections of the book, in
particular, Sections 11.3, 11.4, and 13.2. Parts (a) and (e), however, depend
only on the unstarred material of Part II. We recommend part (e) as excellent
practice in the computation of renormalization group functions.

The Coleman-Weinberg model is the quantum electrodynamics of a scalar
field in four dimensions, considered for small values of the scalar field mass.
The Lagrangian is

L=—1(Fu)® + (D) D¢ — m?¢1é — 5(97¢)%,
where ¢(x) is a complex-valued scalar field and D, ¢ = (9, + ieA,)¢.

(a) Assume that m? = —u? < 0, so that the symmetry ¢(z) — e~ **¢(z) is
spontaneously broken. Write out the expression for £, expanded around
the broken-symmetry state by introducing

6(z) = do + % [o(z) +im(z)],
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(b)

(c)

(d)
()

(f)

(g)

(h)

Final Project

where ¢, o(z), and 7 are real-valued. Show that the A, field acquires a
mass. This mechanism of mass generation for vector fields is called the
Higgs mechanism. We will study it in great detail in Chapter 20.

Working in Landau gauge (0*A, = 0), compute the one-loop correction
to the effective potential V(¢.1). Show that it is renormalized by counter-
terms for m? and A. Renormalize by minimal subtraction, introducing a
renormalization scale M.

In the result of part (b), take the limit u? — 0. The result should be
an effective potential that is scale-invariant up to logarithms containing
M. Analyze this expression for A very small, of order (e?)2. Show that,
with this choice of coupling constants, V(¢q) has a symmetry-breaking
minimum at a value of ¢ for which no logarithm is large, so that a
straightforward perturbation theory analysis should be valid. Thus the
u? = 0 theory, for this choice of coupling constants, still has sponta-
neously broken symmetry, due to the influence of quantum corrections.
Sketch the behavior of V (¢¢)) as a function of m?, on both sides of m? = 0,
for the choice of coupling constants made in part (c).
Compute the Callan-Symanzik 3 functions for e and A. You should find

3

e 1
“me Ty
Sketch the renormalization group flows in the (),e?) plane. Show that
every renormalization group trajectory passes through the region of cou-
pling constants considered in part (c).

Be (5A% — 18¢®A + 54e*).

Construct the renormalization-group-improved effective potential at u? =
0 by applying the results of part (e) to the calculation of part (c). Com-
pute (¢) and the mass of the o particle as a function of ), e?, M. Compute
the ratio m, /m4 to leading order in €2, for A < €2.

Include the effects of a nonzero m? in the analysis of part (f). Show that
me /M 4 takes a minimum nonzero value as m? increases from zero, before
the broken-symmetry state disappears entirely. Compute this value as a
function of €2, for A < €2.

The Lagrangian of this problem (in its Euclidean form) is equivalent to
the Landau free energy for a superconductor in d dimensions, coupled
to an electromagnetic field. This expression is known as the Landau-
Ginzburg free energy. Compute the 8 functions for this system and sketch
the renormalization group flows for d = 4 — €. Describe the qualitative
behavior you would expect for the superconducting phase transition in
three dimensions. (For realistic superconductors, the value of e2—after it
is made dimensionless in the appropriate way—is very small. The effect
you will find is expected to be important only for [T — T¢|/Tc < 1075.)
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Chapter 14

Invitation: The Parton Model
of Hadron Structure

In Part II of this book, we explored the structure of quantum field theories in a
formal way. We developed sophisticated calculational algorithms (Chapter 10),
derived a formalism for the extraction of scaling laws and asymptotic behavior
(Chapter 12), and worked out some of the consequences of spontaneously
broken symmetry (Chapter 11). Much of this formalism turned out to have
unexpected applications in statistical mechanics. However, we have not yet
investigated its implications for elementary particle physics. To do so, we must
first ask which particular quantum field theories describe the interactions of
elementary particles. »

Since the mid-1970s, most high-energy physicists have agreed that the
elementary particles that make up matter are a set of fermions, interacting
primarily through the exchange of vector bosons. The elementary fermions
include the leptons (the electron, its heavy counterparts p and 7, and a neu-
tral, almost massless neutrino corresponding to each of these species), and
the quarks, whose bound states form the particles with nuclear interactions,
mesons and baryons (collectively called hadrons). These fermions interact
through three forces: the strong, weak, and electromagnetic interactions. Of
these, the strong interaction is responsible for nuclear binding and the inter-
actions of the constituents of nuclei, while the weak interaction is responsible
for radioactive beta decay processes. The electromagnetic interaction is the
familiar Quantum Electrodynamics, coupled minimally to all charged quarks
and leptons. It is not clear that these three forces suffice to explain the most
subtle properties of the elementary fermions—we will discuss this question
in Chapter 20—but these three forces are certainly the most prominent. All
three are now understood to be mediated by the exchange of vector bosons.
The equations describing the electromagnetic interaction were discovered by
Maxwell, and their quantum mechanical implications have been treated in de-
tail in Part I. The correct theories of the weak and strong interactions were
discovered much later.

By the late 1950s, studies of the helicity dependence of weak interaction
cross sections and decay rates had shown that the weak interaction involves
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a coupling of vector currents built of quark and lepton fields.* It was thus
natural to assume that the weak interaction is due to the exchange of very
heavy vector bosons, and indeed, such bosons, the W and Z particles, were
discovered in experiments at CERN in 1982. But a complete theory of the
weak interaction must include not only the correct couplings of the bosons
to fermions, but also the equations of motion of the boson fields themselves,
the analogue, for the W and Z, of Maxwell’s equations. Finding the correct
form of these equations was not straightforward, because Maxwell’s equations
prohibit the generation of a mass for the vector particle. The proper reconcili-
ation of the generalized Maxwell equations with the nonzero W and Z masses
turned out to require incorporating into the theory a spontaneously broken
symmetry. Chapters 20 and 21 treat this subject in some detail, describing
the interplay of vector field theories with spontaneously broken symmetry.
This interplay leads to new twists and new phenomena, beyond those dis-
cussed in our treatment of spontaneous symmetry breaking in Chapter 11.
A complete theory of the weak interaction also requires the simultaneous in-
corporation of the electromagnetic interaction, forming a unified structure as
first hypothesized by Glashow, Weinberg, and Salam.

On the other hand, it was for a long time completely obscure that a theory
of exchanged vector bosons could correctly describe the strong interaction.
Part of the mystery was that quarks do not exist as isolated species. Their
existence, and eventually their quantum numbers, had to be deduced from the
spectrum of observable strongly interacting particles. But, in addition, there
were complications due to the fact that the strong interactions are strong.
The Feynman diagram expansion assumes that the coupling constant is small;
when the coupling becomes strong, a large number of diagrams are important
(if the series converges at all) and it becomes impossible to pick out the
contributions of the elementary interaction vertices. The crucial clue that the
strong interactions have a vector character arose from what at first seemed
to be just another mystery, the observation that the strong interactions turn
themselves off when the momentum transfer is large, in a sense that we will
now describe.

Almost Free Partons

In Section 5.1 we computed the cross section for the QED process ete™ —
ut =, We then remarked that the corresponding cross section for ete™ an-
nihilation into hadrons could be computed in the same way, using a simplis-
tic model in which the quarks are treated as noninteracting fermions. This
method gives a surprisingly accurate formula for the cross section, capturing
its most important qualitative features. But we deferred the explanation of
this puzzle: How can a model of noninteracting quarks represent the behavior
of a force that, under other circumstances, is extremely strong?

*For an overview of weak interaction phenomenology, see Perkins (1987), Chap-
ter 7, or any other modern particle physics text.
/
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In fact, there are many circumstances in the study of the strong interaction
at high energy in which this force has an unexpectedly weak effect. Historically,
the first of these appeared in proton-proton collisions. At high energy, above
10 GeV or so in the center of mass, collisions of protons (or any other hadrons)
produce large numbers of pions. One might have imagined that these pions
would fill all of the allowed phase space, but, in fact, they are mainly produced
with momenta almost collinear with the collision axis. The probability of
producing a pion with a large component of momentum transverse to the
collision axis falls off exponentially in the value of this transverse momentum,
suppressing the production substantially for transverse momenta greater than
a few hundred MeV.

This phenomenon of limited transverse momentum led to a picture of a
hadron as a loosely bound assemblage of many components. In this picture, a
proton struck by another proton would be torn into a cloud of pieces. These
pieces would have momenta roughly collinear with the original momentum
of the proton and would eventually reform into hadrons moving along the
collision axis. By hypothesis, these pieces could not absorb a large momentum
transfer. We can characterize this hypothesis mathematically as follows: In
a high-energy collision, the momenta of the two initial hadrons are almost
lightlike. The shattered pieces of the hadrons, arrayed along the collision axis,
also have lightlike momenta parallel to the original momentum vectors. This
final state can be produced by exchanging momenta g among the pieces in
such a way that, though the components of ¢ might be large, the invariant
¢? is always small. The ejection of a hadron at large transverse momentum
would require large (spacelike) ¢, but such a process was very rare. Thus it
was hypothesized that hadrons were loose clouds of constituents, like jelly,
which could not absorb a large ¢2.

This picture of hadronic structure was put to a crucial test in the late
1960s, in the SLAC-MIT deep inelastic scattering experiments.’ In these ex-
periments, a 20 GeV electron beam was scattered from a hydrogen target, and
the scattering rate was measured for large deflection angles, corresponding to
large invariant momentum transfers from the electron to a proton in the tar-
get. The large momentum transfer was delivered through the electromagnetic
rather than the strong interaction, so that the amount of momentum delivered
could be computed from the momentum of the scattered electron. In models
in which hadrons were complex and softly bound, very low scattering rates
were expected.

Instead, the SLAC-MIT experiments saw a substantial rate for hard scat-
tering of electrons from protons. The total reaction rate was comparable to
what would have been expected if the proton were an elementary particle scat-
tering according to the simplest expectations from QED. However, only in rare
cases did a single proton emerge from the scattering process. The largest part

tFor a description of these experiments and their ramifications, see J. I. Friedman,
H. W. Kendall, and R. E. Taylor, Rev. Mod. Phys. 63, 573 (1991).
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of the rate came from the deep inelastic region of phase space, in which the
electromagnetic impulse shattered the proton and produced a system with a
large number of hadrons.

How could one reconcile the presence of electromagnetic hard scattering
processes with the virtual absence of hard scattering in strong interaction pro-
cesses? To answer this question, Bjorken and Feynman advanced the following
simple model, called the parton model: Assume that the proton is a loosely
bound assemblage of a small number of constituents, called partons. These
include quarks (and antiquarks), which are fermions carrying electric charge,
and possibly other neutral species responsible for their binding. By assump-
tion, these constituents are incapable of exchanging large momenta g2 through
the strong interactions. However, the quarks have the electromagnetic inter-
actions of elementary fermions, so that an electron scattering from a quark
can knock it out of the proton. The struck quark then exchanges momentum
softly with the remainder of the proton, so that the pieces of the proton ma-
terialize as a jet of hadrons. The produced hadrons should be collinear with
the direction of the original struck parton.

The parton model, incomplete though it is, imposes a strong constraint
on the cross section for deep inelastic electron scattering. To derive this con-
straint, consider first the cross section for electron scattering from a single
constituent quark. We discussed the related process of electron-muon scat-
tering in Section 5.4, and we can borrow that result. Since we imagine the
reaction to occur at very high energy, we will ignore all masses. The square of
the invariant matrix element in the massless limit is written in a simple form

in Eq. (5.71): .
1 8eQ? (8% + 02
1 > M= Q ( ) (14.1)

. £2 4
spins

where §, £, 4 are the Mandelstam variables for the electron-quark collision and
Q; is the electric charge of the quark in units of |e|. Recall from Eq. (5.73) that,
for a collision involving massless particles, § + ¢+ @ = 0. Then the differential
cross section in the center of mass system is

dr 1 1 8e*Q? (32 +a2>
dcosOcm 2516w {2 4
212 /32 1 (a4 72 (14.2)
_ matQ; s+(s+t)>
8 £2 ’
Or, since £ = —3(1 — cosfcm)/2,
202 /42 1 (31 §)2
d_q _ 27rof Q? (8% + (§+t) . (14.3)
dt 52 £2

To make use of this result, we must relate the invariants § and # to ex-
perimental observables of electron-proton inelastic scattering. The kinematic
variables are shown in Fig. 14.1. The momentum transfer ¢ from the electron
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electron

Figure 14.1. Kinematics of deep inelastic electron scattering in the parton
model.

can be measured by measuring the final momentum and energy of the elec-
tron, without using any information from the hadronic products. Since ¢* is
a spacelike vector, one conventionally expresses its invariant square in terms
of a positive quantity @, with

Q*= -4~ (14.4)

Then the invariant # is simply —Q?2.

Expressing § in terms of measurable quantities is more difficult. If the
collision is viewed from the electron-proton center of mass frame, and we
visualize the proton as a loosely bound collection of partons (and continue
to ignore masses), we can characterize a given parton by the fraction of the
proton’s total momentum that it carries. We denote this longitudinal fraction
by the parameter £, with 0 < £ < 1. For each species i of parton, for example,
up-type quarks with electric charge Q; = +2/3, there will be a function f;(&)
that expresses the probability that the proton contains a parton of type ¢ and
longitudinal fraction £. The expression for the total cross section for electron-
proton inelastic scattering will contain an integral over the value of £ for the
struck parton. The momentum vector of the parton is then p = £P, where
P is the total momentum of the proton. Thus, if k is the initial electron
momentum,

§=(p+k)?2=2p - k=2P k=E¢Es, (14.5)

where s is the square of the electron-proton center of mass energy.
Remarkably, £ can also be determined from measurements of only the
electron momentum, if one makes the assumption that the electron-parton

scattering is elastic. Since the scattered parton has a mass small compared to
s and Q?,

0~ (p+q)?=2p q+¢*=26P q— Q> (14.6)
Thus
Q2
E=z, where z = 5P g (14.7)

From each scattered electron, one can determine the values of Q% and z for
the scattering process. The parton model then predicts the event distribution
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Figure 14.2. Test of Bjorken scaling using the e~ p deep inelastic scattering
cross sections measured by the SLAC-MIT experiment, J. S. Poucher, et. al.,

. Phys. Rev. Lett. 32, 118 (1974). We plot d%0/dzdQ? divided by the factor
(14.9) against z, for the various initial electron energies and scattering angles
indicated. The data span the range 1 GeV2 < Q2% < 8 GeVZ2.

in the 7-Q? plane. Using the parton distribution functions f;(¢), evaluated at
& = z, and the cross-section formula (14.3), we find the distribution

2 2 Q2
dmsz Zfz )Q2 - gﬂ‘ [H(l_E)] (14.8)

The distribution functions f;(z) depend on the details of the structure of
the proton and it is not known how to compute them from first principles.
But formula (14.8) still makes a striking prediction, that the deep inelastic
scattering cross section, when divided by the factor

1+ (1-Q?% xs)?
Q4

to remove the kinematic dependence of the QED cross section, gives a quantity

that depends only on z and is independent of Q2. This behavior is known as

Bjorken scaling. Indeed, the data from the SLAC-MIT experiment exhibited

Bjorken scaling to about 10% accuracy for values of ) above 1 GeV, as shown
in Fig. 14.2.

Bjorken scaling is, essentially, the statement that the structure of the

proton looks the same to an electromagnetic probe no matter how hard the

proton is struck. In the frame of the proton, the energy of the exchanged

(14.9)
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virtual photon is

P.-q @

0

== — 14.1
q m 2rm’ (14.10)

where m is the proton mass. The reciprocal of this energy transfer is, roughly,
the duration of the scattering process as seen by the components of the pro-
ton. This time should be compared to the reciprocal of the proton mass, which
is the characteristic time over which the partons interact. The deep inelastic
regime occurs when ¢° > m, that is, when the scattering is very rapid com-
pared to the normal time scales of the proton. Bjorken scaling implies that,
during such a rapid scattering process, interactions among the constituents of
the proton can be ignored. We might imagine that the partons are approxi-
mately free particles over the very short times scales corresponding to energy
transfers of a GeV or more, though they have-strong interactions on longer
time scales.

Asymptotically Free Partons

The picture of the proton structure implied by Bjorken scaling was beautifully
simple, but it raised new, fundamental questions. In quantum field theory,
fermions interact by exchanging virtual particles. These virtual particles can
have arbitrarily high momenta, hence the fluctuations associated with them
can occur on arbitrarily short time scales. Quantum field theory processes do
not turn themselves off at short times to reveal free-particle equations. Thus
the discovery of Bjorken scaling suggested a conflict between the observation
of almost free partons and the basic principles of quantum field theory.

The resolution of this paradox came from the renormalization group. In
Chapter 12 we saw that coupling constants vary with distance scale. In QED
and ¢* theory, we found that the couplings become strong at large momenta
and weak at small momenta. However, we noted the possibility that, in some
theories, the coupling constant could have the opposite behavior, becoming
strong at small momenta or large times but weak at large momenta or short
times. We referred to such behavior as asymptotic freedom. Section 13.3 dis-
cussed an example of an asymptotically free quantum field theory, the nonlin-
ear sigma model in two dimensions. The problem posed in the previous para-
graph would be resolved if there existed a suitable asymptotically free quan-
tum field theory in four dimensions that could describe the interaction and
binding of quarks. Then, at least to some level of approximation, the strong in-
teraction described by this theory would turn off in large-momentum-transfer
or short-time processes.

At the time of the discovery of Bjorken scaling, no asymptotically free field
theories in four dimensions were known. Then, in the early 1970s, ‘t Hooft,
Politzer, Gross, and Wilczek discovered a class of such theories. These are
the non-Abelian gauge theories: theories of interacting vector bosons that
can be constructed as generalizations of quantum electrodynamics. It was
subsequently shown that these are the only asymptotically free field theories
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in four dimensions. This discovery gave the crucial clue for the construction
of the fundamental theory of the strong interactions. Apparently, the quarks
are bound together by interacting vector bosons (called gluons) of precisely
this type.

However, these gauge theories cannot precisely reproduce the expecta-
tions of strict Bjorken scaling. The differences between the free parton model
and the quantum field theory model with asymptotic freedom appear when
one moves to a higher level of accuracy in measurements of deep inelastic
scattering and other strong interaction processes involving large momentum
transfer. In an asymptotically free quantum field theory, the coupling con-
stant is still nonzero at any finite momentum transfer. In fact, the final evo-
lution of the coupling to zero is very slow, logarithmic in momentum. Thus,
at some level, one must find small corrections to Bjorken scaling, associated
with the exchange or emission of high-momentum gluons. Similarly, the other
qualitative simplifications of hadron physics at high momentum transfer—for
example, the phenomenon of limited transverse momentum in hadron-hadron
collisions—should be only approximate, receiving corrections due to gluon ex-
change and emission. Thus the predictions of an asymptotically free theory of
the strong interaction are twofold. On one hand, such a theory predicts quali-
tative simplifications of behavior at high momentum. But, on the other hand,
such a theory predicts a specific pattern of corrections to this behavior.

In fact, particle physics experiments of the 1970s revealed precisely this
picture. Bjorken scaling was found to be only an approximate relation, show-
ing violations that correspond to a slow evolution of the parton distribu-
tions f;(x) over a logarithmic scale in Q?. The rate of particle production in
hadron-hadron collisions was found to decrease only as a power rather than
exponentially at very large values of the transverse momentum, and the par-
ticles produced at large transverse momentum were shown to be associated
with jets of hadrons created by the soft evolution of a hard-scattered quark
or gluon. Most remarkably, the forms of the cross sections found for these and
other deviations from scaling did, finally, give direct evidence for the vector
character of the elementary field that mediates the strong interaction.

We will review all of these phenomena in Chapter 17, as we study the
particular gauge theory that describes the strong interactions. First, however,
we must learn how to construct non-Abelian gauge theories and how to work
out their predictions using Feynman diagrams. Throughout our analysis of
these theories, the renormalization group will play an essential role. One of
the very beautiful aspects of the study of non-Abelian gauge theories is the way
in which the most powerful general ideas of quantum field theory acquire even
more strength as they intertwine with the specific features of these particular,
intricately built models. This interplay between general principles and the
specific features of gauge theories will be the major theme of Part III of this
book.



Chapter 15

Non-Abelian Gauge Invariance

So far in this book we have worked with a rather limited class of quantum fields
and interactions, restricting our attention to scalar field theories, Yukawa the-
ory, and Quantum Electrodynamics. It is hardly surprising that these theories
are not sufficient to describe all of the known interactions of elementary par-
ticles. But what other theories are possible, given that the Lagrangian of a
renormalizable theory can contain no terms of mass dimension higher than 47

The most natural theories to try next would be ones with interactions
among vector fields, of the form A*A¥9,A, or A%, Sensible theories of this
type are difficult to construct, however, because of the negative-norm states
produced by the time component A° of the vector field operator. In Section 5.5
we saw that these negative-norm states cause no difficulty in QED: They are
effectively canceled out by the longitudinal polarization states, by virtue of
the Ward identity. The Ward identity, in turn, follows from the invariance of
the QED Lagrangian under local gauge transformations. Perhaps, then, if we
can generalize the principle of local gauge invariance, it will lead us to the
construction of other sensible theories of vector particles.

The goal of this chapter is to do just that. First we will return briefly to
the study of QED, this time taking the gauge symmetry to be fundamental
and deriving the rest of the theory from this principle. Then, in Section 15.2.
we will see that the gauge invariance of electrodynamics is only the most
trivial example of an infinite-parameter symmetry, and that the more gen-
eral examples lead to other interesting Lagrangians. These field theories, the
first of which was constructed by Yang and Mills,* generalize electrodynamics
in a profound way. They are theories of multiple vector particles, whose in-
teractions are strongly constrained by the symmetry principle. In subsequent
chapters we will study the quantization of these theories and their application
to the real world of elementary particle physics.

*C. N. Yang and R. Mills, Phys. Rev. 96, 191 (1954).
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15.1 The Geometry of Gauge Invariance

In Section 4.1 we wrote down the Lagrangian of Quantum Electrodynamics
and noted the curious fact that it is invariant under a very large group-of
transformations (4.6), allowing an indépendent symmetry transformation at
every point in spacetime. This invariance is the famous gauge symmetry of
QED. From the modern viewpoint, however, gauge symmetry is not an in-
cidental curiosity, but rather the fundamental principle that determines the
form of the Lagrangian. Let us now review the elements of the theory, taking
the modern viewpoint.

We begin with the complex-valued Dirac field ¥ (z), and stipulate that
our theory should be invariant under the transformation

P(z) — e @y(x). (15.1)

This is a phase rotation through an angle a(z) that varies arbitrarily from
point to point. How can we write a Lagrangian that is invariant under this
transformation? As long as we consider terms in the Lagrangian that have no
derivatives, this is easy: We simply write the same terms that are invariant to
global phase rotations. For example, the fermion mass term

mip(x)

is permitted by global phase invariance, and the local invariance gives no
further restriction.

The difficulty arises when we try to write terms including derivatives. The
derivative of () in the direction of the vector n* is defined by the limiting
procedure

O,y =lim % [¥(z + en) — ()] (15.2)

However, in a theory with local phase invariance, this definition is not very
sensible, since the two fields that are subtracted, ¥(z + en) and ¥(z), have
completely different transformations under the symmetry (15.1). The quantity
0,9, in other words, has no simple tranformation law and no useful geometric
interpretation.

In order to subtract the values of ¥(z) at neighboring points in a mean-
ingful way, we must introduce a factor that compensates for the difference in
phase transformations from one point to the next. The simplest way to do
this is to define a scalar quantity U(y, ) that depends on the two points and
has the transformation law

U(y,z) — e*@U(y,z)e (15.3)

simultaneously with (15.1). At zero separation, we set U(y, y) = 1; in general,
we can require U(y, ) to be a pure phase: U(y,z) = exp[i¢(y, z)]. With this
definition, the objects ¥(y) and U(y,z)y(z) have the same transformation
law, and we can subtract them in a manner that is meaningful despite the
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local symmetry. Thus we can define a sensible derivative, called the covariant
derivative, as follows:

n* D, =2i_1}(1) % [z/)(:c +en) —Ul(z + en, a:)z/)(z)] . (15.4)

To make this definition explicit, we need an expression for the comparator
U(y,x) at infinitesimally separated points. If the phase of U(y, z) is a contin-
uous function of the positions y and z, then U(y,x) can be expanded in the
separation of the two points:

Uz +en,z) = 1 —ieen” A, (z) + O(e?). (15.5)

Here we have arbitrarily extracted a constant e. The coefficient of the dis-
placement en# is a new vector field A, (z). Such a field, which appears as
the infinitesimal limit of a comparator of local symmetry transformations, is
called a connection. The covariant derivative then takes the form

D, y(z) = 0,9 (z) + teA (). (15.6)

By inserting (15.5) into (15.3), one finds that A, transforms under this local
gauge transformation as

2

Au(z) — Ay (z) - %a”a(z). (15.7)

To check that all of these expressions are consistent, we can transform D, (z)
according to Egs. (15.1) and (15.7):

Dyp(@) = [0+ ie(4, ~ %aya)] ¢ @)y ()

= eia(z) (ay + ieAu)¢($) = eia(w)D#w(x)‘

Thus the covariant derivative transforms in the same way as the field v,
exactly as we constructed it to in the original definition (15.4).

We have now recovered most of the familiar ingredients of the QED La-
grangian. From our current viewpoint, however, the definition of the covariant
derivative and the transformation law for the connection A, follow from the
postulate of local phase rotation symmetry. Even the very existence of the
vector field A, is a consequence of local symmetry: Without it we could not
write an invariant Lagrangian involving derivatives of .

More generally, our present analysis gives us a way to construct all pos-
sible Lagrangians that are invariant under the local symmetry. In any term
with derivatives of 1, replace these with covariant derivatives. According to
Eq. (15.8), these transform in exactly the same manner as 1 itself. Therefore
any combination of 9 and its covariant derivatives that is invariant under a
global phase rotation (and only these combinations) will also be locally in-
variant.

To complete the construction of a locally invariant Lagrangian, we must
find a kinetic energy term for the field A,: a locally invariant term that de-
pends on A, and its derivatives, but not on . This term can be constructed

(15.8)
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x x+ei

Figure 15.1. Construction of the field strength by comparisons around a
small square in the (1,2) plane. ‘

either integrally, from the comparator U(y, z), or infinitesimally, from the co-
variant derivative.

Working from U(y, z), we will need to extend our explicit formula (15.5)
to the next term in the expansion in e. Using the assumption that U(y, z) is
a pure phase and the restriction (U(z,y))’ = U(y, z), it follows that

U(z + en,z) = exp[—ieen* A, (z + 5n) + O(e%)]. (15.9)

(Relaxing these restrictions introduces additional vector fields into the theory;
this is an unnecessary complication.) Using this expansion for U(y,z), we
link together comparisons of the phase direction around a small square in
spacetime. For definiteness, we take this square to lie in the (1, 2)-plane, as
defined by the unit vectors 1, 2 (see Fig. 15.1). Define U(z) to be the product

of the four comparisons around the corners of the loop:
U(z) =U(z,z + 2)U(z + €2,z + €l + €2) (15.10)
xU(z+ el + €2,z 4+ el)U(zx + €l, z). )

The transformation law (15.3) for U implies that U(z) is locally invariant. In
the limit € — 0, it will therefore give us a locally invariant function of 4,,. To
find the form of this function, insert the expansion (15.9) to obtain

U(z) = exp{ - iee[—AQ(x + %Q) —Ay(z+ %j + EQ)

(15.11)
+ As(z + el + §2) + Ay(z + §1)] + 0(63)}.
When we expand the exponent in powers of ¢, this reduces to
U(z)=1- ieze[alAg(x) - agAl(a:)] + O(e3). (15.12)
Therefore the structure
Fu =0,A, —0,A, (15.13)

is locally invariant. Of course, F),, is the familiar electromagnetic field tensor,
and its invariance under (15.7) can be checked directly. The preceding con-
struction, however, shows us the geometrical origin of the structure of F,,.
Any function that depends on A, only through F),, and its derivatives is lo-
cally invariant. More general functions, such as the vector field mass term
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A, AF | transform under (15.7) in ways that cannot be compensated and thus
cannot appear in an invariant Lagrangian.

A related argument for the invariance of F),, can be made using the co-
variant derivative. We have seen above that, if a field has the local transfoma-
tion law (15.1), then its covariant derivative has the same transformation law.
Thus the second covariant derivative of ¢ also transforms according to (15.1).
The same conclusion ‘holds for the commutator of covariant derivatives:

Dy, DuJ(z) — €@ [D,, D,J4(x). (15.14)
However, the commutator is not itself a derivative at all:

[Duv DVW’ = [Bua au]d’ + ie([aﬂ, A,,] - [BV, A,u])w - ez[Alu AI/W’

ie (O Ay — 0,A,) - . (15.15)

That is,
[D,,D,| =ieF,,. (15.16)

On the right-hand side of (15.14), the factor ¢(z) accounts for the entire
transformation law, so the multiplicative factor F),, must be invariant. One
can visualize the commutator of covariant derivatives as the comparison of
comparisons across a small square; fundamentally, therefore, this argument is
equivalent to that of the previous paragraph.

Whatever the method of proving the invariance of Fj,,, we have now
assembled all of the ingredients we need to write the most general locally
invariant Lagrangian for the electron field 1 and its associated connection A4,,.
This Lagrangian must be a function of ¢ and its covariant derivatives, and of
F,,, and its derivatives, and must be invariant to global phase transformations.
Up to operators of dimension 4, there are only four possible terms:

Ly =P(iP)y — %(FM )2 — ce*PHV F g Fyy — mipn). (15.17)

By adjusting the normalization of the fields ¢ and A,,, we have set the coeffi-
cients of the first two terms to their standard values. This normalization of 4,,
requires the arbitrary scale factor e in our original definition (15.5) of A,,. The
third term violates the discrete symmetries P and T', so we may exclude it if
we postulate these symmetries. Then L4 contains only two free parameters,
the scale factor e and the coefficient m.

By using operators of dimension 5 and 6, we can form many additional
gauge-invariant combinations:

Lo = ic19pou F* 9 + ca(Yp)® + es(py°¥)* + - - (15.18)

More allowed terms appear at each higher order in mass dimension. But all
of these terms are nonrenormalizable interactions. In the language of Sec-
tion 12.1, they are irrelevant to physics in four dimensions in the limit where
the cutoff is taken to infinity.

tThe general systematics of P, C, and T violation are discussed in Section 20.3.
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We have now reached a remarkable conclusion. We began by postulating
that the electron field obeys the local symmetry (15.1). From this postulate,
we showed that there must be an electromagnetic vector potential. Further,
the symmetry principle implies that the most general Lagrangian in four di-
mensions that is renormalizable (or relevant, in Wilson’s sense) is the general

form L4. If we insist that this Lagrangian also be invariant under time rever- -

sal or parity, we are led uniquely to the Maxwell-Dirac Lagrangian that is the
basis of quantum electrodynamics.

15.2 The Yang-Mills Lagrangian

If the simple geometrical constructions of the previous section yield Maxwell’s
theory of electrodynamics, then surely it must be possible to construct other
interesting theories by starting with more general geometrical principles. Yang
and Mills proposed that the argument of the previous section could be gener-
alized from local phase rotation invariance to invariance under any continuous
symmetry group. In this section, we will introduce this generalization of local
symmetry. For most of the discussion, we will consider our local symmetry to
be the three-dimensional rotation group, O(3) or SU(2), since in this case the
necessary group theory should be familiar. At the end of the section, we will
generalize further to the case of an arbitrary local symmetry.

Consider, then, the following generalization of the phase rotation (15.1):
Instead of a single fermion field, we start with a doublet of Dirac fields,

b= (i;g;) , (15.19)

which transform into one another under abstract three-dimensional rotations
as a two-component spinor:
W — exp (ia17)¢. (15.20)

Here o' are the Pauli sigma matrices, and, as usual, a sum over repeated
indices is implied. It is important to distinguish this abstract transformation
from a rotation in physical three-dimensional space; in their original paper,
Yang and Mills considered (11,12) to be the proton-neutron doublet as it is
transformed under isotopic spin. As in the case of a phase rotation, it is not
hard to construct Lagrangians for ¢ that are invariant to (15.20) as a global
symmetry.

We now promote (15.20) to a local symmetry, by insisting that the La-
grangian be invariant to this transformation for o an arbitrary function of z.
Write this transformation as

W(z) = V(@)p(z),  where V(z) = exp(iai($)%>. (15.21)
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We can construct a suitable Lagrangian by applying the methods of the previ-
ous section. However, we will encounter a number of additional complications,
due to the fact that there are now three orthogonal symmetry motions, which
do not commute with one another. This feature is sufficiently important to
earn a special name for theories that have it: We refer to the Abelian sym-
metry group of electrodynamics, and the non-Abelian symmetry group of the
more general theories. The field theory associated with a noncommuting local
symmetry is termed a non-Abelian gauge theory.

To construct a Lagrangian that is invariant under this new group of trans-
formations, we must again define a covariant derivative that transforms in a
simple way. Again we use the definition (15.4), but since 1 is now a two-
component object, the comparator U(y, z) must be a 2 x 2 matrix. The trans-
formation law for U(y, z) is now

Uly,z) = V(y) Uly,z) V(2), (15.22)

where V(z) is as in (15.21), and again we set U(y,y) = 1. At points = # y
we can consistently restrict U(y, z) to be a unitary matrix. Near U = 1, any
such matrix can be expanded in terms of the Hermitian generators of SU(2);
thus for infinitesimal separation we can write

U(x+en,z)=1+ igen“AfL%— + O(€). (15.23)

Here g is a constant, extracted for later convenience. Inserting this expansion
into the definition (15.4) of the covariant derivative, we find the following
expression for the covariant derivative associated with local SU(2) symmetry:

7
D, =0, - igA;%. (15.24)

This covariant derivative requires three vector fields, one for each generator
of the transformation group.

We can find the gauge transformation law of the connection A% by insert-
ing the expansion (15.23) into the transformation law (15.22):

1+ igen“AL% V(e + m)(1 + igenﬂA;%)vT(x). (15.25)

We must expand the right-hand side to order ¢, taking care that the various
Pauli matrices do not commute with one another. The expansion of V(z+en)
is conveniently done using the identity

V(z+en)Vi(z) = [(1 + en“% + 0(62)>V(CL‘)} Vi(z)

=1+ent (%V(:r))VT(m) + O(e?) (15.26)

=1+ en*V(z) (—%V*(x)) + O(€?).
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Then the terms proportional to en* in (15.25) give the transformation
N A
A%~ V(@) (Au(a:)5 + 56") Vi) (15.27)

The derivative acts on V(z) = exp(—ia‘s?/2); it is not so easy to compute
this derivative explicitly because the exponent does not necessarily commute
with its derivative. For infinitesimal transformations we can expand V(z) to
first order in «. In this case we obtain
ot cot 1 ot O'i

A — — AP — 4 —(9,0") = +i[a'—, A
" 2 i 2 + g( 12 ) 2 + [
The last term in this transformation law is new, and arises from the noncom-
mutativity of the local transformations. By combining this relation with the
infinitesimal form of the fermion transformation,

"J] (15.28)

LA WA
v (1+i )y, (15.29)
we can check the infinitesimal transformation of the covariant derivative:
i k
. 4 0 . . kO
Dyt — (8 — igAl, 7 — (0,0 T +g[a 7 4 ])(1+za v
(1 +ial "—) D, (15.30)

up to terms of order a2. It is not difficult to check using (15.27) and (15.21)
that, even for finite transformations, the covariant derivative has the same
transformation law as the field on which it acts.

Using the covariant derivative, we can build the most general gauge-
invariant Lagrangians involving . But to write a complete Lagrangian, we
must also find gauge-invariant terms that depend only on AL. To do this, we
construct the analogue of the electromagnetic field tensor. We will use the
second method of the previous section, working from the commutator of co-
variant derivatives. The transformation law of the covariant derivative implies
that

[Dy, D] () — V(2)[Dy, Do ]JY(z) (15.31)

At the same time, by writing out the commutator using formula (15.24), we
can show, as in the Abelian case, that [D,, D,] is not a differential operator
but merely a multiplicative factor (now a matrix) acting on 9. This time, how-
ever, there is a new feature: The last term in the expansion of the commutator
no longer vanishes. Instead, we find

[D,,D,] = —igF. (15.32)
with )
. o7
v ?] .

i i
i 0'

Fi% =0, Al 6VAL% [A‘ | AJ (15.33)
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We can simplify this relation by applying the standard commutation relations
of Pauli matrices: o .
ot ol ik

. | = 34 k_. 15.
| 53 ] =ie 5 (15.34)

Then
Fj, =0,A} — 8,A}, + ge7* A A} (15.35)

The transformation law for the field strength follows from Egs. (15.21)
and (15.31):

i

Fuo = V(x)FjV?V‘t(x). (15.36)
The infinitesimal form is
ol o P
Foy = Fl+ [za’?, Ff“,?]. (15.37)

Notice that the field strength is no longer a gauge-invariant quantity. It cannot
be, since there are now three field strengths, each associated with a given
direction of rotation in the abstract space. However, it is easy to form gauge-
invariant combinations of the field strengths. For example,

1 ;o' ;
£=—sul(F2)] =~ (FL) (15.38)
is a gauge-invariant kinetic energy term for Af, Notice that, in contrast to
the case of electrodynamics, this Lagrangian contains cubic and quartic terms
in AZ. Thus, this Lagrangian describes a nontrivial, interacting field theory.
called Yang-Mills theory. This is the simplest example of a non-Abelian gauge
theory.

To construct a theory of Yang-Mills vector fields interacting with fermions.
we simply add the gauge-field Lagrangian (15.38) to the familiar Dirac La-
grangian, with the ordinary derivative of ¥ replaced by the covariant deriva-
tive. The result looks almost identical to the QED Lagrangian:

L= FPY ~ §(F,)? ~mBy. (15.39)

This is the famous Yang-Mills Lagrangian. Like that of QED, it depends on
two parameters: the scale factor g (which is analogous to the electron charge)
and the fermion mass m. By varying this Lagrangian, we find the classical
equations of motion of the gauge theory. These are the Dirac equation for the
fermion field and the equation

for the vector field. ‘
Everything that we have done for the SU(2) symmetry transformation
(15.20) generalizes easily to any other continuous group of symmetries. The



490 Chapter 15 Non-Abelian Gauge Invariance

full range of possible symmetry groups is enumerated and classified in Sec-
tion 15.4. For any such group, however, the general expressions for elements
of the Lagrangian are quite similar. Consider any continuous group of trans-
formations, represented by a set of n X n unitary matrices V. Then the basic
fields 9 (z) will form an n-plet, and transform according to

P(z) = V(z)(z), (15.41)

where the z dependence of V' makes the transformation local. In infinitesimal
form, V(z) can be expanded in terms of a set of basic generators of the
symmetry group, which can be represented as Hermitian matrices t:

V(z) =1+ ia%(z)t* + O(a?). (15.42)

Now one can carry through the whole analysis from Eq. (15.22) to Eq. (15.33)
for a general local symmetry group simply by replacing
i
% — e (15.43)

at each step of the analysis. ,

To generalize the explicit expression (15.35) for the field tensor, we need
to know the commutation relations of the matrices t*. It is conventional to
write these in the standard form

[te, %] = ifabete, (15.44)

where £ is a set of numbers called structure constants. This object replaces
€% in Eq. (15.34). It is conventional to choose a basis for the matrices ¢
such that fe*¢ is completely antisymmetric; we will prove that this is always
possible in Section 15.4.

We can now recapitulate all of our results as follows. The covariant deriva-
tive associated with the general transformation (15.41) is

D, = 8, — igA%t;  (15.45)

it contains one vector field for each independent generator of the local sym-
metry. The infinitesimal tranformation laws for ¢ and Aj, are

= (140t )y;

a a 1 a abc b . c (1546)
A#—>Au+§6”a + foeAbal
The finite transformation of Af. has exactly the form of (15.27):
Al (z)t* — V(x)(AZ(:c)t“ + gaﬂ)vf(x). (15.47)

These transformation laws imply that the covariant derivative of 1 has the
same transformation law as v itself. The field tensor is defined by

[D,,D,] = —igF2,t, (15.48)
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or more explicitly,
Fi, = 0,A% — 8,A% + gf " A} AS. (15.49)
This quantity has the infinitesimal transformation
F3, — Fg, — f*aFy,. (15.50)

From Egs. (15.46) and (15.50), one can show that any globally symmetric
function of ¥, F,, and their covariant derivatives is also locally symmetric,
and is therefore a candidate for a term in a gauge-invariant Lagrangian. How-
ever, there are very few permissible terms up to dimension 4. The most general
gauge-invariant Lagrangian that is renormalizable and conserves P and T is
again given by Eq. (15.39). The corresponding classical equation of motion is

O Fy, + gf " A FY, = —gjs, (15.51)
where
Jp = Y1t (15.52)

is the global symmetry current of the fermion field.

Notice that the nonlinear terms in the Yang-Mills Lagrangian (15.39)
appear in the covariant derivative, where they are proportional to t*, and in
the field tensor, where they are proportional to f%¢. Thus the form of the
interactions in a non-Abelian gauge theory is dictated by the local symmetry.
The nonlinear interactions of the vector field with itself are proportional to
the commutators of symmetry generators and thus explicitly require the non-
Abelian nature of the symmetry group.

15.3 The Gauge-Invariant Wilson Loop

In both of the previous sections we made use of the comparator, U(y, x), which
converts the fermion gauge transformation law at point x to that at point y.
So far, in writing expressions for this object, it has sufficed to assume that x
and y are infinitesimally separated. However, it is worthwhile to think further
about the comparator in the case where x and y are far apart. This discussion
will give us further insights into the geometry of gauge invariance, and will
reveal some additional useful functions of the gauge field which we will put to
work in Chapter 19. ,

We first return to the Abelian theory and expand upon our discussion
of U(y, z) in that context. In Eq. (15.10) we constructed a product of com-
parators on a path that wound around a small square. We showed that this
product U(z) is not trivial, even though we eventually return to the starting
point; rather, we found that U(z) differs from 1 by a term proportional to the
electromagnetic field strength and to the area of the square. This is a partic-
ular case of a general conclusion: The comparator between two points « and
y at finite separation depends on the path taken from z to y.
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To explain this statement, it is useful to reverse some of the logic of
Section 15.1. We begin from the connection A,, which we assume to have
the transformation law (15.7), and construct U(z,y) as a function of 4, that
transforms according to (15.3). It is not difficult to verify that the expression

Up(z,y) = exp[—ie/dm"A“(:ﬂ)} (15.53)
P

meets this criterion if the integral is taken along any path P that runs from y
to z. This object Up(z,y) is called the Wilson line.} Expression (15.53) gives
an explicit realization of the abstract comparator U(z,y) for points at finite
separation.

A crucial property of the Wilson line is that it depends on the path P. If
P is a closed path that returns to y, we obtain the Wilson loop,

Up(y,y) = exp [—ie%dw”A#(x)]. ' (15.54)
P

This quantity is a nontrivial function of A, that is, by construction, locally
gauge invariant. In fact, all gauge-invariant functions of A, can be thought of
as combinations of Wilson loops for various choices of the path P. To motivate
this claim, we use Stokes’s theorem to rewrite the Wilson loop as

Up(y,y) = exp [—zg / da“”Fyu], (15.55)
z

where ¥ is a surface that spans the closed loop P, do*” is an area element
on this surface, and F),, is the field tensor (15.13). This relation between the
Wilson loop and the field strength is illustrated in Fig. 15.2. Since the Wilson
loop is gauge invariant, this argument gives one more way to visualize the
gauge invariance of the field strength. Conversely, since (almost) all gauge-
invariant functions of A, can be built up from Fj,,, this expression gives
weight to the statement that Up(y,y) is the most general gauge invariant.

Both the Wilson line and the Wilson loop can be generalized to the non-
Abelian case. Here, however, additional subtleties arise when we consider ex-
ponentials of noncommuting matrices. Let us first construct the Wilson line,
which now transforms according to Eq. (15.22). It is not correct to make a
straightforward rewriting of (15.53) with the integral of Af¢® in the exponent,
since these matrices do not necessarily. commute at different points. Instead,
we must order these matrices in a particular way. We will now give the correct
ordering prescription and then prove its transformation law.

Let s be a parameter of the path P, running fromOatz =ytolatx = 2.
Then define the Wilson line as the power-series expansion of the exponential,
with the matrices in each term ordered so that higher values of s stand to the

!This path-dependent phase was used long before Wilson’s work, in Schwinger’s
early papers on QED, and in Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
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QP @
) Y
Figure 15.2. The Wilson loop integral is taken around an arbitrary loop.

It can also be expressed as a flux integral of the field strength over a surface
spanning the loop.

left. This prescription is called path-ordering and is denoted by the symbol
P{}. Thus the Wilson line is written

1 .
Up(z,y) = P{exp[ig/ds—(?—uAZ(w(s))t“] } (15.56)
0

S

This expression is similar to the time-ordered exponential that we wrote for
the interaction-picture propagator in Eq. (4.23). Pursuing this analogy, one
can show that this expression for Up is the solution of a differential equation
similar to (4.24): '

i
LU (a(s),y) = (19 As als))t®)Uplals) w). (15.57)
(Here we consider Up to be a continuous function of the parameter s, rather
than fixing s = 1 at the endpoint.)
To show that expression (15.56) is the correct generalization of the Wil-
son line, we must show that it satisfies the correct gauge transformation
law (15.22). This follows from the differential equation (15.57), which can

be rewritten as

dz*
— D, Up(z,y) =0. . (15.58)
ds
Now let A" represent the gauge transform of a field configuration A, and use
these arguments to denote explicitly the dependence of gauge functions on
the gauge field. We would like to show that

Up(z;y,AY) = V(2)Up(2,y, A)V'(y), (15.59)

which is equivalent to (15.22). In (15.30) we proved, in its infinitesimal version,
the relation

D, (AY)V(z) = V(z) D,(A). (15.60)

This relation implies that the right-hand side of (15.59) satisfies (15.58) for
the gauge field AV if Up(z,y, A) satisfies this equation for the gauge field A.
But the solution of a first-order differential equation with a fixed boundary
condition is unique. Thus, if Up(z,y) is defined to be the solution of (15.57)
or (15.58), it indeed has the transformation law (15.59).
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The Wilson line associated with a closed path returning to y transforms
only with the gauge parameter at y; however, it is not a gauge invariant:

Up(y,y) = V)Up(y,y)V'(v). (15.61)

To understand this transformation better, one can work out the expression
for Up(z, ), where the path is the small square in the (1,2) plane shown
in Fig. 15.1. In addition to the terms in Eq. (15.11), there are additional
corrections of order €2 coming from products of ‘(Azt“) factors from pairs of
sides, which sum up to a commutator of these factors. One finds

Up(x,z) = 1+ ige? FL(x)t* + O(€), (15.62)

where F}, is given by the full expression in (15.49). If we then expand the
transformation law (15.61) in powers of €, the term of order €? is the trans-
formation law of Fy, given in Eq. (15.36).

To convert the Wilson line for a closed path into a true gauge invariant,
take the trace. By cyclic invariance, (15.61) implies

tr Up(z,z) — tr Up(z, z). (15.63)

Thus for a non-Abelian gauge theory, we define the Wilson loop to be the
trace of the Wilson line around a closed path.

Let us evaluate tr Up(z, ) more explicitly for the case of an SU(2) gauge
group. If U(e) is any 2 X 2 unitary matrix that tends to 1 as € — 0, we can
expand it in € as follows:

U(e) = expli(ef’ + 24" + - ')%Z]
ot 1

:1+Z(5B1+€271+')7—5(6516ﬁ]+)——+‘

Then, since the Pauli matrices are traceless and satisfy tr[oio?] = 26%,

(15.64)

1 .
trU(e) =2 — 162(,8’)2 + O(e%). (15.65)
Applying this formula to Eq. (15.62), we find
1 _
trUp(z,2) =2~ 19264(}7{'2)2 + O(e°). (15.66)

Thus the gauge invariance of (F,)? can be derived from a geometrical argu-
ment, just as in the Abelian case. Using the notation that will be introduced
in the next section, one can show that the same argument goes through for
any gauge group.
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15.4 Basic Facts about Lie Algebras

At the end of Section 15.2 we saw that the class of non-Abelian gauge theories
is very large. To work with these theories most efficiently, it is worthwhile to
pause and consider the general properties of the continuous groups on which
they are based. In this section we will enumerate all the possible groups that
can be used to construct non-Abelian gauge theories. We will then compute
some numerical factors, built out of group transformation matrices, that are
needed in performing explicit calculations in quantized gauge theories.*

To a mathematician, a group is made up of abstract entities that obey
certain algebraic rules. In quantum mechanics, however, we are interested
specifically in groups of unitary operators that act on the vector space of
quantum states. We focus our attention on continuously generated groups,
that is, groups that contain elements arbitrarily close to the identity, such
that the general element can be reached by the repeated action of these in-
finitesimal elements. Then any infinitesimal group element g can be written

gla) =1+4iaT* + O(a?). (15.67)

The coefficients of the infinitesimal group parameters a® are Hermitian oper-
ators T, called the generators of the symmetry group. A continuous group
with this structure is called a Lie group.

The set of generators T'* must span the space of infinitesimal group trans-
formations, so the commutator of generators T'* must be a linear combination
of generators. Thus the commutation relations of the operators 7% can be
written

[T®, T = ifebere, (15.68)

the numbers f2%¢ are called structure constants. The vector space spanned by
the generators, with the additional operation of commutation, is called a Lie
Algebra.

The commutation relations (15.68) and the identity

[T, [T°, 7)) + [T°, [T°, T°)) + [T, [T*, T*]| = 0 (15.69)
imply that the structure constants obey
fadefbcd + fbd&fcad + fcdefa.bd =0 (1570)

called the Jacobi identity. From the mathematician’s viewpoint (considering
the generators to be abstract entities rather than Hermitian operators), the

*In this section we will state, without proof, some general results from the theory
of continuous groups. There are many excellent books that review these mathemati-
cal results systematically. Among these, we recommend especially Cahn (1984), for a
brief but incisive discussion, and S. Helgason, Differential Geometry, Lie Groups, and
Symmetric Spaces (Academic Press, 1978), which gives an elegant and rigorous ac-
count. R. Slansky, Phys. Repts. 79, 1 (1981), has compiled an especially useful set of
tables of group-theoretic identities relevant to the construction of non-Abelian gauge
theories.
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Jacobi identity is an axiom that must be satisfied in order for a given set of
commutation rules to define a Lie algebra.

The commutation relations of the Lie algebra completely determine the
group multiplication law of an associated Lie group sufficiently close to the
identity. For large enough transformations, additional global questions come
into play; to give a familiar example, SU(2) and O(3) have the same com-
mutation relations but different global structure. However, the Lagrangian
of a non-Abelian gauge theory depends only on the Lie algebra of the local
symmetry group, so we will ignore these global questions from here on.

Classification of Lie Algebras

For the application to gauge theories, the local symmetry is normally a uni-
tary transformation of a set of fields. Thus we are primarily interested in
Lie algebras that have finite-dimensional Hermitian representations, leading
to finite-dimensional unitary representations of the corresponding Lie group.
We will also assume that the number of generators is finite. Such Lie alge-
bras are called compact, because these conditions imply that the Lie group is
a finite-dimensional compact manifold.

If one of the generators 7% commutes with all of the others, it generates an
independent continuous Abelian group. Such a group, which has the structure
of the group of phase rotations

h — €'Y, (15.71)

we call U(1). If the algebra contains no such commuting elements, so that the
group contains no U(1) factors, then we call the algebra semi-simple. If, in
addition, the Lie algebra cannot be divided into two mutually commuting sets
of generators, the algebra is simple. A general Lie algebra is the direct sum of
non-Abelian simple components and additional Abelian generators.
Surprisingly, the basic conditions that a Lie algebra be compact and sim-
ple turn out to be extremely restrictive. In one of the triumphs of nineteenth-
century mathematics, Killing and Cartan classified all possible compact simple
Lie algebras. Almost all of these algebras belong to one of three infinite fam-
ilies, with only five exceptions. The three infinite families are the algebras
corresponding to the so-called classical groups, whose structures are conve-
niently defined in terms of particular matrix representations. The definitions
of the three families of classical groups are as follows:
1. Unitary transformations of N-dimensional vectors. Let £ and n be com-
“plex N-vectors. A general linear transformation then has the form

Na — UabM, &a = Uabe- (15.72)

We say that this transformation is unitary if it preserves the inner product
N+&. The pure phase transformations

b — €, (15.73)
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form a U(1) subgroup which commutes with all other unitary transformations;
we remove this subgroup to form a simple Lie group, called SU(N); it consists
of all N x N unitary transformations satisfying det(U) = 1. The generators
of SU(N) are represented by N x N Hermitian matrices t*, subject to the
condition that they be orthogonal to the generator of (15.73):

tr[t?] = 0. (15.74)

There are N2 — 1 independent matrices satisfying these conditions.

2. Orthogonal transformations of N-dimensional vectors. This is the sub-
group of unitary N x N transformations that preserves the symmetric inner
product

NaEabbp, with Egp = bap. (15.75)

This is the usual vector product, and so this group is the rotation group in
N dimensions, SO(N). (Adding the reflection gives the group O(N).) There
is an independent rotation corresponding to each plane in N dimensions, so
SO(N) has N(N — 1)/2 generators.

3. Symplectic transformations of N-dimensional vectors. This is the sub-
group of unitary N x N transformations, for N even, that preserves the an-
tisymmetric inner product

NaBaply,  With B, = (_01 é) , (15.76)

where the elements of the matrix are N/2 x N/2 blocks. This group is called
Sp(N); it has N(N + 1)/2 generators.

Beyond these three families, there are five more exceptional Lie algebras,
denoted in Cartan’s classification system as G, Fy, Eg, E7, and Eg. Of these,
E¢ and Eg have been applied as local symmetry groups in interesting unified
models of the fundamental interactions. However, we will not consider these

exceptional groups further in this book. In fact, most of our examples will
involve only SU(N) groups.

Representations

Once we have specified the local symmetry group, the fields that appear in
the Lagrangian most naturally transform according to a finite-dimensional
unitary representation of this group. Thus we might next ask how to system-
atically find all such representations of any given Lie group. Recall that for the
group SU(2), the representations can be constructed directly from the com-
mutation relations, using the raising and lowering operators J4 and J_. This
construction can be generalized to find the finite-dimensional representations
of any compact Lie algebra. In this book, however, we will work with rela-
tively simple representations whose structure we can work out by less formal
methods.
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Before discussing representations of Lie algebras, we should review some
general aspects of group representations. Given a symmetry group G, a finite-
dimensional unitary representation of the group’s Lie algebra is a set of d x d
Hermitian matrices t* that satisfy the commutation relations (15.68). The
size d is the dimension of the representation. An arbitrary representation can
generally be decomposed by finding a basis in which all representation matri-
ces are simultaneously block-diagonal. Through this change of basis, we can
write the representation as the direct sum of irreducible representations. We
denote the representation matrices in the irreducible representation r by t2.

It is standard practice to adopt a normalization convention for the ma-
trices t2, based on traces of their products. If the Lie algebra is semi-simple,
the matrices ¢t themselves are traceless. Consider, however, the trace of the
product of two generator matrices:

trt2tb] = D®. (15.77)

As long as the generator matrices are Hermitian, the matrix D is positive
definite. Let us choose a basis for the generators 7¢ so that this matrix is
proportional to the identity. It can be shown that, once this is done for one
irreducible representation, it is true for all irreducible representations. Thus,
in this basis,

tr[t2t] = C(r)6, (15.78)

where C(r) is a constant for each representation r. Equation (15.78) and
the commutation relations (15.68) yield the following representation of the
structure constants:

fobe = —% tr { [t2, t8]ec . (15.79)

This equation implies that fe¢ is totally antisymmetric.
For each irreducible representation r of G, there is an associated conjugate
representation 7. The representation r yields the infinitesimal transformation

¢ — (14 iat2)o. (15.80)
The complex conjugate of this transformation,
¢* — (1 —ia(t7)")8", (15.81)

must also be the infinitesimal element of a representation of G. Thus the
conjugate representation to r has representation matrices

(= —(t2)" = ()" (15.82)

Since ¢*¢ is invariant to unitary transformations, it is possible to combine
fields transforming in the representations r and 7 to form a group invariant.

It is possible that the representation 7 may be equivalent to r, if there is
a unitary transformation U such that t&@ = Ut2UT. If so, the representation
r is real. In this case, there is a matrix G, such that, if n and £ belong to
the representation 7, the combination Ggpn.&p is an invariant. It is sometimes



15.4 Basic Facts about Lie Algebras 499

useful to distinguish the case in which G, is symmetric from that in which Gy,
is antisymmetric. In the former case the representation is strictly real; in the
latter case it is pseudoreal. Both cases occur already in SU(2): The invariant
combination of two vectors is v,w,, so the vector is a real representation; the
invariant combination of two spinors is €*7,£3, so the spinor is a pseudoreal
representation.

With this language we can discuss the simplest representations of the
classical groups. In SU(N), the basic irreducible representation (often called
the fundamental representation) is the N-dimensional complex vector. For
N > 2 this representation is complex, so that there is a second, inequiva-
lent, representation N. (In SU(2) this representation is the pseudoreal spinor
representation.) In SO(N), the basic N-dimensional vector is a (strictly) real
representation. In Sp(NN), the N-dimensional vector is a pseudoreal represen-
tation.

Another irreducible representation, present for any simple Lie algebra, is
the one to which the generators of the algebra belong. This representation is
called the adjoint representation and denoted by » = G. The representation
matrices are given by the structure constants:

(t%)ac = ifete. (15.83)

With this definition, the statement that t% satisfies the Lie algebra

([t&:8]) o = 1" (t&)ae (15.84)

is just a rewriting of the Jacobi identity (15.70). Since the structure constants
are real and antisymmetric, t& = —(t&)*; thus the adjoint representation is
always a real representation. From the descriptions of the Lie groups given
above, the dimension of the adjoint representation d(G) is given, for the clas-
sical groups, by

N2 -1 for SU(N),
d(G) =< N(N —1)/2 for SO(N), (15.85)
N(N +1)/2 for Sp(N).

The identification of f*¢ as a representation matrix allows us to gain
further insight into some of the quantities introduced in Section 15.2. The
covariant derivative acting on a field in the adjoint representation is

(Du¢)a = u¢a - igAZ(tbG)ac¢c
= Ouga + gfabcAZ¢c'

Thus we can recognize the infinitesimal form of the gauge transformation of
the vector field in (15.46) as the motion

(15.86)

1
A5 = A5+ (D) (15.87)
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The gauge field equation of motion (15.51) can be rewritten as
(DHE,)* = —gjg. (15.88)

In both of these expressions, the arbitrary-looking terms involving fe%¢ arise
naturally as part of a covariant derivative. An additional identity follows from
considering the antisymmetric double commutator of covariant derivatives,

e*’*?[D,, Dy, Ds]].

This quantity vanishes by its total antisymmetry, in the same way as (15.69).
This result can be reduced to the identity

"2 (D, Fy,)* = 0. (15.89)

This equation, called the Bianchi identity of a non-Abelian gauge theory, is
the analogue of the homogeneous Maxwell equations in electrodynamics.

The Casimir Operator

In SU(2), we characterize representations by the eigenvalue of the total spin
J2. In fact, for any simple Lie algebra, the operator

T? = T°T*® (15.90)

(with the repeated index summed, as always) commutes with all group gen-
erators:

[Tb, TaTa] — (ifbacTc)Ta + Ta(ifbacTC) (15 91)
— ifbac{Tc,Ta}, :
which vanishes by the antisymmetry of f2¢. In other words, T2 is an invariant
of the algebra; this implies that 72 takes a constant value on each irreducible
representation. Thus, the matrix representation of T2 is proportional to the
unit matrix:

$94 = Cy(r) - 1, (15.92)

where 1 is the d(r) x d(r) unit matrix and Ca(r) is a constant, called the
quadratic Casimir operator, for each representation. For the adjoint represen-
tation, Eq. (15.92) is more conveniently written as

focd foed — o (G)6%. (15.93)

Casimir operators appear very often in computations in non-Abelian gauge
theories. Furthermore, the related invariant C(r) given by (15.78) is simply
related to the Casimir operator: If we contract (15.78) with §%® and evaluate
the left-hand side using (15.92), we find

d(r)Ca(r) = d(G)C(r). (15.94)

Thus it will be useful for us to compute Cs(r) for the simplest SU(N) repre-
sentations.
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For SU(2), the fundamental two-dimensional representation is the spinor
representation, which is given in terms of Pauli matrices by

1= (15.95)

These satisfy tr[t§t3] = %6“’. We will choose the generators of SU(N) so that
three of these are the generators (15.95), acting on the first two components
of the N-vector €. Then, for any matrices of the fundamental representation,

trftgth] = 36°. (15.96)

This convention fixes the values of C(r) and Ca(r) for all of the irreducible
representations of SU(N). For the fundamental representations N and N,
C(N) is given directly by (15.96), and C2(N) follows from (15.94). We find
1 NZ -1

To compute the Casimir operator for the adjoint representation, we build
up this representation from the product of the N and N. Let us first discuss
the product of irreducible representations more generally. The direct product
of two representations 1, r3 is a representation of dimension d(r1) - d(r2). An
object that transforms according to this representation can be written as a
tensor Zpq, in which the first index transforms according to ri, the second
according to 2. In general, such a product can be decomposed into a direct
sum of irreducible representations; symbolically, we write

71 X To = Z'I‘i. (1598)

The representation matrices in the representation r1 X 7o are

(15.97)

trixr, =1, @1+ 1®1E7,, (15.99)

where the first matrix of each product acts on the first index of Z,, and the
second matrix acts on the second index.
The Casimir operator in the product representation is

() = (22 @1 +2t2 @t +10 (t2,)>

Take the trace; since the matrices t2 are traceless the trace of the second
term on the right is zero. Then

tr(t2, xry)? = (Ca(r1) + Ca(ra))d(r1)d(r2). (15.100)
On the other hand, the decomposition (15.98) implies
tr(t2, rp)? = Y Ca(ri)d(rs). (15.101)

Equating (15.100) and (15.101), we find a useful identity for C(r).

Now apply this identity to the product of the N and N representations
of SU(N). In this case, the tensor =,, can contain a term proportional to
the invariant &,,. The remaining (N? — 1) independent components of =,
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transform as a general traceless N x N tensor; the matrices that effect these
transformations make up the adjoint representation of SU(N). In this case
Eq. (15.98) becomes explicitly

NxN=1+(N?-1). (15.102)

For this decomposition, Eqgs. (15.100) and (15.101) imply the identity

(2- N;\_II)N2=O+C2(G)'(N2—1). (15.103)

Thus, for SU(N),
C2(G) =C(G) = N. (15.104)

Some additional examples of the computation of quadratic Casimir oper-
ators are given in Problem 15.5. However, the examples we have discussed in
this section, combined with the basic group-theoretic concepts that we have
reviewed, already provide enough material to carry out the most important
computations of physical interest in non-Abelian gauge theories.

Problems

15.1 Brute-force computations in SU(3). The standard basis for the fundamen-
tal representation of SU(3) is

L [0 10 1[0 —i 0 (/1 0 0
t1:§100,t2=§i0 0,t3=§0—10,
000 0 0 0 0 0 O
1[0 01 1[0 0 —i
t4-§000,t5=5(00 0 |,
100 i 00
L /0 00 L /0 0 0 L (10 0
t6=—001,t7=—'<00—i), t8=—<01 0).
2\o0 1 0 2\o0 i o 23\ 0 -2

(a) Explain why there are exactly eight matrices in the basis.

(b) Evaluate all the commutators of these matrices, to determine the structure con-
stants of SU(3). Show that, with the normalizations used here, fabe is totally
antisymmetric. (This exercise is tedious; you may wish to check only a represen-
tative sample of the commutators.)

(c) Check the orthogonality condition (15.78), and evaluate the constant C(r) for
this representation.

(d) Compute the quadratic Casimir operator Ca(r) directly from its definition
(15.92), and verify the relation (15.94) between Ca(r) and C(r).

15.2 Write down the basis matrices of the adjoint representation of SU(2). Compute
C(G) and C2(G) directly from their definitions (15.78) and (15.92).
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15.3 Coulomb potential.

(a) Using functional integration, compute the expectation value of the Wilson loop
in pure quantum electrodynamics without fermions. Show that

wrteah =eop| ¢ f ot vz,
P P

with = and y integrated around the closed curve P.

(b) Consider the Wilson loop of a rectangular path of (spacelike) width R and
(timelike) length T', T > R. Compute the expectation value of the Wilson loop
in this limit and compare to the general expression for time evolution,

(Up) = exp[—iE(R)T],

where E(R) is the energy of the electromagnetic sources corresponding to the
Wilson loop. Show that the potential energy of these sources is just the Coulomb
potential, V(R) = —e?/4nR.

(c) Assuming that the propagator of the non-Abelian gauge field is given by the
Feynman gauge expression

d4 i 6ab .
A Ab p Juv —ip(z—
< z(m) p(y)> —'/(2 )4 —,p2 e. p(z y)’

compute the expectation value of a non-Abelian Wilson loop to order g2. The
result will depend on the representation r of the gauge group in which one
chooses the matrices that appear in the exponential. Show that, to this order, the
Coulomb potential of the non-Abelian gauge theory is V(R) = —g2Ca(r)/4nR.

15.4 Scalar propagator in a gauge theory. Consider the equation for the Green’s
function of the Klein-Gordon equation:

(0% + m?)Dp(z,y) = —i6@ (z —y).

We can find an interesting representation for this Green’s function by writing

o0

DF(ZZ?,y) =/dTD(I7y9T)7
0

where D(z,y,T) satisfies the Schrodinger equation

[iﬁ — @+ m2)] D(z,y,T) = i6(T)6@ (z — y).
Now, represent D(z,y,T) using the functional integral solution of the Schrédinger
equation presented in Section 9.1.

(a) Using the explicit formula of the propagator of the Schrédinger equation, show
that this integral formula gives the standard expression for the Feynman prop-
agator.
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(b)

(c)

15.5
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Using the method just described, show that the expression

(z,y) /dT/Dm exp[/dt ((d;’:) —m2> —ie/dt%liA”(z)]

is a functional integral representation for the scalar field propagator in an arbi-
trary background electromagnetic field. Show, in particular, that the functional
integral satisfies the relevant Schrodinger equation. Notice that this integral de-
pends on A, through the Wilson line.

Generalize this expression to a non-Abelian gauge theory. Show that the func-
tional integral solves the relevant Schrédinger equation only if the group matrices
in the exponential for the Wilson line are path-ordered.

Casimir operator computations. An alternative strategy for computing the

quadratic Casimir operator is to compute C(r) in the formula

tr[t2el] = C(r)6*®

by choosing t% and t® to lie in an SU (2) subgroup of the gauge group.

()

(b)

(c)

Under an SU(2) subgroup of a general group G, an irreducible representation r
of G will decompose into a sum of representations of SU(2):

r— Zji»

where the j; are the spins of SU(2) representations. Show that

3C(r) =Y 5ilji + 1)(2ji + 1)-

1

Under an SU(2) subgroup of SU(N), the fundamental representation N trans-
forms as a 2-component spinor (j = %) and (N —2) singlets. Use this relation to
check the formula C(N) = % Show that the adjoint representation of SU(N)
decomposes into one spin 1, 2(N — 2) spin-%’s, plus singlets, and use this de-
composition to check that C(G) =

Symmetric and antisymmetric 2-index tensors form irreducible representations
of SU(N). Compute Co(r) for each of these representations. The direct sum
of these representations is the product representation N x N. Verify that your
results for Ca(r) satisfy the identity for product representations that follows
from Egs. (15.100) and (15.101).



Chapter 16

Quantization of Non-Abelian Gauge Theories

The previous chapter showed how to construct Lagrangians with non-Abelian
gauge symmetry. However, this is only the first step in the process of relating
the idea of non-Abelian gauge invariance to the real interactions of particle
physics. We must next work out the rules for computing Feynman diagrams
containing the non-Abelian gauge vector particles, then use these rules to
compute scattering amplitudes and cross sections. This chapter will develop
the technology needed for such calculations.

Alongside this technical discussion, we will study how the gauge symmetry
affects the Feynman amplitudes. In any theory with a local symmetry, some
degrees of freedom of the fields that appear in the Lagrangian are unphysical,
in the sense that they can be adjusted arbitrarily by gauge transformations.
In electrodynamics, the components of the field A, (k) proportional to k* lie
along the symmetry directions. We saw in Section 9.4 that this fact has two
important consequences. First, the propagator of the field A, is ambiguous;
there are multiple expressions for the propagator, which follow equally well
from the QED Lagrangian. Second, the vertices of electrodynamics are such
that this ambiguity makes no difference in the calculation of cross sections. For
example, Eq. (9.58) displays a continuous family of photon propagators, one
for each value of the continuous parameter £; but we saw immediately that all
dependence of S-matrix elements on £ is eliminated by the Ward identity. Non-
Abelian gauge theories contain similar ambiguities and cancellations, but, as
we will see in this chapter, the structure of the cancellations is more intricate.

An additional goal of this chapter is to compute the Callan-Symanzik 3
function, and hence determine the behavior of the running coupling constant,
for non-Abelian gauge theories. As discussed in Chapter 14, these theories
are in fact asymptotically free: The coupling constant becomes weak at large
momenta. This result indicates the applicability of non-Abelian gauge theory
to model the strong interactions. We will be able to derive this result once we
have determined the correct Feynman rules for non-Abelian gauge theories.

505
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16.1 Interactions of Non-Abelian Gauge Bosons

Most of the Feynman rules for non-Abelian gauge theory can be read directly
from the Yang-Mills Lagrangian, following the method of Section 9.2. How-
ever, when we quantized the electromagnetic field in Section 9.4, we saw that
the functional integral over a gauge field must be defined carefully, and that
the subtle aspects of this construction can introduce new ingredients into the
quantum theory. In this section we will see how far we can go in the non-
Abelian theory by ignoring these subtleties. In Section 16.2 we will carry out
a more proper derivation of the Feynman rules, through a careful analysis of
the functional integral.

Feynman Rules for Fermions and Gauge Bosons

The Yang-Mills Lagrangian, as derived in the previous chapter, is

1 _
£ =—(Fa)? + 96D - m)y, (16.1)
where the index a is summed over the generators of the gauge group G, and
the fermion multiplet ¢ belongs to an irreducible representation r of G. The
field strength is

Ff, = 0,A% — 0,A% + gf*™ AL A, (16.2)

where f3%¢ are the structure constants of G. The covariant derivative is defined
in terms of the representation matrices t¢ by
D, =0, —igAjt;. (16.3)
From now on we will drop the subscript r except where it is needed for clarity.
The Feynman rules for this Lagrangian can be derived from a functional
integral over the fields v, ¥, and Aj,. Imagine expanding the functional integral
in perturbation theory, starting with the free Lagrangian, at g = 0. The free
theory contains a number of free fermions equal to the dimension d(r) of the
representation r, and a number of free vector bosons equal to the number d(G)
of generators of G. Using the methods of Section 9.5, it is straightforward to
derive the fermion propagator

‘ 4 p ‘
<¢ia(m)17)jﬁ(y)> = /Z%(k,_—m)aﬂ dij e—zk-(z—y)’ (16.4)

where «, B are Dirac indices and ¢, j are indices of the symmetry group:
1,7 =1,...,d(r). In analogy with electrodynamics, we would guess that the
propagator of the vector fields is

4 5 .
Az Aw) = [ (—%( ) 6, (16.5)
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a, p
= gyt

9f**[g" (k - p)*

Py = +9"(p—-*
b,v ;\ ¢, p + g7 (q — k‘)u]
a, i b,v —ng [fabefcde (gupgua _guagvp)
— + facefbde (gpugpa_gpogup)
ade gbce( pv po _ _up vo
) d.o + fode foee(gh 9P —gHP g7

Figure 16.1. Feynman rules for fermion and gauge boson vertices of a non-
Abelian gauge theory. ’

with a,b=1,...,d(G). We will derive this formula in the next section.
To find the vertices, we write out the nonlinear terms in (16.1). If £, is
the free field Lagrangian, then

L= Lo+ gASPn o — gf** (9. A5 A AN
_ ng(feabAiAlj\)(feCdAK'cAAd).

The first of the three nonlinear terms gives the fermion-gauge boson vertex

(16.6)

igyHt?; . (16.7)

this is a matrix that acts on the Dirac and gauge indices of the fermions. The
second nonlinear term leads to a three gauge boson vertex. To work out this
vertex, we first choose a definite convention for the external momenta and
Lorentz and gauge indices. A suitable convention is shown in Fig. 16.1, with
all momenta pointing inward. Consider first contracting the external gauge
particle with momentum k to the first factor of Af, the gauge particle with
momentum p to the second, and the gauge particle of momentum g to the
third. The derivative contributes a factor (—ik,) if the momentum points into
the diagram. Then this contribution is

—igfabe(—ik?)g"*. (16.8)

In all, there are 3! possible contractions, which alternate in sign according to
the total antisymmetry of fo¢. The sum of these is exhibited in Fig. 16.1.
Finally, the last term of (16.6) leads to a four gauge boson vertex. Following
the conventions of Fig. 16.1, one possible contraction gives the contribution

_,ig2feabfecdgupguo . (169)
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There are 4! possible contractions, of which sets of 4 are equal to one another.
The sum of these contributions is shown in Fig. 16.1.

Notice that all of these vertices involve the same coupling constant g.
We derived the vertices, and thus the equality of the coupling constants, as a
part of our construction of the Lagrangian from the principle of non-Abelian
gauge invariance. However, it is also possible to see the need for this equality
a posteriori, from the properties of Feynman amplitudes.

Equality of Coupling Constants

One property that we expect from Feynman amplitudes in non-Abelian gauge
theories is that they should satisfy Ward identities similar to those of QED.
These Ward identities express the conservation of the symmetry currents,
which follows already from the global symmetry of the theory. In QED, the
simplest form of the Ward identity was obtained by putting external electrons
and positrons on shell. In non-Abelian gauge theories, the gauge bosons also
carry charge and so these must also be put on shell to remove contact terms.
With all external particles on shell, the amplitude for production of a gauge

boson should obey

This identity is not only an indication of the local gauge symmetry, but is
physically important in its own right. Like the photon, the non-Abelian gauge
boson has only two physical polarization states. In QED, the on-shell Ward
identity expressed the fact that the orthogonal, unphysical polarization states
are not produced in scattering processes. The on-shell Ward identity will play
a similar role in the non-Abelian case.

Let us check the Ward identity in a simple case, the lowest-order diagrams
contributing to fermion-antifermion annihilation into a pair of gauge bosons.
In order g2, there are three diagrams, shown in Fig. 16.2. The first two dia-
grams are similar to the QED diagrams that we studied in Section 5.5; they
sum to

utb

iMEYes (ke (2) = (i9)0(p4 ) {v"t° Y

V.— Ko —m
7t Lu(p) € (k1 )es (ko).
(16.11)

The vectors €(k;) are the gauge boson polarization vectors; for physical polar-
izations, these satisfy kfe,(k;) = 0. To check the Ward identity (16.10), we

+7th—z___
Ko—Pp—m
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a b a b
B 7k, E\’L T
+ +
P+ p P+A p

Figure 16.2. Diagrams contributing to fermion-antifermion annihilation to
two gauge bosons.

replace € (k2) in (16.11) by ko,. This gives

MY €k = (i9)20(py ) { 71— —— fot?
i { ”"%_mi (16.12)
+ kztbmﬁ“ta}u(l’) €1y
Since
F-mu(p) =0 and  (ps)(—F, -m)=0, (16.13)

we can add these quantities to ¥, in the first and second terms of (16.12), to
cancel the denominators. This gives

iMEGE ke = (1)) {—iv 11, ) Julp) €, (16.14)

In the Abelian case, this expression would vanish. In the non-Abelian case,
however, the residual term is nonzero and depends on the commutator of
gauge group generators:

iMEEr ko = —g*0(p )y ulp) €], - FOPL° (16.15)

We need to find another contribution to cancel this term. Notice, however.
that this term has the group index structure of a fermion-gauge boson vertex
(gy#t°) multiplied by a three gauge boson vertex (gf®®¢). This is just the
structure of the third diagram in Fig. 16.2.

To check that the cancellation works, let us evaluate the third diagram:

-1

iM5" €], €5, = 1g0(p+ )7,t u(p) 2 Culkr)es (k2)
3
x gf**e[g" (ke — k1)? + g*° (ks — ka)* + g** (k1 — k3)”],
with k3 = —k; — k2. If we replace €} (k2) with k., then eliminate k; using

momentum conservation, the expression in brackets simplifies as follows:
€5 (k2) (9" (k2 — k1)? + 7% (ks — k2)* + g7 (k1 — k3)”]
— kg(kg — kl)p + kg(k::, — kg)“ + gP#(kl - k3) - ko (1616)
= KL — KBRS — oK 4 RERY.
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AR

Figure 16.3. Diagrams contributing to gauge boson-gauge boson scattering.

Let us assume that the other gauge boson, with momentum £, is on shell
(k# = 0), and that it has transverse polarization (ki'e,(k1) = 0). Then the
third and fourth terms in the last line vanish. Furthermore, the term k£k%
vanishes when it is contracted with the fermion current. In the remaining
term, the factor k3 cancels the gauge boson propagator, and we are left with

iME €] ko = +°0(p2 )y ulp) €1, - F7CL°, (16.17)

which precisely cancels (16.15).

Notice that this cancellation takes place only if the value of the coupling
constant in the three-boson vertex is identical to that in the fermion-boson
vertex. In a similar way, the Ward identity cannot be satisfied among the di-
agrams for boson-boson scattering, shown in Fig. 16.3, unless the coupling
constant g in the four-boson vertex is identical to that in the three-boson ver-
tex. Thus, the coupling constants of all three nonlinear terms in the Yang-Mills
Lagrangian must be equal in order to preserve the Ward identity and avoid
the production of bosons with unphysical polarization states. Conversely, the
non-Abelian gauge symmetry guarantees that these couplings are equal. The
symmetry thus accomplishes exactly what we hoped it would in our discus-
sion at the beginning of Chapter 15, giving us a consistent theory of physical
vector particle interactions.

A Flaw in the Argument

The preceding argument has one serious deficiency. At the final stage, we
needed to assume that the second gauge boson was transverse. However, one
might have expected that this information would come out of the argument
rather than having to be put in. In QED, the Feynman diagrams predict
that, when an electron and a positron annihilate to form two photons, only
the physical transverse polarization states of the photons are produced. Am-
plitudes to produce other photon polarizations cancel each other to yield zero,
as we saw in Eq. (5.80). This statement is not true for the non-Abelian gauge
theory Feynman rules that we have worked with so far.

To state the discrepancy more concretely, we introduce some notation.
Let k* = (k° k) be a lightlike vector: k> = 0. Then there are two purely
spatial vectors orthogonal to k. If k is the momentum of a vector boson, these
are the two transverse polarizations. To construct an orthogonal basis, we
must include also the longitudinal polarization state, with polarization vector
parallel to k, and the timelike polarization state. It is most convenient to work
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with the two lightlike linear combinations of these states, with polarization
vectors parallel to the vectors k* and k* = (k% —k). These two unphysical
polarization states of a massless vector particle can be written as follows:

Kk o (K k
0= (mram) 0= (G m) o

We will refer to €t (k) and € (k) as the forward and backward lightlike po-
larization vectors. Denote the two transverse polarization states ¢; (k') for
1 = 1, 2. These four polarization vectors obey the orthogonality relatlons

el e;fT = —0;j, et el = -l =0, (16.19)
()2 =(e)2=0, € - =1 '
They also satisfy the completeness relation
G =€, 65 +ete* - Z Tel~, (16.20)

Using this notation, we can express concretely the gap in the argument
for the Ward identity. The Feynman diagrams of Fig. 16.2 apparently pre-
dict that there is a nonzero amplitude to produce a forward-polarized gauge
boson together with a backward-polarized gauge boson. For this case, we sub-
stitute €, *(k1) and €;* (k) for the two polarization vectors. Then the term
proportlonal to k{k}' in Eq. (16. 16) no longer vanishes; it now yields

iM = igt(ps )yt ulp ) k2 AV \/_|k | Y i
16.21
R c _ abcy.p |k1l ( )
= lgv(p+)7pt u(p) ﬁ ~gf*kY ol
3 k2|

Can we simply ignore this totally unphysical process? We are free to
do so in calculations of leading-order amplitudes, but the process will come
back to haunt us in loop diagrams. Recall from Section 7.3 how the optical
theorem (7.49) links the imaginary part of a loop diagram to the square of a
corresponding scattering amplitude, obtained by cutting the diagram across
the loop. If we apply the optical theorem to the diagram shown in Fig. 16.4,
we obtain a paradox. In the gauge boson loop on the left-hand side we can
replace the g,,, factors in the propagators with sums over all four polarization
vectors (16.20). The theorem thus implies that all four polarizations, even
the unphysical ones, should be included for the final-state gauge bosons on
the right-hand side. We are faced with a choice of allowing the production of
unphysical states or violating the optical theorem. A third alternative, equally
unattractive, would be to discard our expression (16.5) for the gauge boson
propagator. Clearly, we are missing some crucial element of the quantum-
mechanical structure of non-Abelian gauge theories.
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X

Figure 16.4. A paradox for the optical theorem in gauge theories.
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16.2 The Faddeev-Popov Lagrangian

It is not surprising that we have found a problem with our Feynman rules for
non-Abelian gauge theories, since we were not very careful in deriving them.
In particular, we did not actually derive expression (16.5) for the gauge field
propagator. In this section we will remedy this by going through a formal
derivation of this expression. We will find that, although expression (16.5) is
indeed correct, it is incomplete: It must be supplemented by additional rules
of a completely new type.

To define the functional integral for a theory with non-Abelian gauge
invariance, we will use the Faddeev-Popov method, as introduced in Section
9.4 to quantize the electromagnetic field. Our present discussion will follow
Section 9.4 closely. However, as we have by now come to expect, the case of
non-Abelian local symmetry brings with it new tricks and surprises.

First consider the quantization of the pure gauge theory, without fermions.
To derive the Feynman rules, we must define the functional integral

/DA exp [i/;m (—%(F;,,F)] : (16.22)

As in the Abelian case, the Lagrangian is unchanged along the infinite number
of directions in the space of field configurations corresponding to local gauge
transformations. To compute the functional integral we must factor out the
integrations along these directions, constraining the remaining integral to a
much smaller space.

As in electrodynamics, we will constrain the gauge directions by apply-
ing a gauge-fixing condition G(A) = 0 at each point z. Following Faddeev
and Popov, we can introduce this constraint by inserting into the functional
integral the identity (9.53):

M). (16.23)

1= /Da(w)é(G(A"‘)) det( e

Here A® is the gauge field A transformed through a finite gauge transformation
as in (15.47):

AX)ata = gia®t? (b 4 1 g Yottt (16.24)
" " gk
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In evaluating the determinant, the infinitesimal form of this transformation
will be more useful:

1 1
(A%)% = A% + s-]auaa + feeAbat = A% + EDua“, (16.25)

where D, is the covariant derivative (15.86) acting on a field in the adjoint
representation. Note that, as long as the gauge-fixing function G(A) is linear,
the functional derivative §G(A®)/dc is independent of a.

Since the Lagrangian is gauge invariant, we can replace A by A% in the
exponential of (16.22). Then, as in the Abelian case, we can interchange the
order of the functional integrals over A and «, and then change variables in
the inner integral from A to A’ = A%*. The transformation (16.24) looks more
complicated than in the Abelian case, but it is nothing more than a linear shift
of the A}, followed by a unitary rotation of the various components of the
symmetry multiplet A7(z) at each point. Both of these operations preserve

the measure
DA =[] ]] 44z (16.26)

T ap

Thus DA = DA’, under the integral over o. Just as in the Abelian case, the
integral over gauge motions o can be factored out of the functional integral
into an overall normalization, leaving us with

/ DAeSIAl = ( / Da) / DASIA 5(G(A)) det(éGé(ja)). (16.27)

This normalization factor cancels in the computation of correlation functions
of gauge-invariant operators.

From this point, the derivation of the gauge boson propagator proceeds as
for the photon propagator. We choose the generalized Lorentz gauge condition

G(A) = 9* A% (z) — w*(z), (16.28)

with a Gaussian weight for w® as in Eq. (9.56). The manipulations of Section
9.4 then lead to the class of gauge field propagators

a —t kuk, ab,—ik-(z—
(4@ A W) = / 2n) k2 +Z€(gw (1—5);—2)6% Fln, (16.29)

with a freely adjustable gauge parameter £. Our guess (16.5) corresponds to
the choice € = 1, called the Feynman-’t Hooft gauge.

So far, this whole derivation parallels the case of electrodynamics. Here,
however, there is one more nontrivial ingredient. In QED, the determinant in
Eq. (16.23) was independent of A, so this quantity could be treated as just
another contribution to the normalization factor. In the non-Abelian case this
is no longer true. Using the infinitesimal form (16.25) of the gauge transfor-
mation, we can evaluate

§G(A%)

1
= —oH 16.
o 9(9 D,, (16.30)
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acting on a field in the adjoint representation; this operator depends on A.
The functional determinant of (16.30) thus contributes new terms to the La-
grangian.

Faddeev and Popov chose to represent this determinant as a functional
integral over a new set of anticommuting fields belonging to the adjoint rep-
resentation:

det(%a"D”) - / DeDe exp [z / diz a(—aﬂDﬂ)c]. (16.31)

We derived this formal identity in Eq. (9.69), using our rules for fermionic
functional integrals. (The factor of 1/g is absorbed into the normalization of
the fields ¢ and ¢.) But to give the correct identity, ¢ and ¢ must be anticom-
muting fields that are scalars under Lorentz transformations. The quantum
excitations of these fields have the wrong relation between spin and statistics
to be physical particles. However, we can nevertheless treat these excitations
as additional particles in the computation of Feynman diagrams. These new
fields and their particle excitations are called Faddeev-Popov ghosts.

If we temporarily suppress our curiosity about the physical interpretation
of the ghosts, we can work out their Feynman rules. We write the ghost
Lagrangian more explicitly as

Lgnost = & (—026%¢ — go* f2*°Ab)c°. (16.32)

The first term gives a ghost propagator
v ab —ik-(z— y) 16.33
(@) = [t (16.33)

In a diagram, this propagator carries an arrow that shows the flow of ghost.
number, as in Fig. 16.5. In the interaction term of (16.32), the derivative
stands to the left of the gauge field; this implies that this derivative is evalu-
ated with the momentum coming out of the vertex along the ghost line. The
explicit Feynman rule is shown in Fig. 16.5. As with the other vertices we
have encountered, the coupling constant g that appears in this vertex must
be equal to the coupling constant g in the three-boson vertex in order to avoid
upsetting the Ward identities.

There are no further subtleties in the construction of the perturbation
theory for non-Abelian gauge theories. In particular, it is straightforward to
include fermions. The final Lagrangian, including all of the effects of Faddeev-
Popov gauge fixing, is

L = —%(F;fl,)2 — 512(8“AZ)2 + (i — m) + c*(—0"Dy%)c”. (16.34)
This Lagrangian leads to the propagator (16.29), and to the set of Feynman
rules for vertices shown in Figs. 16.1 and 16.5.

The argument we have just completed suffices to derive the Feynman
diagram expansion of any correlation function of gauge-invariant operators in
a non-Abelian gauge theory. At the end of Section 9.4, we explained that the
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Figure 16.5. Feynman rules for Faddeev-Popov ghosts.

Faddeev-Popov gauge-fixing technique also gives the correct gauge-invariant
expressions for S-matrix elements. This remains true in the non-Abelian case.
However, the argument given in Section 9.4 relied upon the cancellation in
QED of the emission probabilities for timelike and longitudinal photons, and
we have already found that this cancellation does not go through in the non-
Abelian case. In Section 16.4 we will construct a more sophisticated argument,
in which the Faddeev-Popov ghosts play an essential role, that will correctly
generalize our previous argument to non-Abelian gauge theories.

16.3 Ghosts and Unitarity

We might now ask whether the new ingredients that we found in the previous
section, the Faddeev-Popov ghosts, can resolve the paradox that we encoun-
tered at the end of Section 16.1. There we saw that the first diagram in
Fig. 16.6 contains a nonzero contribution to its imaginary part that does not
correspond to a possible final state with physical gauge boson polarizations.
We will now compute this contribution more carefully. We must then add a
new potential contribution from the ghosts, shown as the second diagram in
Fig. 16.6.

Let us call the amplitude for fermion-fermion annihilation into gauge
bosons, which we studied in Section 16.1,

iM* el (k1)e, (k2); (16.35)

the amplitude for two gauge bosons to convert to a fermion-antifermion pair
will be, correspondingly, M’. Then, following the Cutkosky rules of Sec-
tion 7.3, we find the imaginary part of the first diagram in Fig. 16.6 by
replacing the cut gauge boson propagator with momentum k; by

—~iguy - (—2mi)6(k?). (16.36)

Replacing both propagators gives two delta functions, turning the four-
dimensional integrals over the gauge boson momenta into three-dimensional
phase space integrals, as in the example in Section 7.3. We are thus left with
the expression

3 AM™)g,pgu0 (IM'P7), (16.37)
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a8 X

Figure 16.6. The diagram on the left, in which each circle represents the
sum of the three contributions of Fig. 16.2, gives a possible problem for the
optical theorem. The ghost diagram on the right cancels the anomalous terms.

integrated over the phase space of two massless particles. The factor 1/2 is
a symmetry factor for the Feynman diagram or, equivalently, a correction to
the phase space integral for identical particles.

Now introduce the representation (16.20) for g,, and g,,. The pieces that
involve only transverse polarizations correspond to the expected imaginary
parts necessary to satisfy the optical theorem. We need not consider these
terms further. The cross terms between physical and unphysical polarizations
vanish: We showed in Section 16.1 that

IMP T (ke )er ™ (ko) = 0. (16.38)
N

The same identity holds if M is replaced by M’, and if €7 is replaced by €.
Furthermore, the amplitude vanishes if both polarization vectors are forward
or both are backward. The only surviving terms are the cross terms between
forward and backward polarization, which yield the expression

F[EMP e ) (iMP7ede,) + (IMPY el e ) (iM P e, ed)],  (16.39)

integrated over phase space. We worked out the value of the first factor in
Eq. (16.21), and the contraction with M’ is very similar. Substituting these
results, expression (16.39) becomes

Lo, . c —t abe
3 (1990 Gy oK) (16.40)
x (im0 it vlet,) - G 9k + Ok ko)

Using the identity

0(p+)vu (k1 + k2) u(p) = 0(p4)vu(p + P+ ) u(p) =0, (16.41)

we see that the two terms added in (16.40) are equal.

Now add the contribution from the Faddeev-Popov ghosts. Using the
Feynman rules in Fig. 16.5, we can assemble the amplitude for fermion-
antifermion annihilation into a pair of ghosts:

. . c —1 a
iMeghost = 1g0(p+ )yt u(p) - (ky 1 k2)2 - gfeeRY. (16.42)
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This is precisely the first half of expression (16.40). Similarly, the amplitude
for the ghost-antighost pair to annihilate into fermions is equal to the second
half of (16.40). Finally, since Faddeev-Popov ghost fields anticommute, we
must supply a factor of —1 for each ghost loop. Thus the ghost contribution
exactly cancels the contribution of unphysical gauge boson polarizations to
the Cutkosky cut of the diagrams in Fig. 16.6.

This example illustrates a general physical interpretation of Faddeev-
Popov ghosts. These “particles” serve as negative degrees of freedom to cancel
the effects of the unphysical timelike and longitudinal polarization states of
the gauge bosons. The simplest effect of the ghosts can already be seen from
the determinants that appear when one integrates over the gauge and ghost
fields in the Faddeev-Popov Lagrangian (16.34). In a general dimension d,
working in Feynman gauge and at zero coupling for simplicity, the functional
integral over the gauge and ghost fields in (16.34) yields

(det[—0%)) "% . (det[-0%)) . (16.43)

The second determinant, which appears with a positive exponent because the
ghost fields anticommute, cancels the contribution to the first determinant of
two components of the field A,. This physical effect was illustrated, using the
language of Section 9.4, in Problem 9.2.

16.4 BRST Symmetry

To show how this cancellation extends to the complete interacting theory,
Becchi, Rouet, Stora, and Tyutin introduced as a beautiful formal tool a new
symmetry of the gauge-fixed Lagrangian (16.34), which involves the ghost in
an essential way.* This BRST symmetry has a continuous parameter that is
an anticommuting number. To write the symmetry in its simplest form, let

us rewrite the Faddeev-Popov Lagrangian by introducing a new (commuting)
scalar field B:

L= —%(F;},,)Q + (i) —m) + g(Ba)2 + BAOM A% +¢%(—0* D). (16.44)
The new field B® has a quadratic term without derivatives, so it is not a
normal propagating field. The functional integral over B* can be done by
completing the square in (16.44); this procedure brings us back precisely to
Eq. (16.34). A field of this type, which appears in the functional integral but
has no independent dynamics, is called an auziliary field.

*C. Becchi, A. Rouet, and R. Stora, Ann. Phys. 98, 287 (1976); I. V. Tyutin,
Lebedev Institute preprint (1975, unpublished); M. Z. Iofa and 1. V. Tyutin, Theor.
Math. Phys. 27, 316 (1976).
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Now let € be an infinitesimal anticommuting parameter, and consider the
following infinitesimal transformation of the fields in (16.44): '

6A}, = eD}°c”
6 = igec*t™y

6c® = —Lgefetechce (16.45)
6c* = eB®
6B* = 0.

The transformation of the fields Aj, and © is a local gauge transformation
whose parameter is proportional to the ghost field: a®(z) = gec®(z). Thus,
the first two terms of (16.44) are invariant to (16.45). The third term is triv-
ially invariant. The transformation of A, in the fourth term cancels the trans-
formation of ¢* in the last term. Finally, we must examine the transformation
of the last ingredient in (16.44):

§(D2c®) = Da6c® + g f"e6 Ab e
= 1968, (f?cbct) — LgPefobe fede Ab cdes (16.46)
+ .¢]€fabc(8#cb)cC e g2ef“b°fbdeAzcec°.
The two terms of order g manifestly cancel. By using the anticommuting

nature of the ghost fields and exchanging the names of indices, we can write
the remaining two terms as

—Leg? fobe fede (Achce + AZcecb + AZcbcd), (16.47)

which vanishes by the Jacobi identity (15.70). Apparently, the BRST trans-
formation (16.45) is a global symmetry of the gauge-fixed Lagrangian (16.44),
for any value of the gauge parameter .

The BRST transformation has one more remarkable feature, which is
a natural consequence of its anticommuting nature. Let Q¢ be the BRST
transformation of the field ¢: 6¢ = €Q¢. For example, QAj, = D;c®. Then,
for any field, the BRST variation of Q¢ vanishes:

Q*¢=0. (16.48)

The vanishing of (16.46) proves this identity for the second BRST variation
of the gauge field. For the ghost field,
Q?Ca — %ngabcfbdeCchCe, (1649)

which vanishes by the Jacobi identity. It is straightforward to check that the
second BRST variations of the other fields in (16.44) also vanish.
To describe the implications of identity (16.48), we now consider studying
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the effective theory (16.44) in the Hamiltonian picture after canonical quan-
tization. Because the Lagrangian has the continuous symmetry (16.45), the
theory will have a conserved current, and the integral of the time component
of this current will be a conserved charge @ that commutes with H. The ac-
tion of @ on field configurations will be just that described in the previous
paragraph. The relation (16.48) is equivalent to the operator identity

Q*=0. (16.50)

We say that the BRST operator @ is nilpotent.

A nilpotent operator that commutes with H divides the eigenstates of
H into three subspaces. Many eigenstates of H must be annihilated by @ so
that (16.50) can be satisfied. Let H; be the subspace of states that are not
annihilated by Q. Let Hs be the subspace of states of the form

[h2) = Q¢1), (16.51)

where |11) is in H;. According to (16.50), acting @ again on these states gives
zero. Finally, let Ho be the subspace of states |¢g) that satisfy Q |1o) = 0 but
that cannot be written in the form (16.51). The subspace H; is quite peculiar,
because any two states in this subspace have zero inner product:

(Y2a|th2p) = (Y1a| Q |t2p) = 0 (16.52)

by (16.50). By the same argument, the states of Hy have zero inner product
with the states of Hy.

These considerations seem extremely abstract, but they have a direct
physical correspondence.’ To see this, consider single-particle states of the
non-Abelian gauge theory in the limit of zero coupling. According to the
transformation (16.45), Q converts the forward component of A% to a ghost
field; equivalently, @ converts a single forward-polarized gauge boson to a
ghost. At ¢ = 0, @ annihilates the one-ghost state. At the same time, Q
converts the antighost state to a quantum of B®. To identify this state, note
that the Lagrangian (16.44) implies the classical field equation

£B® = —9H AL, ' (16.53)

Thus the quanta of the field B® are those quanta of Aj, with polarization
vectors such that ke, (k) # 0; these are the backward-polarized gauge bosons.

We have now seen that, among the single-particle states of the gauge
theory, forward gauge bosons and antighosts belong to H;, ghosts and back-
ward gauge bosons belong to Hz, and transverse gauge bosons belong to Hp.
More generally, it can be shown that asymptotic states containing ghosts,

tThe following argument is presented only at an intuitive level. For a rigorous
discussion, see T. Kugo and I. Ojima, Suppl. Prog. Theor. Phys. 66, 1 (1979).
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antighosts, or gauge bosons of unphysical polarization always belong to H; or
H2, while the asymptotic states in Hg are those with only transversely polar-
ized gauge bosons. The BRST operator thus gives a precise relation between
the unphysical gauge boson polarization states and the ghosts and antighosts
as positive and negative degrees of freedom.

In Section 9.4, we argued that the Faddeev-Popov prescription gave the
correct, gauge-invariant result for a certain subclass of S-matrix elements,
from which we could compute the physical scattering cross sections of trans-
versely polarized gauge bosons. These S-matrix elements were constructed
by putting operators in the far past to create transversely polarized gauge
bosons, adiabatically turning on the gauge coupling, adiabatically turning off
the gauge coupling, and then placing operators in the far future to annihi-
late gauge bosons with transverse polarization. However, this argument had a
possible problem: If the states created as collections of transversely polarized
bosons in the far past could evolve into states that contained gauge bosons of
other polarizations in the far future, the S-matrix projected between trans-
verse gauge boson states would not be unitary. This problem would also lead
to the technical problem discussed in the previous section: The Cutkosky cuts
of diagrams contributing to S-matrix elements would have nonzero contri-
butions from unphysical polarizations. In Section 9.4, we used an argument
special to the Abelian case to show that these problems do not arise in QED.
In the non-Abelian case, the removal of unphysical gauge boson polarizations
is more subtle, and we have seen that it involves the ghosts in an essential way.
To resolve this subtle problem, we apply the principle of BRST symmetry.

Let |A;tr) be an external state that contains no ghosts or antighosts and
only gauge bosons with transverse polarization. We wish to show that the
S-matrix projected onto such states is unitary:

Z (A;tr| ST|C;tr) (C;tr] S |B;tr) = (A;tr| 1|B;tr). (16.54)
C

As we explained above, the physical states |A;tr) belong to—and, in fact,
span—the subspace Hy defined by the BRST operator. In particular, all of
these states are annihilated by Q. Since Q commutes with the Hamiltonian,

the time evolution of any such state must also produce a state annihilated
by Q. Thus,

Q- S|A;tr) =0. (16.55)

This implies that the states S |A;tr) must be linear combinations of states in
‘Ho and H,. However, states in Hy have zero inner product with one another
and with states in H. Thus the inner product of any two states of the form
S |A;tr) comes only from the overlap of the components in Hy, so we can
write

(A;tr| ST S|Bjtr) =Y (A;tr| ST|C; tr) (C; tr| S |Bjtr) . (16.56)
C
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Since the full S-matrix is unitary, this relation implies that the restricted S-
matrix is also unitary, Eq. (16.54). In addition, (16.56) implies that the sum of
the Cutkosky cuts of diagrams contributing to the S-matrix in a given order
is equal to the sum of the cuts involving transverse gauge bosons only. Thus,
the cancellation between diagrams that produce pairs of gauge bosons with
unphysical polarizations and those that produce ghosts is a general property
that persists to all orders in perturbation theory.

Since the BRST transformation generates a continuous symmetry, it gen-
erates a set of Ward identities. These identities are similar in structure to the
Ward identities of the non-Abelian gauge symmetry, since the BRST sym-
metry contains a gauge transformation whose parameter is the ghost field.
However, the identities that follow from BRST symmetry are simpler. We
will not study the Ward identities of non-Abelian gauge theory further in
this book. However, when one discusses the renormalization of gauge theo-
ries at a higher level, the central identities among renormalization constants
that follow from the Ward identities are most easily derived using the BRST
symmetry.}

16.5 One-Loop Divergences of Non-Abelian
Gauge Theory

Now that we have discussed the general properties of tree-level diagrams in
non-Abelian gauge theories, we turn our attention to diagrams with loops. As
always in quantum field theory, some of these loop diagrams will diverge, and
we must take care to treat the divergent integrals correctly.

The Lagrangian of a non-Abelian gauge theory (15.39) contains no in-
teractions of dimension higher than 4. Therefore, by the general arguments
of Chapter 10, this Lagrangian is renormalizable, in the sense that the di-
vergences can be removed by a finite number of counterterms. However, in
non-Abelian gauge theories, as in QED, the gauge symmetries of the theory
imply stronger restrictions on the structure of the divergences. In QED, pro-
vided that we use a gauge-invariant regulator, there are only four possible
divergent coefficients, which are subtracted by the counterterms for the elec-
tromagnetic vertex (61), for the electron and photon field strength (62 and
83), and for the electron mass (,,). In particular, the possibility of a pho-
ton mass renormalization is excluded by gauge invariance. Furthermore, the
two counterterms 6; and 2 are equal to one another, and cancel in the eval-
uation of the electron-photon vertex function, as a consequence of the Ward
identity. Non-Abelian gauge symmetries imply similar restrictions on the di-
vergences of Feynman diagrams. In this section, we will illustrate some of
these restrictions through examples of one-loop diagrams.

An introduction to the Ward identities of the BRST symmetry is given by Taylor
(1976).
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Figure 16.7. Contributions to the gauge boson self-energy in order g2.

The Gauge Boson Self-Energy

In QED, the strongest constraints of gauge invariance come in the evaluation
of the photon self-energy. The Ward identity implies the relation

(16.57)

The only divergence possible is a logarithmically divergent contribution to
I1(g?). In non-Abelian gauge theories, (16.57) still holds, so the self-energy
again has the Lorentz structure (16.58). However, the cancellations that lead
to this structure are more complex. Here we will exhibit these cancellations
by computing the gauge boson self-energy in detail at the one-loop level. In
order to preserve gauge invariance, we will use dimensional regularization.

The contributions of order g2 to the gauge boson self-energy are shown
in Fig. 16.7. (In addition to these 1PI diagrams, there are three “tadpole”
diagrams; but these automatically vanish, as in QED, by the argument given
below Eq. (10.5).) The fermion loop diagram can be considered separately
from the other diagrams, since in principle we could include any number of .
fermions in the theory. We will see below that the contributions of the three
remaining diagrams interlock in an essential way.

Let us first calculate the fermion loop diagram. The Feynman rule for
the vertices in this diagram is identical to the QED Feynman rule, except
for the addition of a group matrix t* that acts on the fermion gauge group
indices. The value of this diagram is therefore the same as in QED, Eq. (7.90),
multiplied by a trace over group matrices:

v\/\Q/\/v = tr[t“tb] i(qég”” —q*q")

1

-9’ r(2-4)

X (477?‘“2 /d:c 8z(1—zx) (mZ = x(l—x2)q2)2~d/2'
0

The value of the trace is given by Eq. (15.78): tr[tt®] = C(r)§%. In a theory
with several species of fermions, there would be a diagram of this type for each
species. We will be mainly interested in the divergent part of this diagram,
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which is independent of the fermion mass. If there are ny species of fermions,
all in the same representation r, then the total contribution of fermion loop
diagrams takes the form

fer%i;)ns( J\/\Q,W )

—q?2 4
= i(ng“" _ q;thz)5111>((47€)2 . gnfC(T‘)F@—%) + .- )
Now consider the three diagrams from the pure gauge sector. The contri-
bution of these diagrams depends on the gauge; we will use Feynman—‘t Hooft
gauge, £ = 1.
Using the three-gauge-boson vertex from Fig. 16.1, we can write the first
of the three diagrams as

where the numerator structure is

(16.59)

N® = [g""(g = p)7 + ¢*° (20 + @)* + g°*(—p — 29)"]
x [6%5(p — @)o + gpo(—2p — @)* + 6" (p + 2q) ]
The overall factor of 1/2 is a symmetry factor. The contraction of structure
constants can be evaluated using Eq. (15.93): facd fbed = Cy(G)6%.

To simplify the expression further, combine denominators in the standard
way:

1

1
11 1 .
Po+ta? O/dz (I~ +z(p+ 92 O/dx(m—_A)_z’ (16.61)

where P = p+ zq and A = —z(1—z)g?. Then (16.60) can be rewritten

1
2 4
_ —g_ ab d P 1 my
0

The numerator structure can be simplified by eliminating p in favor of P,
discarding terms linear in P* (which integrate symmetrically to zero), and



524 Chapter 16  Quantization of Non-Abelian Gauge Theories

replacing P*PY with g#” P?/d (also by symmetry):

N® = —g"[(29+p)* + (¢ — p)*] — d(qg + 2p)*(¢ + 2p)”
+[(29+p)*(g+2p)" + (¢ — P)*(29 + )" — (¢ + 2p)* (¢ — p)”
+ (= v)]
— —g"P?.6(1-1) — grvg? [(2—2)? + (1+2)?]
+ g*q” [(2—d)(1—22)? + 2(1+z)(2—z)].
The final step in the evaluation is to Wick-rotate and apply the integration
formulae (7.85) and (7.86). This brings the diagram into the following form:

1
- 2
_ tg ab 1
v\/\{}«\/\, _—(47r)d/2 CQ(G)6 dx —A2_d/2
0

x (r(1-4) ¢ ¢ [3(d-1)z(1-2)] (16.62)
+T(2-9) 0 ¢* [3(2-2)* + 3(1+2)?]
—T(2-4) ¢*¢” [(1-9)(1-20) + (142) (2-2)] ).

Next consider the diagram with a four-gauge-boson vertex. Using the
vertex Feynman rule in Fig. 16.1, we find

d,o c,p .
-3/ TD L e et ig?)
. by 2 ) (2m)* p?
) ? B x [fabefcde(gupgua — gufngP) (16-63)

+ facefbde (guugpo _ gpagup)
+ fadefbce (g;wgpa _ gupgua)] .

The factor 1/2 in the first line is a symmetry factor. The first combination of
structure constants in the vertex factor vanishes by antisymmetry; the second
and third can be reduced by the use of Eq. (15.93). We then find simply

4
Agzw ) —QQCQ(G)‘W/ (;73))41% g (d=1). (16.64)

In dimensional regularization, the integral over p gives a pole at d = 2 but
yields zero as d — 4. We could simply discard this diagram and trust that the
pole at d = 2 is canceled by the other two diagrams. It is instructive, however,
and no more difficult, to demonstrate the cancellation explicitly. To do so, we
can force the integral to look like that of the previous diagram, multiplying the
integrand by 1 in the form (¢ + p)?/(q + p)®. We then combine denominators
as before, and eliminate p in favor of the shifted variable P = p + xq. After
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dropping the term linear in P, we obtain

1
4
g;iv = RCy(C)5 / dz / —(‘;FI; oy S A0 (d-DIPH+ (-2
0

We can now Wick-rotate and integrate over P to obtain

1

Zg ab 1
Aizw GO [
0

x (-T(1-2) g"q? [d(d~1)a(1-a)
- T@-§) ¢ ¢ [([d-1)(1-2)%]).

Expressions (16.62) and (16.65), by themselves, do not add to any rea-
sonable value: The pole at d = 2 does not cancel, and the sum does not have
a transverse Lorentz structure. To bring the gauge boson self-energy into its
desired form, we must include the diagram with a ghost loop According to
the rules shown in Fig. 16.5, this diagram is

(16.65)

, d
(1/'1-’?9 b d*p
QR v o i 7 ac cbd v
o, 6 )/ @i g P (16.66)
C

There is no symmetry factor in this case, but there is a factor of —1 because
the ghost fields anticommute. The ghost diagram can be simplified using the
same set of tricks that we applied to the previous two: combine denominators,
shift the integral to P, Wick-rotate, and integrate over P using dimensional
regularization. The result is

S g* 1
; A ab
M .... W\, (4 )d/Z CQ(G)(S dx —_Z—d/2

16.67
x (-r(1-2)g"¢? [z(1-2)] Heen
+T(2-4) ¢ [r(1-2))).

Now we are ready to put these results together. In the sum of the three
diagrams, the coefficient of I‘(l—%)g”"q‘"m(l—w) is

1Bd—3-d*+d-1)=(1-%)(d-2). (16.68)

The first factor cancels the pole of the gamma function at d = 2. Thus, the
sum of the three diagrams has no quadratic divergence and no gauge boson
mass renormalization. Notice that the ghost diagram plays an essential role
in this cancellation.
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After the pole at d = 2 is canceled, I‘(l—%) becomes 1"(2—%). This term
therefore combines with the others that are proportional to T’ (2—%)g“”q2, to
give a total coefficient of

(d—2)z(1-z) + 2(2—2)* + L (1+2)? — (d—-1)(1-z)%. (16.69)

Since the best way to simplify this expression is not obvious, let us put it
aside and work first with the coefficient of I'(2—2)g*q":

—(1-9)(1-22)? — (1+2)(2—-2) + z(1-2) = —(1-%)(1-22)? -

If the total self-energy is to be proportional to (g#*q* — ¢*q"), it must be
possible to reduce expression (16.69) to this same form (times —1). To do so,
note that A is symmetric with respect to z « (1—z), and therefore we can
substitute (1—z) for z in any term of the numerator. In particular, terms that
are linear in x can be transformed as follows:

T — %x+ ;(1-z) = 3.

In the end, the sum of the three pure-gauge diagrams simplifies to

1
(4 )d/z C2(G)6ab/dm %z_d/?)(g;qu ¢“¢")[(1-2)(1-2z)% + 2]. (16.70)
0

This expression is manifestly transverse, as required by the Ward identity of
the non-Abelian gauge theory. For future reference, we record the ultraviolet
divergent part of (16.70):

A B

iR — ghgryset (=5 (-9 —4)+--)
=1i(q°g" — ¢"¢")é ((47T)2 3)C2(GII(2=3) +--).

As we noted above, the result (16.70) depends on the gauge used in the cal-
culation. In any gauge, the boson self-energy is transverse and free of quadratic
divergences. However, the coefficient of the transverse Lorentz structure may
depend on £. It turns out that, for a general value of &, the coefficient of the
ultraviolet divergence in (16.71) is modified according to

_g o (% - g) (16.72)

The fact that the boson self-energy depends on the gauge does not contradict
the general theorem that S-matrix elements are independent of £. The full set
of one-loop corrections to a gauge theory S-matrix element always involves
a number of different radiative corrections to vertices and propagators; the
gauge dependence cancels in an intricate fashion among these various terms.

(16.71)
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The 8 Function

The simplest calculation that involves a gauge-invariant combination of radia-
tive corrections is the computation of the leading term of the Callan-Symanzik
(3 function of a non-Abelian gauge theory. The invariance of the leading term
of  could be argued intuitively, by saying that the coupling constant of the
gauge theory should not evolve to large values in one scheme of calculation
while it stays small in another scheme. In Section 17.2 we will demonstrate
this result more cleanly by showing that the leading coefficient of the 8 func-
tion can be extracted from a physical cross section and so must be gauge
independent. (Surprisingly, this conclusion actually applies to the first two
coefficients of the 8 function, written as a power series in g.)

Recall from Section 12.2 that the @ function gives the rate at which the
renormalized coupling constant changes as the renormalization scale M is
increased. Since Green’s functions depend on M through the counterterms
that subtract ultraviolet divergences, # can be computed from the counter-
terms that enter an appropriately chosen Green’s function. For example, in
Eq. (12.58), we saw that the 8 function of QED can be computed from the
counterterms for the electron-photon vertex, the electron self-energy, and the
photon self-energy. The same derivation goes through in the case of a non-
Abelian gauge theory. Thus, to lowest order,

MngMé%Qﬁy+%+%&% (16.73)
with the conventions for the counterterm vertices shown in Fig. 16.8. In QED,
the first two terms cancel by the Ward identity, so 3 depends only on 3. In the
non-Abelian case, all three terms contribute. The most difficult to compute
is 63, but we have nearly done so already by computing the gauge-boson self-
energy diagrams. Let us now complete this calculation of the 8 function of
non-Abelian gauge theory.

In order for the counterterm §3 to cancel the divergence of Egs. (16.59)
and (16.71), it must be of the form

2 T(©2-9) 15 4

= s e [2C(@) — gniC)]. s
where M is the renormalization scale. Depending on the precise renormal-
ization conditions used, there may be additional finite contributions to 43,
but these do not contribute to the 8 function (to one-loop order). Similarly,
the finite parts of 6 and 6; will depend on the details of the renormaliza-
tion scheme. However, as we saw in Section 12.2, the one-loop contribution
to the [ function is the same in any scheme in which amplitudes are renor-
malized at a point where all momentum invariants are of the same order M?2.
In dimensional regularization, a logarithmic divergence always takes the form
r2- %) /A%~4/2 where A is some combination of momentum invariants. Thus,
to compute the 3 function, we can simply set A = M? in such expressions.
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AR = (kg — kMR )67
—RQ— = Py
= igty"éq

Figure 16.8. Counterterms needed for computing fermion interactions in a
non-Abelian gauge theory.

e

Figure 16.9. Diagrams whose divergences are subtracted by the counter-
terms 2 and 67.

To complete the computation of the @ function, we must compute b2
and §; to the same level of approximation. The fermion self-energy coun-
terterm d, cancels the divergence proportional to ¥ in the first diagram of
Fig. 16.9. In Feynman-‘t Hooft gauge, the value of this diagram is

Since the divergence in the field strength renormalization is independent of
the fermion mass, we have simplified (16.75) by setting the mass to zero. The
product of group matrices equals the quadratic Casimir operator, by defini-
tion (15.92). The Dirac matrix structure can be reduced using a contraction
identity (7.89). The rest of the calculation follows the same steps as for the
boson self-energy diagrams:

d* +
7T =sanay [

1
P (1-=z
= ¢°Cy(r)(d—2) /dz/(2ﬂ)4ﬁ

g2 r2-9%)
( )d/2C2(r k/dzl —z)(d— 2)A2 22



16.5 One-Loop Divergences of Non-Abelian Gauge Theory 529

;2
ig d
= T r2-%)+---. .
(4n)? KCo(r)T(2—5) + (16.76)

(Here P = p + zk and A = —z(1—-z)k2.)

The divergent part of this expression must be canceled by the second
counterterm diagram of Fig. 16.8. Thus, if the renormalization scale is M, the
counterterm must be

¢ T(@2-9)

%= "l (anEare

- Co(r), (16.77)

plus finite terms. We note that, like &3, > depends on the gauge; for example,
&2 has no one-loop divergence in Landau gauge (£ = 0).

To determine 6;, we must compute the second and third diagrams of
Fig. 16.9. The second diagram, computed in Feynman-‘t Hooft gauge and for
massless fermions, is

U
d'p V(@K (Pt K)y
! = [ =5 g3 thtt £, (16.78
PERNDHE [ wr kPR T
k Y, k
p
The gauge group matrices can be simplified according to
tP17tb = PP + Pt 1Y)
=C 4+ ~tb abctc

2(r) it” f (16.79)

— Cg(?“)ta + %ifabc . ibedtd
= [Ca(r) — 5C2(G)]e°.

In the third line we have used the antisymmetry of f2%¢ to rewrite the matrix
product as a commutator; in the last line we have used Eq: (15.93).

The diagrams computed earlier in this section had positive superficial
degrees of divergence, so we needed to extract their logarithmic divergences
carefully. The integral in (16.78), however, is superficially logarithmically di-
vergent, and so the coeflicient of this divergence can be extracted easily by
considering the limit in which the integration variable p is much greater than
any external momentum. In this limit, the diagram is estimated as follows:

d4 v y
~ BP[Ca(r) — 3C2(G)]t® (2:)74 ; Z?ZZ?; , (16.80)

If we replace p?p° by ¢”?p?/d in the numerator of (16.80), this expression
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simplifies easily:

1 dp 1
#ICa(r) - Ca(@)ee(2-df " [ ;
(16.81)
i 3
(a2
This estimate gives the correct coefficient of the divergent term. It drops
completely the finite terms in the vertex function, but we do not need these
to compute the 8 function.

The third diagram of Fig. 16.9 can be analyzed in the same way. Its value,

in Feynman-'t Hooft gauge and for massless fermions, is

= [Ca(r) — FCa(G)t*y* (T(2—2) +--).

d ' L
= /‘(2—7:));(i9’7utb)g2‘{(ig’7pt )(k’ Z) 2 (k— ;)
x gfabe (9" (2K'—k—p)? + " (—k'—k+2p)*
+ gPH(2k—k' —p)”]. (16.82)

The gauge matrix product can be reduced as follows:

Lo(G)ee.
2
Again we can determine the logarithmic divergence of this diagram by neglect-
ing all external momenta in comparison with p. A straightforward calculation

then yields

fabctbtc — %fabc . ibedtd —

3 4 v v v
g o [ d°p gt’p? — 2g"Pp* + gP*p
5 Cy(G)t /(27r)4% o ()3
3 4
g ol [dp 1 _
~ S C(G) @ R 5 [V — 2P + 107"
. 3 3
A GGt (D= +-). (16.83)

"~ (@)

In the second line we have again replaced p?p°® with g#?p?/d.

The sum of the divergences in results (16.81) and (16.83) must be canceled
by the third counterterm diagram in Fig 16.8. With a renormalization scale
of M, we find

¢ T(2-9
(477)2 (M2)2—d/2

Notice that 6; is not equal to o, as would have been true in the Abelian case;
here 6; has an extra term, proportional to Ca(G).

6 = — [Ca(r) + Ca2(G)]. (16.84)
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We are now ready to compute the 8 function. Plugging the three coun-
terterms (16.74), (16.77), and (16.84) into our formula (16.73), we find

3
8(9) = (~2) i3 (Ca(r) + Co(©)) = Calr) + 3 (562(6) = 5, C)) |

that is,

= -2 [Ny - dnse 16.85
Ble) = ~ (s | 3 C2(G) — 3nsC(r)]. (16.85)
Notice that, at least for small values of n¢, the 8 function is negative and so
non-Abelian gauge theories are asymptotically free. This is a result of excep-
tional physical importance, first discovered by ’t Hooft, Politzer, and Gross
and Wilczek.* We will discuss the physical interpretation of this result fur-
ther in Section 16.7, and in the next several chapters. However, for the rest
of this section, we will resist the temptation to pursue the physics and in-
stead complete our technical analysis of the divergences of non-Abelian gauge
theories.

Relations among Counterterms

In the analysis just completed, we computed the 8 function of a non-Abelian
gauge theory from the divergences of the fermion vertex and field strength
renormalizations. One might visualize that we were computing the running
of the coupling constant at the fermion-gauge boson vertex. Alternatively,
we could have studied the divergences of the three-gauge-boson vertex or the
four-gauge-boson vertex, and thus computed the running of these coupling
constants. However, we saw already in Section 16.1 that non-Abelian gauge
invariance knits together these separate coupling constants and requires their
equality. Thus we might expect that these different calculations should pro-
duce the same value of the § function.

To clarify this issue, let us carefully enumerate all the counterterms that
appear in a non-Abelian gauge theory. We start from the Lagrangian (16.34),
regarded as a combination of bare fields and a bare coupling constant. In the
following discussion, we denote bare quantities by the subscript 0. Then,

1 7 aq2
L= =7(0u45, — 0,45,) + o (i — mo)yo — £50%¢h
+ 9o AR, Yoy t o — go f** (0. AG, ) AL A (16.86)
1 C, v -a rabc
- Zg?)(f“”ASMABu)(f“dAo"AE‘f ) — go& f**°0" Af,c5.

We choose & = oo for simplicity. We now rescale the fields to the renormalized
field strengths by extracting the factors Z, Z3, Z3 for the fermions, gauge

*G. ’t Hooft, unpublished; H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973); D. J.
Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).
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bosons, and ghosts, and shift the coupling to the renormalized coupling g.
The Lagrangian then takes the form

L= Lren + Ec.t.a

where Le, is the Lagrangian (16.34)7 and L. takes the form

1 — . c-a a
Loy = =783(0u A% — 0, A7) + (1620 — Bm) ¥ — 850 >c

+ g8 Ay — g8y fO (DAY AL AT (16.87)
— LB AL AL) (AL AD) — ot foteon b,
with the counterterms defined by
by =251, b3 =2Z3—1, 65 =275 —1, Om = Zamgy — m,

o =L2525) 2 -1, 6 =Lz,
g 9
2
8% = é;%(zg)? _1, 8 = %zg(zg)l/2 ~1L (16.88)

Notice that these eight counterterms depend on five underlying parameters;
thus, there are three relations among them. The situation is very similar to
that for the scalar theories with spontaneously broken symmetry that we stud-
ied in Chapter 11. The underlying symmetry of the theory—here, local gauge
invariance—implies relations among the divergent amplitudes of the theory
and among the counterterms required to cancel them. In the present case, a
set of five renormalization conditions uniquely specifies all of the counterterms
in a way that removes all divergences from the theory.

This program is especially simple at one-loop order. In this case we can
expand ¢go/g and the various Z factors about 1, keeping only the leading-
order contribution to each counterterm. Then the three relations among the
counterterms can be written

61— 82 = 819 — 83 = (8719 — 83) = 65 — 65. (16.89)

It is instructive to check explicitly that the values of 639, 679, and & de-
termined from (16.89) indeed remove the divergences of the corresponding
vertex diagrams; this is the subject of Problem 16.3. Using relations (16.89),
it is easy to show that the one-loop calculation of the 3 function will yield the
same value, whichever gauge boson vertex is used in the computation. More
generally, consider a non-Abelian gauge theory with many different species
of particles, bosons and fermions, which couple to the gauge field. Then, to
one-loop order, the quantity
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where 6! is the vertex counterterm for species i and &, is the corresponding
field strength counterterm, takes a universal value. This value is gauge de-
pendent, so that the gauge dependence of its divergent part cancels the gauge
dependence of 63 in the computation of the 8 function.

In our discussion of the counterterms of QED at the end of Section 10.3,
we remarked that the relation between §; and 6, insured that all electrically
charged species see a common universal value of the coupling constant e. In
non-Abelian gauge theories, the relations (16.89) and their higher-loop gener-
alizations preserve the universality of the non-Abelian couplings. In QED, we
were able to obtain an even stronger relation, §; = 05 or Z; = Z3, from the ab-
solute normalization of the matrix elements of the vector current. However, in
non-Abelian gauge theories, the corresponding vector current j#® = by %)
transforms under local gauge transformations in the adjoint representation.
Thus the Faddeev-Popov prescription cannot be used to compute matrix el-
ements of this current unambiguously, and thus the normalization of these
matrix elements is not preserved by the perturbation theory.

16.6 Asymptotic Freedom: The Background
Field Method

In the previous section, we saw that the § function of a non-Abelian gauge
theory with a sufficiently small number of fermions is negative. This result
is important enough that it is worthwhile to derive it twice. The preceding
derivation was straightforward but not very illuminating. In this section we
give a second derivation of the same result, which is more abstract but much
cleaner and more transparent.

The method of this section reflects the spirit of Wilson’s idea of inte-
grating out the high-momentum degrees of freedom, while taking proper care
to preserve gauge invariance. We will compute the effective action of a non-
Abelian gauge theory for a fixed, slowly varying, classical background gauge
field A‘;(m) By adopting a canonical normalization of this field, we can in-
terpret the coefficient of the effective action as a running coupling constant.
This method is analogous to Polyakov’s method for computing the 8 function
of the nonlinear sigma model, presented in Section 13.3.

Background Field Perturbation Theory

To set up the computation, rescale the gauge field gAj, — Aj. In this nor-
malization, the gauge coupling is removed from the covariant derivative and
moved to the coefficient of the gauge field kinetic energy term. We thus start
from the Lagrangian

1

L= _Zg_Q(FSV)Z + &(Z‘D)wa (1690)
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with
D, =08, —iAjt?,

Fe =9, A% 8, A% abcAbAc (1691)
/w_#v_l’u+f Tl

and the fermion mass set to zero for simplicity. The transformation laws of
A7}, and 9 are also independent of the coupling constant:

§A% = 8,0 + f**Abas, &Y =iat™y. (16.92)

On the other hand, the coupling constant g will appear in the gauge field
propagator.

Next, split the gauge field into a classical background field and a fluctu-
ating quantum field:

Al — AL+ AL (16.93)
We will treat the classical part Aj, as a fixed field configuration and the
fluctuating part A7, as the integration variable of the functional integral. From

here on, we will use the symbol D, to denote the covariant derivative with
respect to the background field: D, = 8, — iA4}t*. Then

Y(APYY — PiD)Y + AuyH e, (16.94)
The Yang-Mills field strength decomposes as follows:
F, — 0,A% — 9, A% + f**° AP AS
+ 0 AL — B, A% + f(ALAC — ALAC) + feALAL (16.95)
= FS, + D A2 — DA% + foreAb AC, |
where, in the last line, F}j, is the field strength of the classical field, and D,
is the covariant derivative in the adjoint representation, Eq. (15.86). Notice
that, both in (16.94) and in (16.95), the derivative 0, appears only as a part
of the covariant derivative with respect to the background field.
If the background field Aj, is regarded as fixed, the Lagrangian has a local
gauge symmetry implemented by transformations on AZ:

A% — A% + Dpa® + f A0, (16.96)

To define the functional integral, we must gauge-fix using the Faddeev-Popov
procedure. We choose a gauge-fixing condition that is covariant with respect
to the background gauge field:

G*(A) = D*A2 — w°, (16.97)

instead of (16.28). The Faddeev-Popov determinant involves the variation of
this operator with respect to the gauge transformation (16.96). As in Section
16.2, we can promote the gauge-fixing term to the exponent, to quantize the
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theory in the background field analogue of Feynman-'t Hooft gauge. Then the
gauge-fixed Lagrangian is

1
442
+ P(D + AGyHt ) — e*(D?)*c — *D*(f*° A} ).

The Lagrangian (16.98) is gauge-fixed, but it is invariant under a local
symmetry that transforms both A}, and the background field Aj:

a a a abc C 2 1 a
Lep = ——5 (F2, + DA% — DA% « fo2eAb AS)? — 2—92(D"A,1)2

(16.98)

A% A% 4+ D,B°

A° A® — abc bAc ‘ .
p A ST A (16.99)
Y =Y +iB%%

c® — % — fabCﬂbcc.

Under this transformation, .AZ transforms as a matter field in the adjoint
representation, while Aj, carries the part of the local gauge transformation
proportional to 0,8%. To prove that (16.99) is a symmetry of (16.98), we need
only note that (16.98) is globally invariant, and that Af appears in (16.98)
only as a part of the covariant derivative and the field strength. The trans-
formation (16.99) is also a symmetry of the functional measure. Thus, if we
functionally integrate over A7, 9, and c* to compute the effective action, the
result must be invariant to local gauge transformations of Aj,. This observa-
tion greatly simplifies the analysis of the effective action.

One-Loop Correction to the Effective Action

Let us now compute the effective action, using the method of Section 11.4. To
compute I‘[Afj] to one-loop order, we drop terms linear in the fluctuating field
Aj, and then integrate over the terms quadratic in A}, and the fermion and
ghost fields. This produces functional determinants, which we can evaluate
into an appropriate form for an effective action.

To carry out this program, we must work out the terms in (16.98)

quadratic in each of the various fields. The terms quadratic in A}, are:
1 v
L= —@{%(Du.A‘j — D,,AZ)2 + Fe# fabCAZAﬁ + (D“AZ)Z}. (16.100)
After integrating by parts, we can rewrite this as

1 c
['.A — _ﬁ{AZ[_(D2)abguu + (DuDu)ab _ (D/J,Dv)ab]Ag —-AzfachbuVAy}-

(16.101)
The term in brackets contains the commutator of covariant derivatives. This
can be simplified using (15.48); the result combines with the last term to give

1
»C.A — _ng{AZ[‘(Dz)acg‘w _ 2fachbp,u]AlC/}‘ (16102)
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The first term is part of a covariant d’Alembertian operator. The second term
seems quite special, but we can put it into a form that will be convenient later
as follows: First, we recognize that F| fju is contracted with a group generator
in the adjoint representation. Next, we introduce the matrix (3.18) that is the
generator of Lorentz transformations on 4-vectors:

(T )ap = (65685 — 62.6%). (16.103)

With these replacements, we can write (16.102) in the form

1 v
La=—55 {AL-(DY g™ + 23 FL T V() “IAT). (16104
The object in brackets can be considered as a generalized d’Alembertian for
fluctuations on the background field.
Next, we reduce the quadratic terms in fermion fields in a similar way.
The quadratic Lagrangian for the fermion field is

Ly = P(iP)p. (16.105)

Integrating over the fermion fields, we find the determinant of the operator
(iDD). This is conveniently expressed as the square root of the determinant of
the operator

(iP)? = —4*4"D,D,
= (-39} - $D" 7DD, (16.106)
v v
=-D?+ 21(1[7“,7 1) DyuDy.

In the last line, the commutator of Dirac matrices forms the generator of
Lorentz transformations in the spinor representation, S#* (3.23). Since this
object is antisymmetric in its indices, the product D,D, that is contracted
with it can be replaced by half of their commutator. Then (16.106) takes the
form

(iP)? = —D* + 2(3F},S7)t°, (16.107)

where t® is now given in the representation of the fermions. This is just the

d’Alembertian in (16.104), rewritten for the new set of spin and gauge quan-

tum numbers. If the theory contains ny species of fermions, the fermionic

functional integral gives the determinant of (16.107) raised to the power ny /2.
The quadratic term in ghosts is simply

L. = c[—(D?)®]c? (16.108)

This contains the same d’Alembertian operator written for the case of spin
Zero.

To summarize all of these results, we define the general covariant back-
ground-field d’Alembertian as

A =-D*+2(3F,T%)", (16.109)
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acting on a field of representation r and spin j. The square of the covariant
derivative gives the normal, convective, minimal coupling of the particle de-
scribed by A, ; to the gauge field. The additional term is a magnetic moment
interaction with the gauge field, whose strength corresponds to a g-factor
g = 2. Using this general expression, we can write the effective action for the
classical fields Af, to one-loop order, as

e TIAl — /DA’D’;&DC exp [i/d4:12 (Lep + ['c,t‘)]

= exp [i/d‘*m(—%g,_,(Fﬁ,,)z + cc,t_)] (16.110)

(det Ag1) " ?(det Ay ) TP (det Ago) T

where L. ;. is the counterterm Lagrangian and the three determinants are the
results of evaluating the gauge field, fermion, and ghost functional integrals.
Additional loop corrections to the effective action are suppressed by another
factor of g2.

Since each integral contributing to (16.110) is invariant to (16.99), each
determinant will be a gauge-invariant functional of Af. If we expand the
determinants in powers of the background field, we should then find a series
of terms that begins

. 1
logdet A, ; = z/d4m (ZCTY]-(F;ZLV)2 + .- -), (16.111)
where the succeeding terms contain higher-dimension gauge-invariant opera-
tors. The coefficient C, ; can depend on the representation r and the spin j.
This first term of the expansion modifies the zeroth-order effective action ac-
cording to

1 , 171 1 ny o2

2 Fl = 4 (? +5C61 — Coo0- 7CT,I/Q)(RW) . (16.112)
The factors C, ; are dimensionless but, since they arise from a one-loop com-
putation, we should expect that they are logarithmically divergent:

A2
C,; =cpjlog =) + ey (16.113)

where k is a momentum characterizing the variation of the background field.
The counterterm 63 removes the divergence; if we impose a renormalization
condition at the scale M, then the addition of (16.113) and its counterterm
gives the result (16.112) with the replacement

2

M
C,;=cjlog = 4o (16.114)
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Then the original fixed coupling constant in the effective action is replaced by
a running coupling constant

1 1 1 ny M?
2Kk g2 + (ECGJ — €0~ 7%,1/2) log FER (16.115)
or
g2
g*(k*) = (16.116)

1—(3ce1 —cgo— criy2)g®logk?/M?

By comparing this form to Eq. (12.88), we see that this running coupling con-
stant is the solution to the renormalization group equation for the 3 function

1 n
Blg) = (500,1 —CG,0 — écr,1/2)g3- (16.117)

Thus, by calculating the ¢, ;, we can directly obtain the leading coefficient of
the B function.
Computation of the Functional Determinants

To compute c,;, we must work out the first term in the expansion of the
determinant in powers of the external field. To expand the determinant, we
proceed as in the example in Section 9.5. Write

Drj= -8+ A0 4 A® 4 A, (16.118)

where
1 : aza aja
AW = j[or A%t® + A%t O]

2) __ papga Abgb
AR = Aorge ALt (16.119)
AT — 2(%F§U]pa)tb.

The pieces A and A7) contain one power of the external field; A(?) contains
two powers of Aj. Treating these terms as perturbations, we write

logdet A, ; = logdet[-9% + (A®) + A®@ 1 A))]
= log det[—8?%] + log det[1 + (—0%) "1 (AM) + A@ 4 AD)]
= log det[—8?] + trlog[1 + (—8%)"HAM + A® + A

= log det[—8%] + tr[(=8%) "} (AW + AP L AW 4 ...
(16.120)
The first term of the right in (16.120) is an irrelevant constant. The terms
in this expansion that are linear in Aj, vanish by gauge invariance (or, more
explicitly, because tr[t®] = 0). The quadratic terms in A, must organize them-
selves into the structure of (16.111), plus terms with higher derivatives.
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A+ Q+ O
Figure 16.10. Terms quadratic in the external field in the expansion of
log det A ;. The special vertex arises from the F*? J,, coupling.

The terms in (16.111) quadratic in Af can be written in Fourier space as

logdet Ay = 3 [ 552 Tk g (k)AL (k) (K2g™ — Kk) - [C; + O(R)].

(2m)i e '
(16.121)
We will now compute these terms explicitly from (16.120) and bring them
into the form of (16.121). The terms with two powers of Aj, in the expan-
sion (16.120) are those with one power of A or two powers of A1) or A(T),
Further, terms linear in A(7) are proportional to tr[J*°] = 0, so the cross
term between these two structures vanishes. The three remaining contribu-
tions correspond to the Feynman diagrams shown in Fig. 16.10.
The term involving two powers of A™) is

~3r[(-0%) T AD (=8%) T AD] = (D

d*k dp 1 1
=_1 A2 A / — (2 ppa__~ (9 Vb
} il [ e o+ 0 o 2
(16.122)
where the trace is now simply a trace over gauge and spin indices. The factor

1/2 comes from the expansion of the logarithm. The term involving one power
of A@ is

tr[(=0%)1A®)] = ﬁQ«

d*k dip 1
= AcAb / tr — g t°t".
(2m) @emt " p2d

As Fig. 16.10 suggests, these two contributions are precisely proportional to
the contribution of a scalar particle to the QED vacuum polarization, times
the factor

(16.123)

tr[t?t®] = C(r)d(4)6%, (16.124)

where d(j) is the number of spin components. The values of the diagrams can
be worked out using the methods of the previous section (or simply recalled
from Problem 9.1). One finds that the two diagrams together sum up to the
gauge-invariant form (16.121), to give

4 r)d(j
G icnatiwe ek [(Gamre-g +- . ne1)
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The term involving two powers of A7) is

—3 tr[(=0°) AV (=) AP = T

d4 d 4 1 . N
—%/(2 )4 A/.LAV/(27T) 2(22kpgyaj )t ( +k)2(_2lkaguﬂj ﬂ)té.

, (16.126)
To evaluate this, define C(j) as the trace over spin indices
e[ 777 T = (97977 — g*°97*)C (). (16.127)
It is straightforward to work out from the explicit expressions that
0 scalars;
C(j) =< 1 Dirac spinors; (16.128)
2 4-vectors.
Then (16.126) can be evaluated as
d*k d'p 1 1
——A%A kg — kMEY)AC(r)C(j
il [ o 14C()CG)
d*k 4C(r)C(j)
= [ A% (—k)Ab 200 RV - o d
2/(%)m( DAL — ko) (i D)+ )
(16.129)

Adding (16.125) and (16.129), we find that the coefficient C, ; in (16.111)
is given by

Crs = e [40) —4CH]CEITC-H. (16130
Thus,
rs = oz [4d3) — 40, (16.131)

or explicitly,
r) +1/3  scalars;
i = gz —8/3  Dirac spinors; (16.132)
(4r) —20/3 4-vectors.

Notice that, whenever the magnetic moment term is nonzero, it dominates,
and that its coefficient is opposite in sign from the convective term.
Inserting the values from (16.132) into (16.117), we find

3
B(g) = _@97)2(%02((;) - Ing0). (16.133)

We thus confirm the conclusion of the previous section, that non-Abelian
gauge theories with sufficiently few fermions are asymptotically free.
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16.7 Asymptotic Freedom: A Qualitative Explanation

In the previous two sections’ we twice calculated the 3 function in non-Abelian
gauge theory:
3

__ 9 (E
Here ny is the number of fermion species in representation r, C(r) is the con-
stant appearing in the orthogonality relation (15.78) for the representation
matrices, and C2(G) is the quadratic Casimir operator of the adjoint repre-
sentation of the group, defined in Eq. (15.92). In an SU(N) gauge theory with
fermions in the fundamental representation, this result becomes '

3

0o (G) — gnfC(r)). (16.134)

Blg) = —(4‘(;)2 (%N - gnf) (16.135)

The overall minus sign implies that, for sufficiently small ns, non-Abelian
gauge theories are asymptotically free. In this case the running coupling con-
stant tends to zero at large momenta, according to Eq. (12.92):

2

g (k) g

=7 S " (16.136)
1+ W(TN_ sny)log(k?/M?)

The asymptotic freedom of non-Abelian gauge theories is a surprising
conclusion. When we first encountered the running of the electromagretic
coupling in Section 7.5, we found it easy to understand the direction of the
coupling constant flow: The vacuum acquires a dielectric property due to
virtual electron-positron pair creation, causing the effective electric charge
to decrease at large distances. In non-Abelian gauge theories, according to
Eq. (16.134), the fermions still produce such an effect. Furthermore, since the
non-Abelian gauge bosons are charged, they should produce an additional
screening effect. But according to Eq. (16.134), the net effect of the non-
Abelian gauge bosons is opposite in sign. Apparently there must be other,
competing, effects, which overcome the effect of screening and change the
sign of the § function.

The precise form of these effects depends on the gauge. They are simplest
to describe in the Coulomb gauge, for which the gauge fixing condition is

0;A% = 0. (16.137)

We will not work out the full quantization in this gauge; rather, we will just
describe its qualitative features. As in electrodynamics, the field quanta in
Coulomb gauge are described in a non-Lorentz-covariant manner as trans-
versely polarized photons. There are no timelike or longitudinal photons and

tSection 16.7 draws on the main result of 16.5 and 16.6, but does not depend
on these earlier sections. However, even if you have not read Section 16.5, you may
wish to skim pages 522 through 531 to get an overview of how the (3 function can be
calculated.
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no propagating ghosts. However, there is a Coulomb potential, described by
the field A%Y, which obeys a constraint equation analogous to Gauss’s law. Not
surprisingly, in the non-Abelian case, Gauss’s law takes the gauge-covariant
form

D;E* = gp°, (16.138)

where E% = F2% and p? is the charge density of the global symmetry current
of the fermions. Recall from Eq. (15.86) that the covariant derivative acting
on a field in the adjoint representation is

(D#¢)a — 6ﬂ¢a +gfabcAZ¢c.

To analyze the consequences of Eq. (16.138), we will choose an example
as simple and explicit as possible. Let the gauge group be SU(2), so that
a=1,2,3 and f2%° = €%, Let us compute the Coulomb potential of a point
charge of magnitude +1 with the orientation a = 1. We will solve for E using
an iteration process, putting the gauge-field term of the covariant derivative
on the right-hand side of the equation:

AEY = g6®) (x)6%! + ge®*c AMES, (16.139)

The second term on the right shows that, in a non-Abelian gauge theory,
a region containing vector potentials and electric fields that are parallel in
physical space and perpendicular in the group space is a source of electric
field.

The implication of Eq. (16.139) is worked out pictorially in Fig. 16.11.
The leading term on the right-hand side of (16.139) implies a 1/r? electric
field of type a = 1 radiating from x = 0. Somewhere in space, this electric
field will cross with a bit of vector potential A% arising as a fluctuation of the
vacuum. For definiteness, let us assume that this fluctuation has a = 2 and
points in some diagonal direction, as shown in Fig. 16.11(a). Then the second
term on the right-hand side of Eq. (16.139) is negative for a = 3: There is a
sink of the field E3' at this location, as shown in Fig. 16.11(b). These new
fields are, in two locations, parallel or antiparallel to the original A% field
fluctuation. Looking again at the second term of Eq. (16.139), we see that
there is a source of electric field with a = 1 closer to the origin, and a sink of
electric field with a = 1 farther away. This is an induced electric dipole in the
vacuum, shown in Fig. 16.11(c). But look at the signs: This dipole is oriented
toward the original charge, and thus serves to amplify rather than screen it!
The effect of the original charge thus becomes stronger at larger distances.

The competition between this antiscreening effect and the screening due
to virtual pairs of gauge bosons must be worked out quantitatively. When this
is done,! one finds that the antiscreening effect is 12 times larger.

In this argument, it is a set of dynamical features peculiar to the non-
Abelian gauge theory that enables the coupling constant to be amplified rather

tT. Appelquist, M. Dine, and I. Muzinich, Phys. Lett. 69B, 231 (1977).
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Figure 16.11. The effect of vacuum fluctuations on the Coulomb field of
an SU(2) gauge theory. In (a), a fluctuation A2 occurs on top of the 1/r2
field E!. These combined fields generate a sink of the field E3, as shown
in (b). The E3 field, in turn, combines with A2 to create an effective E!
dipole, shown in (c). The dipole points toward the original charge, enhancing
its field at large distances.

than screened at large distances. This suggests that asymptotic freedom might
be a special property of non-Abelian gauge theories. Although the statement
can be proved only by exhausting other cases, it does actually turn out to
be true: Among renormalizable quantum field theories in four spacetime di-
mensions, only the non-Abelian gauge theories are asymptotically free.* We
have already seen in Chapter 14 that asymptotic freedom was suggested ex-
perimentally as a property of the strong interactions. In the following chapter
we will build a model of the strong interactions out of a non-Abelian gauge
theory and explore its properties in detail.

*S. Coleman and D. J. Gross, Phys. Rev. Lett. 31, 851 (1973).
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Problems

16.1 Arnowitt-Fickler gauge. Perform the Faddeev-Popov quantization of Yang-
Mills theory in the gauge A3% = 0, and write the Feynman rules. Show that there
are no propagating ghosts, and that the gauge field is reduced to two positive-metric
degrees of freedom. (Although the gauge condition violates Lorentz invariance, this
symmetry is restored in the calculation of gauge-invariant S-matrix elements.)

16.2 Scalar field with non-Abelian charge. Consider a non-Abelian gauge theory
with gauge group G. Couple to this theory a complex scalar field in the representation r.

(a) Show that the Feynman rules for the scalar field are a simple modification of
the Feynman rules displayed for scalar QED in Problem 9.1(a).

(b) Compute the contribution of this scalar field to the 8 function, and show that
the full 8 function for this theory is

11

_ 9 1
B(g) = —W(?CQ(G) _ gC(r)).

16.3 Counterterm relations. In Section 16.5, we computed the divergent parts of
61, 62, and 83. It is a good exercise to compute the divergent parts of the remaining
counterterms in Eq. (16.88) to one-loop order in the Feynman-’t Hooft gauge, and to -
explicitly verify that the counterterm relations (16.89) are consistent with the removal
of ultraviolet divergences.

(a) The ghost counterterms are particularly easy to compute. Work out 6§ and 65,
and show that the divergent part of their difference equals the divergent part
of 1 — 2. This gives a derivation of asymptotic freedom that is slightly easier
than the one in Section 16.5.

(b) Compute the counterterm for the 3-gauge-boson vertex and verify the first equal-
ity in (16.89).

(c) Compute the counterterm for the 4-gauge-boson vertéx and find, when the smoke
clears, the second relation in (16.89).



Chapter 17

Quantum Chromodynamics

The key to constructing a realistic model of the strong interactions is the
phenomenon of asymptotic freedom. Chapter 14 described the experimental
discovery of this phenomenon, while Chapter 16 presented the theoretical
proof that non-Abelian gauge theories are asymptotically free. We are now
ready to explore the consequences of these discoveries.

We will begin by arguing that the most natural candidate for a model
of the strong interactions is the non-Abelian gauge theory with gauge group
SU(3), coupled to fermions (quarks) in the fundamental representation. This
theory is known as Quantum Chromodynamics, or QCD. After some general
discussion of QCD in Section 17.1, we will investigate a number of specific
QCD scattering processes in Sections 17.2 through 17.4. The most interesting
application of QCD, however, is of a somewhat more sophisticated nature; it
comes in the prediction of a pattern of slow violations of the Bjorken scaling
relation discussed in Chapter 14. Section 17.5 develops the additional theo-
retical tools that are needed to understand these violations.

Although this chapter includes many references to experiments, we re-
mind the reader that, for QCD as for QED or critical phenomena, this book
is primarily a textbook of theoretical methods rather than a review and in-
terpretation of experimental data. The details of experimental techniques and
results on strong interaction physics are reviewed in a number of excellent
texts (see the bibliography). We hope that this chapter will give the theoret-
ical foundation necessary to illuminate and interpret these results.

17.1 From Quarks to QCD

Our current theoretical picture of the strong interactions began with the
identification of the elementary fermions that make up the proton and other
hadrons. As the properties of these fermions became better understood, the
nature of their interactions became tightly constrained, in a way that led even-
tually to a unique candidate theory. In order to appreciate the uniqueness of
this theory, we begin this chapter with a simplified history of how it arose.
In 1963, Gell-Mann and Zweig proposed a model that explained the spec-
trum of strongly interacting particles in terms of elementary constituents

545
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called quarks. Mesons were expected to be quark-antiquark bound states. In-
deed, the lightest mesons have just the correct quantum numbers to justify
this interpretation; they are spin-0 and spin-1 states of odd parity, just as we
found for fermion-antifermion bound states of zero orbital angular momen-
tum in Chapter 3. Baryons were interpreted as bound states of three quarks.
To explain the electric charges and other quantum numbers of hadrons, Gell-
Mann and Zweig needed to assume three species of quarks, up («), down (d),
and strange (s). Additional hadrons discovered since that time require the
existence of three more species: charm (c¢), bottom (b), and top (¢). To make
baryons with integer charges, the quarks needed to be assigned fractional elec-
tric charge: +2/3 for u, ¢, t, and —1/3 for d, s, b. Then, for example, the proton
would be a bound state of uud, while the neutron would be a bound state of
udd. The six types of quarks are conventionally referred to as flavors.

The quark model had great success in predicting new hadronic states, and
in explaining the strengths of electromagnetic and weak-interaction transitions
among different hadrons. In particular, the quark model naturally incorporates
the most important symmetry relations among strongly interacting particles.
If one assumes that the u and d quarks have identical masses and interactions,
the SU(2) group that acts as a unitary rotation of u and d states,

(3) —»U(Z), A (17.1)

should be a symmetry of the strong interactions. Indeed, both in nuclear and in
elementary particle physics, the quantum states form multiplets of this SU(2)
symmetry, called isotopic spin or isospin. Similarly, since the strange quark
is only a little heavier than the u and d quarks, it makes sense to consider the
symmetry of unitary transformations of the triplet (u,d,s). Gell-Mann and
Ne’eman showed that the elementary particles naturally fill out irreducible
representations of this SU(3) symmetry.

Despite the phenomenological success of the original quark model, it had
two serious problems. First, despite considerable effort, free particles with
fractional charge could not be found. Second, the spectrum of baryons re-
quired the assumption that the wavefunction of the three quarks be totally
symmetric under the interchange of the quark spin and flavor quantum num-
bers, contradicting the expectation that quarks, which must have spin 1/2,
should obey Fermi-Dirac statistics. The need for this symmetry is most clearly
illustrated in the fact that one of the lightest excited states of the nucleon is
a spin-3/2 particle with charge +2, the A™*. This particle is readily inter-
preted as a wuu bound state with zero orbital angular momentum and all
three quark spins parallel.

To reconcile the baryon spectrum with the spin-statistics theorem, Han
and Nambu, Greenberg, and Gell-Mann proposed that quarks carry an addi-
tional, unobserved quantum number, called color. They introduced the ad hoc
assumption that baryon wavefunctions must be totally antisymmetric in color
quantum numbers. Then, if the quark wavefunctions are totally symmetric
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in spin and flavor, they are totally antisymmetric overall, in agreement with
Fermi-Dirac statistics. The simplest model of color would be to assign quarks
to the fundamental representation of a new, internal SU(3) global symmetry.
Suppressing for a moment the spin and flavor quantum numbers, we can rep-
resent quarks by ¢;, where i = 1,2, 3 is the color index. Thus quarks transform
under the fundamental, or “3”, representation of the color SU(3) symmetry.
Antiquarks, g¢, transform in the 3 representation. The inner product of a 3
and a 3 is an invariant of SU(3). One can also form an invariant by using the
totally antisymmetric combination of three 3’s, €;;x: This object transforms
under a unitary transformation according to

€ijk — Uii’Ujj’Ukk’fi’j’k' = (det U)eijk, (17.2)
and so is invariant under SU(3) transformations, which have det U = 1. Under
the postulate that all hadron wavefunctions must be invariant under SU(3)

symmetry transformations, these two types of combinations are the only sim-
ple ones allowed: ‘

7'q, €% qiq;qr, ikl P°q". (17.3)
That is, the assumption that physical hadrons are singlets under color implies
that the only possible light hadrons are the mesons, baryons, and antibaryons.

Like the original quark model, the color hypothesis was phenomenologi-
cally successful but raised additional questions: Why should quarks have this
seemingly superfluous property, and what mechanism insures that all hadron
wavefunctions are color singlets? The answers to these questions came not
from hadron spectroscopy, but from the deep-inelastic scattering experiments
described in Chapter 14 and the ensuing search for a theory of parton binding
with the property of asymptotic freedom. When it was discovered that non-
Abelian gauge theories have this property, all that remained was to identify
the correct gauge group and fermion representation. Since the color symmetry
had no other obvious physical role, it was natural to identify this symmetry
with the gauge group, with the colors being the gauge quantum numbers of
the quarks. This reasoning resulted in a model of the strong interactions as a
system of quarks, of the various flavors, each assigned to the fundamental rep-
resentation of the local gauge group SU(3). The quanta of the SU(3) gauge
field are called gluons, and the theory is known as Quantum Chromodynamics,
or QCD.

In this book, we will mainly investigate the properties of QCD in the
high-energy regime, where the coupling constant has become small. However,
we should point out that one can also study QCD in the regime of strong
coupling, using an approximation scheme introduced by Wilson in which the
continuum gauge theory is replaced by a discrete statistical mechanical system
on a four-dimensional Euclidean lattice. Using this approximation, Wilson
showed that, for sufficiently strong coupling, QCD exhibits confinement of
color: The only finite-energy asymptotic states of the theory are those that
are singlets of color SU(3). Thus the ad hoc assumption that explains the
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Figure 17.1. Gauge electric field configuration associated with the separa-
tion of color sources in a strong-coupling gauge theory.

spectrum of hadrons turns out to be a consequence of the non-Abelian gauge
theory coupling to color. If one attempts to separate a color-singlet state
into colored components—for example, to dissociate a meson into a quark
and an antiquark—a tube of gauge field forms between the two sources, as
shown in Fig. 17.1. In a non-Abelian gauge theory with sufficiently strong
coupling, this tube has fixed radius and energy density, so the energy cost of
separating color sources grows proportionally to the separation. A force law
of this type can consistently be weak at short distances and strong at long
distances, accounting for the fact that isolated quarks are not observed. We
will discuss the large-distance, strong-coupling limit of gauge theories further
in the Epilogue.

The short-distance limit of Quantum Chromodynamics can be readily
studied using the Feynman diagram technology that we have developed in
previous chapters. Here asymptotic freedom makes the coupling weak, and
there is a sensible diagrammatic perturbation theory that begins from the
model of free quarks and gluons. The following sections treat the elementary
interactions among quarks and gluons that can be observed in high-energy
experiments.

17.2 ete~ Annihilation into Hadrons

The simplest reaction involving quarks is the production of quark pairs in
ete™ annihilation, a process that we treated already in Section 5.1. There we
analyzed this process only at the most elementary level, viewing it as a pure
QED reaction in which free quarks are created by a virtual photon. The dia-
gram for this lowest-order process is shown in Fig. 17.2(a). The computation
of the total cross section includes a sum over the various color states of the
quark fields, and so provides a confirmation that the number of allowed colors
is 3. Combining the color factor with the square of the quark electric charges,
we found (Eq. (5.16))

o(ete™ — hadrons) = gq - 3 - z ch, (17.4)
f
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e” et

Figure 17.2. Diagrams contributing to the process eTe™ — hadrons in
QCD: (a) the leading-order diagram; (b) corrections of order as.

where og is the QED cross section for ete™ — ptpu~,

dra?
3s ’

gg = (17.5)
and the sum in (17.4) is taken over quark flavors. This formula assumes that
the center of mass energy is high enough that we can ignore the quark masses.

When we couple the quarks to an SU(3) gauge theory, we add many
important processes that affect both the value of this cross section and the
final states that it includes. Some of the most important effects cannot be
discussed within the context of perturbation theory. In particular, though
the leading diagram contains free quarks, the particles that emerge from the
reaction are color-singlet mesons and baryons. However, we will find that QCD
perturbation theory with quarks and gluons does make a number of important
predictions for eTe™ annihilation to hadrons. The ideas that we develop in
working out these predictions will also apply to many other strong-interaction
processes.

Total Cross Section

The leading corrections to the rate of ete™ annihilation due to gluon exchange
and emission are shown in Fig. 17.2(b). These are precisely the diagrams
computed in the Final Project of Part I. The first two diagrams give a cross
section of order g2, where g is the SU(3) gauge coupling, to produce a gluon
in addition to the quark and antiquark. The third diagram must be summed
in the amplitude with the leading diagram to produce a correction to the
rate of gq production without gluon emission. In Part I, we computed these
two contributions as if the strong interactions were an Abelian gauge theory.
To obtain the corresponding expressions in QCD, we need only multiply the
Abelian formulae by the group theory factor

4
tr[t?t%] = Ca(r) - tr[l] = 3 3, (17.6)
where we have used Eq. (15.97) to evaluate Ca(r) for the fundamental rep-

resentation of SU(3). The factor of 3 is the same color sum that appears in
Eq. (17.4). Thus we can obtain the correct formulae for QCD from those of
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the Final Project by making the replacenient

4 4
9 =39 o ag—za, (17.7)

where )
a, =2
ST Ax

is the strong-interaction analogue of the fine-structure constant.

The end result of the Final Project of Part I was a formula for the total
cross section to produce hadrons in e*e™ annihilation. If we replace ay with
(4/3)as, that result becomes

o(eTe™ — hadrons) = gy - ( ZQf) . [1 + % + O(af)]. (17.9)

(17.8)

This is actually the sum of the rates for two elementary processes, ete™ — qg
(including the correction from the third diagram of Fig. 17.2(b)) and ete™ —
qqg- Although the rate for each of these processes is divergent as the gluon
mass is taken to zero, that divergence cancels when they are combined. This
is another example of the phenomenon of infrared divergence cancellations
that we studied for the example of electron scattering in Sections 6.4 and 6.5.
There we showed that the dressing of the final state by the emission of soft
and collinear photons does not affect the overall scattering rate. Here, we see
again that infrared divergences cancel in the total rate, although the sum over
real and virtual gluon corrections leaves over a simple numerical correction.

It is not difficult to understand the cancellation of infrared logarithms
intuitively. The original process ete~ — qg is extremely rapid: Since the vir-
tual photon is off-shell by an amount ¢? = s, the quarks are created in a time
1/4/s. However, the emission of collinear gluons, and the virtual corrections
associated with the exchange of soft gluons, occur over a much longer time
scale. In the diagrams with gluon emission, the virtual quark or antiquark is
off-mass-shell by an amount p? g» Where p 4 is the transverse momentum of
the gluon relative to the ¢g system. Thus this virtual state survives for a time
1/p. 4 before it decays. Such a slow process cannot affect the probability that
a ¢q pair was produced; it can only affect the properties of the final state into
which the ¢g system will evolve. By this logic, the only perturbative correc-
tions that can affect the total cross section are those for which py4 ~ /s.
Another way to express this conclusion would be to argue that, after contri-
butions from the infrared-sensitive regions have canceled, the contributions
that remain come from the region of large real or virtual gluon momenta. By
either argument, formula (17.9) should be a meaningful prediction of QCD
perturbation theory, even though it involves an integral over the region of soft
gluon emission.
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The Running of o,

Formula (17.9) depends on the QCD coupling constant «g, which must be
defined at some renormalization point M. This is in contrast to the QED
coupling constant, which we defined in a natural way by on-shell renormaliza-
tion. In QCD, we would like to avoid discussing on-shell quarks, since these
are strongly interacting particles that are significantly affected by nonpertur-
bative forces. The use of an arbitrary renormalization point M allows us to
avoid this problem. We will define s by renormalization conditions imposed
at a large momentum scale M where the coupling is small; this value of oy
can then be used to predict the results of scattering processes with any large
momentum transfer. ‘

However, the use of renormalization at a scale M in a computation involv-
ing momentum invariants of order P? involves some subtlety when P? and
M? are very different. In our discussion of Section 12.3, we saw that, in this
circumstance, Feynman diagrams with n loops typically contain correction
terms proportional to (o, log(P2/M?))". Fortunately, we can absorb these
corrections into the lowest-order terms by using the renormalization group to
replace the fixed renormalized coupling with a‘running coupling constant.

To illustrate how this analysis applies to QCD, let us examine the impli-
cations of the Callan-Symanzik equation for the ete™ annihilation total cross
section o, viewed as a function of s, a renormalization scale M, and the value
of o at the renormalization scale. Like the QED potential (12.87), the ete™
total cross section is an observable quantity and so its normalization is inde-
pendent of any conventions. It therefore obeys a Callan-Symanzik equation
with v = 0:

0 0
[MW + ﬁ(g)a—g]o(s, M, a,) = 0. (17.10)
By dimensional analysis, we can write -
c, s
o= gf(maas)a (1711)

were c is a dimensionless constant. Then the Callan-Symanzik equation implies
that f depends on its arguments only through the running coupling constant
as(Q) = §%/4n, evaluated at Q? = s. The coupling constant § is defined to
satisfy the renormalization group equation

4
dlog(Q/M)

~ with initial condition a,(M) = a,. For QCD with three colors and ny ap-
proximately massless quarks, the 8 function is given by Eq. (16.135):

g=p(9), (17.12)

bog? , 2
Blg) = — (405)2, with by = 11 - Znj. (17.13)
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Then the solution of the renormalization group equation is

Qs
Qg (Q) = 1+ (boas/Qﬂ') log(Q/M) .

The explicit dependence of ¢ on a4 can be found by matching the succes-
sive terms in the expansion of f(as(1y/s)) to the terms in the perturbative
expansion. To the order of the first corrections, we find simply

o =0g- (32@?) : [1 + %‘5) + +O(a§(\/§))]. (17.15)
7

(17.14)

Thus the Callan-Symanzik equation instructs us to replace the fixed renor-
malized coupling o, with the running coupling constant as(Q), evaluated at
Q?=s.

Because the fixed coupling as depends on the arbitrary renormalization
point M, it is sometimes useful to remove it from our formulae completely.
To do this, we define a mass scale conventionally called A (not to be confused
with an ultraviolet cutoff!) satisfying

1 = g*(bo/8n%) log(M/A). (17.16)
Then Eq. (17.14) can be rearranged into the form
2m
Qs = T AA 17.17
@ = blog@/m (17.17)

This formula is the clearest expression of the statement that as(Q) becomes
small as (log(Q))~! for large Q. The momentum scale A is the scale at which
as becomes strong as Q? is decreased.

Experimental measurements of the rate of this reaction and others yield
a value of A = 200 MeV. QCD perturbation theory is valid only when Q is
somewhat larger than this, say above @ = 1 GeV, where a4(Q) = 0.4. The
strong interactions become strong at distances larger than ~1/A, which is
roughly the size of the light hadrons.

Although the example of the ete™ annihilation cross section is especially
simple, since it depends on only one momentum invariant, similar conclusions
carry over to other QCD predictions. In analyzing strong-interaction processes
that are sensitive to the quark and gluon substructure, we will find leading-
order formulae for the reaction cross sections that depend on the renormalized
coupling as. To make these expressions satisfy the Callan-Symanzik equation,
we must replace this fixed coupling with the running coupling constant a,(Q),
evaluated with @ of the order of the momentum invariants of the reaction.
Since the running coupling constant depends only logarithmically on @, we
need not worry about choosing @ precisely. If we guess the proper scale in-
correctly by a factor of 2, this induces an error in a4(Q) that is of order
(log(Q))~2? ~ a2(Q). Conversely, this ambiguity would be resolved by com-
puting to the next order in .
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Before concluding this formal treatment of the ee™ annihilation cross
section, we should add one qualification. At the beginning of Section 12.2,
we remarked that renormalization group predictions can be complicated by
the appearance of physical thresholds and their associated singularities, and
so we stated these predictions only for when the relevant momentum invari-
ant P? was large and spacelike. In the present chapter, we will be concerned
with cross sections for quark and gluon reactions, evaluated on-shell. This in-
troduces additional complications of principle. For example, in order to apply
the Callan-Symanzik equation to o(s), we needed to know that this quantity
contains no infrared divergences whose regulator might provide another di-
mensionful parameter. Throughout this chapter we will assume that similiar
cancellations of divergences associated with soft and collinear gluons occur
in the processes of interest to us. The complete proof of these cancellations
in QCD can be carried through, but it is rather technical.* In some cases,
an alternative point of view is possible; one can justify the use of the renor-
malization group to analyze an on-shell amplitude by relating it to Green’s
functions evaluated in the spacelike region. This method of analysis, which
brings its own insights, will be the main subject of Chapter 18.

Gluon Emission and Jet Production

A second result of the Final Project of Part I was a formula for the differential
cross section for ¢ production with gluon emission. Transcribing this formula
to QCD using (17.7) gives the following result: Let 1, z2, 3 be the ratios of
the quark, antiquark, and gluon energies to the electron beam energy. These
satisfy 0 < z; < 1 and x1 +x2+x3 = 2. Then the cross section for ete™ — qgg
is given by

do

[ 20 2+ z2
te~ — qgg) = . aks T Ly
dzdzs (ete qq9) = oo ( ZQf) P T — (17.18)

This cross section is singular as x; or xo approaches 1. The limit z; — 1
corresponds to configurations in which the quark has the maximum possible
energy, while the antiquark and the gluon go off in the opposite direction.
sharing the remaining energy. Then the antiquark and gluon have almost
collinear lightlike momentum vectors and so form a system of very small
invariant mass. Similarly, the limit zo — 1 corresponds to configurations in
which the quark and gluon are collinear. These singularities are responsible for
the divergence of the integrated cross section in the limit of vanishing gluon
‘mass.

How should we interpret these singularities? In our general treatment
of bremsstrahlung in Section 6.1, we saw that the emission of a photon by

*For a review of the theorems justifying the formulae of perturbative QCD, see
J. C. Collins and D. E. Soper, Ann. Rev. Nucl. Sci. 37, 383 (1987).
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a scattered electron is enhanced, for collinear radiation, by a factor of or-
der log(q?/m?), where m is the mass of the electron. Thus the total rate for
emitting a collinear photon formally diverges in the limit of zero mass. The
same conclusion holds for the emission of gluons by quarks. A divergence that
appears for collinear emissions in the limit of zero mass is called a mass singu-
larity. In QED, we saw that the mass singularity signals a real physical effect
of strong collinear radiation when ¢ is large. In QCD, we might expect strong
gluon radiation in this limit, but we must think carefully about how this ra-
diation appears experimentally. Whether a collinear gluon is radiated or not,
the quark and antiquark emerging from the reaction will undergo further soft
interactions with the other products. These processes must continue, produc-
ing quark-antiquark pairs and emitting and absorbing gluons, until all colored
particles are collected into color-singlet hadrons. Thus the presence of one or
more collinear gluons will have no noticeable effect on the final state, which
consists of two back-to-back jets of hadrons. For this reason, formula (17.18)
is of no use when the gluon transverse momentum is less than the typical scale
of soft gluon interactions, roughly 1 GeV.

When the gluon is emitted with substantial transverse momentum with
respect to the qg axis, however, it is not possible for subsequent soft exchanges
to recall or reverse this transverse momentum. In this case, the ¢gg system
evolves into a system of three distinct jets of hadrons. Thus, sufficiently far
from the collinear regions, we can interpret Eq. (17.18) as the cross section
for producing events with three hadronic jets having energies x1, 2, 3 times
the electron beam energy.

By an analysis similar to that given above for the total cross section, we
can improve Eq. (17.18) by replacing the fixed coupling constant o, with a
running a,(Q). A reasonable choice for @ is the transverse momentum of the
gluon, p, 4, described below Eq. (17.9). If this transverse momentum is too
small, however, a,(Q) will be large, and our leading-order formula will break
down. This is a second reason why we cannot use formula (17.18) when the
transverse momentum of the gluon is less than about 1 GeV.

On the other hand, when the gluon transverse momentum is much larger
than 1 GeV, there is no reason to distrust QCD perturbation theory. Soft pro-
cesses cannot disturb the three-jet nature of the hadronic state, and asymp-
totic freedom insures that the coupling constant is small, so that the leading
order of perturbation theory will be a good approximation.

The three-jet cross section (17.18) is a good example of the type of pre-
diction that one obtains from the use of perturbation theory in QCD. We
describe a strong-interaction process by the invariant momentum transfer @
it gives to hadronic constituents. QCD perturbation theory makes predictions
about the flow of energy and momentum in such a reaction into the final sys-
tem of jets of hadrons. If Q) is small, perturbation theory is invalid, and we
obtain no useful prediction. However, if Q is large, the asymptotic freedom
of QCD implies that Feynman diagrams for quarks and gluons will correctly
predict the behavior of the final system of hadronic jets.
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electron

Figure 17.3. Deep inelastic scattering in QCD. The diagram shows the flow
of momentum when a high-energy electron scatters from a quark taken from
tt e wavefunction of the proton.

17.3 Deep Inelastic Scattering

After ete™ annihilation into hadrons, the next simplest reaction involving
strongly interacting particles is electron scattering from a proton, or from
some other hadron. At the most elementary level, this reaction can be viewed
as the electromagnetic scattering of an electron from a quark inside the pro-
ton.! A way to visualize the process is shown in Fig. 17.3. Call the proton
momentum P, and the initial quark momentum p. Call the initial and final
momenta, of the electron k and &’. If the final electron momentum is measured,
one can deduce the momentum ¢ = k — &’ transferred by the virtual photon to
the hadronic system. The vector q is spacelike, and one conventionally writes
¢ =-Q%

If the invariant momentum transfer Q2 is large, the quark is ejected from
the proton in a manner that cannot be balanced by subsequent soft processes.
These soft processes will, however, create gluons and quark-antiquark pairs
that eventually neutralize the color and cause the struck quark to materialize
as a jet of hadrons in the direction of the momentum transfer from the elec-
tron. Typically the total invariant mass of the final hadronic system is large,
since the struck quark carries a large momentum with respect to the other
“spectator” quarks. In this case, the process is referred to as deep inelastic
scattering.

To derive a first approximation to the cross section for electron-proton
scattering, we consider this reaction from a frame in which the electron and
proton are moving rapidly toward each other, for example, the electron-
proton center-of-mass frame. We assume that the center-of-mass energy is
large enough that we can ignore the proton mass in working out the kine-
matics. Then the proton has an almost lightlike momentum along the colli-
sion axis. The constituents of the proton also have lightlike momenta, which

tThe electron could just as well be a muon; all the same formulae apply in this
case. Leptons can also scatter from quarks via the neutral-current weak interaction,
as we will see in Chapter 20.
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are almost collinear with the momentum of the proton. This is because a
constituent cannot acquire a large transverse momentum except through ex-
change of a hard gluon, a process that is suppressed by the smallness of o, at
large momentum scales. Thus, to leading order in QCD perturbation theory,
we can write

p=¢P, (17.19)

where £ is a number between 0 and 1, called the longitudinal fraction of
the constituent. To leading order in s we can also ignore gluon emission or
exchanges during the collision process. The cross section for electron-proton
scattering is then given by the cross section for electron-quark scattering at
given longitudinal fraction &, multiplied by the probability that the proton
contains a quark at that value of &, integrated over &.

But the probability that the proton contains a certain constituent with
a certain momentum fraction cannot be computed using QCD perturbation
theory, since it depends on the soft processes that determine the structure of
the proton as a bound state of quarks and gluons. We will therefore consider
this probability to be an unknown function, to be determined from experi-
ment. Eventually, we will need to make use of such a probability function for
each species of quark, antiquark, and gluon that can be found in the wave-
function of the proton. Collectively, these constituents are called partons. For
each parton species f, we write the probability of finding a constituent of the
proton of type f at longitudinal fraction £ as

probability of finding constituent f
with longitudinal fraction &

) = f(&)dE. (17.20)

The functions f(§) are called the parton distribution functions. Using this
notation, the cross section for electron-proton inelastic scattering is given to
leading order in a; by the expression

o(e” (k)p(P) — e (K') + X)

1
7.
= [d€3 0 a(e Warler) — e () + as0), (17.21)
0 f

where X stands for any hadronic final state. The sum in (17.21) contains
contributions from constituent antiquarks as well as constituent quarks.

Equation (17.21) is equivalent to the formula (14.8) that we constructed
for this reaction in Chapter 14. Now we see that this formula is justified by
the smallness of the QCD coupling constant at large momentum scales. It
is important to remember, however, that (17.21) is not the complete pre-
diction of QCD, but only the first term of an expansion in a,; this level of
approximation is called the parton model. The higher-order QCD corrections
to Eq. (17.21) will involve modifications both to the electron-quark scattering
cross section and to the parton distribution functions. The most important of
these corrections are discussed in Section 17.5.
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In the same way, all other reactions of the proton that involve large mo-
mentum transfer also have parton model descriptions. In QCD, all of these
reaction cross sections are computed from scattering amplitudes for quarks
and gluons. The initial motion of the partons for any process is described
by the same parton distribution functions f;(£) that appear in deep inelastic
scattering.

Let us now work out the explicit leading-order formula for the deep inelas-
tic scattering cross section, reviewing the analysis in Chapter 14. In Eq. (14.3),
we wrote the leading-order differential cross section for the parton-level pro-
cess,

d 2ma?Q? 32 4 2
o QF [s + 14 ] (17.22)

AR 2

In general, we will use the symbols §, £, @ to denote the Mandelstam variables
for two-body scattering processes at the parton level. These variables must
be related to observable properties of the hadronic system or the scattered
electron. For massless initial and final particles,

§+t+a=0.
In the case of deep inelastic scattering,
f= @
and
§=2p-k=2P -k =¢Es.

Thus the cross section for deep inelastic scattering at fixed Q? is given by

/ W 0r 7 [1+ (1- L) Joes -0 araw

The final factor expresses the kinematic constraint § > |£|. Expression (17.23)
should be an accurate first approximation to the deep inelastic scattering cross
section when @Q? is large. In that case, the corrections to this formula from
hard gluon emissions and exchanges will be of order a,(Q?).

We also showed in Chapter 14 that the measurement of the scattered
electron momentum &’ and thus the momentum transfer g uniquely determines
an allowed value of £ for elastic electron-quark scattering. This value is given
by Eq. (14.7):

QQ
2P -q’
When (17.23) is expressed as a doubly differential cross section in x and Q?2,
it becomes the simple product of a parton-level cross section and a sum of
parton distribution functions evaluated at £ = z. In the literature, the symbol
z is often used interchangably with &, and we will follow this practice from
here on.

=z, where x =

(17.24)
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It is especially convenient to represent the cross section in terms of di-
mensionless combinations of kinematic variables. One of these should be z; a
good choice for the other is

2P-q 2P-q
= ‘- = 17.25
Y=39P % s ( )
In the frame in which the proton is at rest,
0
q
V=15 (17.26)

that is, y is the fraction of the incident electron’s energy that is transferred
to the hadronic system. On the other hand, since p = £P, we can evaluate y
in terms of parton variables:

2p-(k—FK) s+

- _ it 17.27
v %k 5 (17.27)

so that

w|

=—(1-y). (17.28)

From Eq. (17.26) or (17.28), we see that y < 1. The kinematically allowed
region in the (z,y) plane is thus

0<zr <1, 0<y<1.
To express Eq. (17.23) in terms of z and y, we need the formula
Q* = zys, (17.29)
which follows from Egs. (17.24) and (17.25), and the change of variables

2
dédQ? = dz dQ? = %y-dx dy = xsdz dy.

Then the differential cross section becomes

20' 23
didy(e_P —e X)= (Zf: xff(w)Qi) 2”@;'2 [1+(1-y)?.  (17.30)

The factor 1/Q* comes from the square of the virtual photon propagator.
Once this factor is removed, the dependence on = and y completely factor-
izes. Each half of this relation contains physical information. The fact that
the parton distributions f(z) depend only on z and are independent of Q?
is the statement of Bjorken scaling. This tells us that the initial distribution
of partons is independent of the details of the hard scattering. The y depen-
dence of the cross section comes from the underlying parton cross section.
In Chapter 5, we saw that the elementary QED cross sections, viewed in the
high-energy limit, reflect the helicities of the interacting particles. The behav-
jor [1+(1—y)?] in (17.30) is known as the Callan-Gross relation; it is specific
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to the scattering of electrons from massless fermions. This relation gave evi-
dence that the partons involved in deep inelastic scattering were fermions, at
a time when the relation between partons and quarks was still unclear.

Deep Inelastic Neutrino Scattering

Because the sum over quark flavors factorizes in Eq. (17.30), one cannot de-
termine the individual parton distribution functions fy(z) from electron scat-
tering experiments alone. One can, however, obtain more detailed information
on the structure of the proton through deep inelastic neutrino scattering.

Neutrinos have zero electric charge and so do not interact by photon ex-
change, but they do interact with quarks through weak interactions. We will
discuss the weak interactions in detail in Chapter 20; for the moment, let
us adopt a simplified description that concentrates on the elementary pro-
cess shown in Fig. 17.4. In this process, a neutrino converts to the associated
charged lepton,! exchanging a virtual massive vector boson, the W+. This
boson couples to a quark current that converts a d quark to a u quark. The
effect of this exchange process is to provide a different, but completely char-
acterized, method for injecting a hard momentum transfer q. The amplitude
for this process is described by the effective Lagrangian

2 5 5
AL = %% [8’)/”(1 27 )u] [1_%(1 27 )d] +he, (17.31)

where ¢, v, d, u are the fermion fields associated with the charged lepton,
the neutrino, and the d and u quarks, and g is the weak interaction coupling
constant. The factor 1/ m%v comes from the W boson propagator, considered
in the limit ¢® < m¥,. The first two factors are often written in terms of the
Fermi constant G, defined as

2
Cr _ g (17.32)
V2 8mj,
This constant gives the strength of the weak interactions at energies much less
than myy. The crucial property of the weak interactions, shown explicitly in
(17.31), is that the W boson couples only to the left-handed helicity states of
relativistic fermions. The deeper significance of this property will be discussed
in Chapter 20.

For technical reasons, it is easiest to do neutrino deep inelastic scattering
using muon neutrinos, which convert to muons after emitting a W boson. It is
equally feasible to scatter muon antineutrinos from nuclear targets, and, as we
will see, it is interesting to compare the effects of neutrinos and antineutrinos.
Since the proton contains a small admixture of the heavier quarks s, ¢, these
also give small contributions to neutrino deep inelastic scattering. However,
we will ignore these contributions in our discussion.

$There is also a neutral-current weak interaction in which the neutrino remains a
neutrino; see Problem 20.4.
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Figure 17.4. The elementary neutrino scattering process mediated by the
weak interaction.

The cross section for neutrino deep inelastic scattering is given by a for-
mula analogous to (17.21), with the photon-exchange cross section replaced
by one resulting from W exchange. It is straightforward to work out this cross
section directly. However, we can also obtain the result from Eq. (17.22), if
we look back to Chapter 5 and recall how the structure of this equation arises
from the various helicity contributions. In (17.22), the factor £ in the denom-
inator came from the photon propagator; this factor is replaced by m#;, in the
weak interaction case. The factor [§2 + 42| came from the Dirac matrix alge-
bra. We saw in Section 5.2 that the first term is the contribution of left-handed
electrons scattering from left-handed fermions or right-handed electrons scat-
tering from right-handed fermions, and that the second term arises from the
other helicity combinations. For the case of neutrino-quark scattering, the
interaction (17.31) allows only the scattering of left-handed neutrinos from
left-handed quarks, so only the 4% term appears. To determine the overall
normalization of the cross section, we note that, since the neutrinos are pro-
duced in weak interactions, they always have left-handed polarization, so no
polarization average should be done. On the other hand, we must still average
over the polarization of the initial quark. In all, we find

do _ ngt 21 G

It is easy to check this formula by explicit computation starting from (17.31).

The cross section for the scattering of antineutrinos from quarks can be
worked out in the same way. Note that this reaction involves the exchange
of a W, and so converts u quarks to d quarks. However, the u quarks must
still be left-handed. The only modification from the previous paragraph comes
in the fact that the antineutrinos that couple to the interaction (17.31) are
right-handed, so the cross section comes from the term in (17.22) proportional
to 42:

do ,_ i g 02 G%: 2
= N =7 | | ==£@1-y)> 17.34
= (bu — p™d) 2(an)232 [ I - (1-y) ( )

Again, it is easy to verify this formula directly. The cross section for neutrino-
antiquark scattering, converting a @ into a d, is also given by Eq. (17.34),
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Figure 17.5. The distribution in y of neutrino and anti-neutrino deep in-
elastic scattering from an iron target, as measured by the CDHS experiment,
J. G. H. de Groot, et. al., Z. Phys. C1, 143 (1979). The solid curves are fits
to the form A + B(1—y)2.

while the cross section for antineutrino-antiquark scattering, converting a d
into a 4, is given by Eq. (17.33).

To convert these parton-level cross sections to physical cross sections,
we combine them with the parton distribution functions. The kinematics is
exactly the same as in the case of electron scattering. Thus, following the
arguments that led to Eq. (17.30), we obtain the expressions

d?o G2

(vp—p X) = Tps[xfd(x) +zfa(z)-(1-— y)z],
d;‘iy o (17.35)
G @ = 1 X) = T af, (@) (1 )" + afala)].

According to these relations, deep inelastic neutrino scattering allows one
to map separately the parton distribution functions for v and d quarks and
antiquarks in the proton.

In addition, Eq. (17.35) makes a dramatic qualitative prediction: To the
extent that a proton (or neutron) is made of quarks with very few addi-
tional quark-antiquark pairs, the deep inelastic neutrino scattering cross sec-
tion should be constant in y, while the antineutrino scattering cross section
should fall off as (1 — y)2. The measured y dependence of these deep inelas-
tic cross sections is shown in Fig. 17.5. The qualitative behavior predicted by
the parton description is clearly evident; the discrepancy from the strict pre-
diction can be accounted for by a small antiquark component in the nucleon
wavefunction.
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The Parton Distribution Functions

Given that the parton model predictions for electron and neutrino deep inelas-
tic scattering do fit the data, one can make use of these relations to extract
the parton distribution functions and so learn something about the structure
of the proton.* A set of distribution functions, chosen to fit all available data,
is shown in Fig. 17.6. Since all of these distributions, especially those for anti-
quarks, peak sharply at small z, we have plotted z ff(z) for each species. As
we remarked in Chapter 14, a small violation of Bjorken scaling is observed
experimentally, so that these distribution functions change slowly with Q2.
The figure shows these functions at Q% = 4 GeV?. We will see in Section 17.5
that this violation of Bjorken scaling is an effect of higher-order corrections
in QCD; we will also argue that the measurement of this scaling violation
allows one to determine the parton distribution function for gluons, fq(z).
Anticipating this result, we have also plotted this function in the figure. Not
surprisingly, one finds that the u and d quarks are most likely to carry a sub-
stantial fraction of the proton’s momentum, while antiquarks and gluons tend
to have small longitudinal fractions.

Since the parton distributions are the probabilities of finding various pro-
ton constituents, they must be normalized in a way that reflects the quantum
numbers of the proton. The proton is a bound state of uud, plus some ad-
mixture of quark-antiquark pairs. Thus it should contain an excess of two u
quarks and one d quark over the corresponding antiquarks. These considera-
tions imply the constraints

1 1

/ dz[fu(z) — fa(®)] =2, / dzlfa(x) - fa@] =1.  (17.36)
0 0

So far we have discussed the parton distributions only for the proton.
Similar considerations, however, apply to any other hadron. Each hadron has
its own set of parton distribution functions; these obey sum rules analogous
to (17.36) but reflecting the particular quantum numbers of the hadron. The
parton distribution functions should also reflect the symmetries that link dif-
ferent hadrons. For example, since the neutron can be generated, to a few
percent accuracy, by interchanging the role of u and d quarks in the proton,
its distribution functions obey

fule) = fa(z),  fi(x)=fulz), fil@)=fg  etc.  (17.37)

In these equations, and henceforth, a distribution function without a special
label refers to the proton. The parton distribution functions of the antiproton
are given by the exact relations

fB(a) = falz),  fH(x) = fulz), ete (17.38)

*A detailed discussion of the extraction of parton distribution functions from data
can be found in G. Sterman, et. al., Rev. Mod. Phys. 67, 157 (1995).
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Figure 17.6. Parton distribution functions zf¢(z) for quarks, antiquarks,
and gluons in the proton, at Q2 = 4 GeVZ2. These distributions are obtained
from a fit to deep inelastic scattering data performed by the CTEQ collabora-
tion (CTEQ2L), described in J. Botts, et. al., Phys. Lett. B304, 159 (1993).

In any case, the total amount of momentum carried by the partons must
sum to the total momentum of the hadron. This implies

1
Jdzolfut@)+ 1a(@) + fala) + £a(0) + fy(@)] = 1. (17.39)
0

The distribution functions of quarks and antiquarks in the proton, as extracted
from deep inelastic scattering data, contribute only about half of the total
value required for this integral. The remaining energy-momentum must be
carried by the gluons.

17.4 Hard-Scattering Processes in Hadron Collisions

If one collides hadrons with other hadrons at very high energy, most of the
collisions will involve only soft interactions of the consituent quarks and glu-
ons. Such interactions cannot be treated using perturbative QCD, because
a; is large when the momentum transfer is small. In some collisions, how-
ever, two quarks or gluons will exchange a large momentum p,; perpendicular
to the collision axis. Then, as in deep inelastic scattering, the elementary in-
teraction takes place very rapidly compared to the internal time scale of the
hadron wavefunctions, so the lowest-order QCD prediction should accurately
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describe the process. Again, we should find a parton-model formula that is
built from a leading-order subprocess cross section, integrated with parton
distribution functions. For the case of proton-proton scattering, these func-
tions will be the same ones that are measured in lepton-proton deep inelastic
scattering.

For example, if the hard parton-level process involves quark-antiquark
scattering into a final state Y, the leading-order QCD prediction takes the
form

1
17.40
= [an [a 3 1yt olas@P) +3,(wP) = 1), ¢ !
0 f

where the sum runs over all species of quarks and antiquarks—u, d, 4, d,....
(Here again, X denotes any hadronic final state.) The same formula, with
appropriately modified distribution functions, applies to any other hadron-
hadron collision. This formula will be a good first approximation if, by some
invariant measure, a large momentum is transfered in the ¢g reaction. In this
section we will discuss several examples of processes of this type.

Lepton Pair Production

The simplest example to analyze is the reaction in which a high-mass lepton
pair £T¢~ emerges from ¢g annihilation in a proton-proton collision. This
reaction, called the Drell-Yan process, is illustrated in Fig. 17.7. In this case,
the underlying ¢g reaction is described by an elementary QED cross section.
To the leading order in QCD, the cross section that we require, o0(qg — £7£7),
is simply related to the cross section o(ete™ — qg) given in (17.4). The only
difference between the two calculations is that we must average rather than
sum over the color orientations of the quark and antiquark. This gives two
extra factors of 1/3. Thus,

Q2 4m (17.41)

o(qf(’]f — 0t =

If both final-state lepton momenta are observed, it is possible to recon-

struct the total 4-momentum ¢ of the virtual photon. It is also possible to

determine the longitudinal fractions of the initial quark and antiquark, as we
will now show. Let

M? =¢? (17.42)

be the square of the invariant mass of the Drell-Yan pair. (Do not confuse
this quantity M with the renormalization scale.) If the initial partons have
small transverse momentum, the transverse momentum of the virtual photon
will also be small. Its longitudinal momentum, however, will in general be
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Figure 17.7. The Drell-Yan process: pp — £T£~+ anything.

substantial. We parametrize this using the rapidity, Y, of the virtual photon,
as defined in Eq. (3.48):
q° = M cosh, (17.43)

where ¢° is measured in the pp center of mass frame. We will express the
longitudinal fractions of the quarks, and hence the Drell-Yan cross section, in
terms of the observables M2 and Y.
In the pp center of mass frame, the proton momenta take the explicit
forms
Plz(Ea()?O)E), P2:(E70707—E)a

where E satisfies s = 4E2. Ignoring their small transverse momenta, we can
write the constituent quark and antiquark momenta as x; and x5 times these
vectors, so that

qg=21P +x2P; = ((:cl—l—xg)E,O, 0, (a:l—a:Q)E). (17.44)
By computing the invariant square of this vector we find
M? = z1295. (17.45)

Similarly, comparing (17.43) with (17.44), we find

coshY = T1+ T2 a:1 Z2
- 2,/12111,‘2

which implies

expY =,/ L. (17.46)
M)
These equations can be inverted to determine x; and xo:
M M
Iy = ﬁey, T = —\/—§e~y. (17.47)

Relations (17.45) and (17.46) let us convert the integral in Eq. (17.40) into
an integral over the parameters M2, Y of the produced leptons. The Jacobian
of the change of variables is

O(M2)Y) | w28 ris | M?
O(x1,z2) 1/22; —1/2z9 Tz
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The cross section for lepton pair production is therefore

d?o

1 4o
—szdY(PP —ete” +X) = leff(ml) T2 fF(z2) - ngc .
f

o (1748)
where z; and zy are given by Eq. (17.47). It is remarkable that the cross
section for the Drell-Yan process is determined point by point by information
derivable from deep inelastic scattering. Unfortunately, the relation between
the two processes implied by (17.48) receives a correction of order as(M) that
turns out to be numerically large, and which must be included to check this
prediction against experiment.

General Kinematics of Pair Production

In deriving Eq. (17.48), we used the total cross section (17.41) for the parton-
level process, integrated over the angular distribution of the outgoing leptons.
In principle, we could have retained the angular information and derived a
triply differential distribution. This would be the most complete prediction
possible for a two-body parton-level reaction. It will be useful to work out the
kinematics of such reactions, taking a more general viewpoint. In the generic
situation, a parton of type 1 from proton 1 scatters from a parton of type 2
from proton 2, yielding partons of types 3 and 4, with a squared momentum
transfer £. This generic process is shown in Fig. 17.8. In the Drell-Yan process,
partons 3 and 4 are leptons. But these partons could also be quarks or gluons,
which materialize as hadronic jets. We assume that all partons can be treated
as massless. In parton variables, the cross section for this process is
d3o do

m(pp — 344+ X) = fi(z1)fa2(2) p

(1+2—-3+4). (17.49)

Let us now translate this formula to observable parameters of the final state.

In the leading order of QCD, the transverse momenta of partons 3 and 4
must be equal and opposite, but their longitudinal momenta are not con-
strained. We will take the three parameters of the final state to be the com-
mon magnitude of the parton transverse momenta p; and the longitudinal
rapidities ys, y4 of the final-state partons, defined by the formulae

E; = p, coshy;; p;|| = pLsinhy;. (17.50)

The longitudinal rapidity y; gives the boost of the particle ¢ from the frame
where it has zero longitudinal momentum.’ Recall from Section 3.3 that ra-
pidities simply add under collinear boosts. The transverse momentum is in-
variant under longitudinal boosts. Thus, (y3,y4,p1) is a set of variables with
convenient Lorentz transformation properties with respect to boosts along the

tIn the literature on hadron collisions, y; is usually called simply the rapidity,
with the restriction to longitudinal boosts being understood.
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Figure 17.8. A generic two-body parton scattering process.

collision axis. We will now see that these three parameters are related in a
straightforward way to the underlying variables z;, zo, .

Consider the center of mass frame of the colliding partons. The total
energy in this frame is v/3. Let us use a subscript * to denote other quantities
measured in this frame, for instance, 6. for the parton scattering angle. Then

D3| = % Scosb,, P31x = % §siné,, (17.51)

and py. is oriented just oppositely. This frame is also the center of mass frame
of partons 3 and 4, so

Ysx = —Yax = Us. (17.52)

Since rapidities transform by shifts, we can solve for y, and for the rapidity
Y by which one must boost to reach this frame:

Ys = 3(y3 — ya), Y = 1(ys + va). (17.53)

The scattering angle 6, is determined from y, by combining (17.51) with the
relation E, = p, coshy,:

e = cosh y,. (17.54)
Then the Mandelstam variables
§ = 4p22i f=—2151—cosb,) (17.55)
sin?6,’ 2
can be expressed as
5= 4p? cosh®y,, t = —2p% coshy, e ¥ (17.56)

We can combine the first of these expressions with (17.47) to determine xz;
and zo: ) 0
xp = % coshy, e¥, Ty = % coshy, e Y. (17.57)

To translate the cross section (17.49) to the final parton observables, we
need the Jacobian

a(xhx%f) _ 8£3J;
6(y37 y4,p_l.)

9 &
cosh? y, = p:s' (17.58)
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Multiplying Eq. (17.49) by this factor gives

Ao 2p.15 do
— = —(1+2—->3+4). 17.59
dyde4dpJ_ fl(xl)f2(x2) s dt( - ) ( )

This can be simplified a bit using the relations § = z;z2s and p,dp, =
d*p, /27, yielding the final result:

d*o 1do
sy~ ) B0

(1+2—3+4). (17.60)

In this formula, z1, z2, and the Mandelstam variables of the parton subprocess
are given by Eqgs. (17.57) and (17.56).

This result gives us the complete distribution of final-state leptons or jets
in any two-body reaction of partons. For example, to find the distribution of
final-state leptons in the Drell-Yan process, we would insert into this formula
the differential cross section for quark annihilation into leptons,

2ra? 12 + 42

do, _ _ 1
—(g5q; = 1 07) = §Q§ R R (17.61)

dt

The formula can be applied equally well to other two-body parton reactions,
if we know the relevant parton-level differential cross sections.

Jet Pair Production

The most common two-body parton reactions are those of QCD, involv-
ing quarks, gluons, or both. Unfortunately, it is very difficult to distinguish
hadronic jets initiated by gluons from those initiated by quarks. It is even more
difficult to determine experimentally whether the initial partons in a hard-
scattering process were quarks or gluons. Thus, the predictions of QCD for
hard-scattering processes are most often quoted as cross sections for jet pro-
duction in hadronic collisions, summing over all possible reactions of quarks,
antiquarks, and gluons. In any event, to derive these predictions, we must
work out the basic parton-parton cross sections.

The simple two-body scattering processes of quarks, antiquarks, and glu-
ons are the elementary processes of QCD perturbation theory, in the same
sense that the reactions studied in Chapter 5 are the elementary processes of
QED perturbation theory. They are the basic hadronic hard-scattering reac-
tions that appear in QCD at the leading order in a;. In the remainder of this
section, we will write down the cross section formulae for the various possible
quark and gluon subprocesses. All of these cross sections will be of order a?2.
In practice, this a, should be evaluated at a typical momentum transfer of
the reaction, for example, at Q% = ¢.

The simplest subprocess is the scattering of different species of quarks,
for example, u + d — u + d. At order a2, this process occurs via the Feyn-
man diagram shown in Fig. 17.9. This process is analogous to electron-muon
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U d
Figure 17.9. Feynman diagram contributing to ud — ud.

scattering in QED, for which we wrote the cross section in Eq. (17.22):

do, _ B o2ra? [§2 + 42

17.62
dt S ( )

To convert this to the cross section for quark scattering in QCD, we need only
replace the QED coupling e? by g2 times an SU(3) group theory factor. The
QCD diagram contains the factor

(*)eri(t%)575
where 7, ¢ are the initial and final colors of the u quark and j, 7’ are the initial
and final colors of the d quark. To compute the cross section, we must square

this factor, sum over final colors, and average over initial colors. This gives

the factor
LN tr[tt?] - tr[tbt?] = 8= (17.63)
3°3 9’ '

where we have used Eq. (15.78) and C(r) = 1/2 for the fundamental repre-
sentation of SU(3). Thus for ud scattering,

4ra? [§2 + 42
982 | 2 |

[C(r)])* 67069 = 2

Ol =
N=R i
Al

ﬁ(ud —ud) = (17.64)
dt

The same formula applies for the scattering of any two different quarks,
or, by crossing, to the scattering of a quark and an antiquark of a different
species. Crossing from the ¢ to the s channel gives the cross section for ¢g
annihilation into a different species:

%(uﬂ —dd) =

2 52 ~2
Amay F—“‘—} (17.65)

932 2

The scattering of a quark with an antiquark of the same species is more
complicated, since now there are two Feynman diagrams, shown in Fig. 17.10,
which interfere with one another. The analogous QED process is Bhabha
scattering, ete™ — ete™, for which we worked out the cross section in Prob-
lem 5.2:

%(eﬂa— Sete) = 27;—?2 [(%)2 + (2)2 + ﬁz(l + %)2] (17.66)
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— u
u u

Figure 17.10. Feynman diagrams contributing to uu — uu.

However, it is not quite straightforward to transcribe this to QCD, because
different terms receive different color factors.

This process is most easily analyzed using initial and final states of def-
inite helicity. For massless fermions, helicity is conserved, so the reaction
efe; — ejeg can receive a contribution only from the s-channel diagram,
while efer — efep can receive a contribution only from the ¢-channel dia-

gram. The corresponding cross sections are

do _ _ 4dra? /t\2
d—f(eEGL - eZeR) = —(‘) )

22 ~

do ma? (312 7.67)
+ - +,7) —

E(eReR — eRCR) = —?—(%-) .

The cross section for eﬁez — e‘{ez must vanish. The fourth possible pro-
cess involving eg receives contributions from both s- and ¢-channel diagrams.
Computing this contribution explicitly, one finds

do 47ra2A2<1 1)2
U 5

t

the cross term in the square is the interference term between the two diagrams.
The invariance of QED under parity implies that the values of all of these cross
sections remain identical when all helicities are reversed. It is easy to check
that the spin-averaged cross section is indeed given by (17.66).

To convert Eq. (17.66) to a QCD cross section averaged over colors, we
can assign the color factor (17.63) to the square of any individual diagram.
However, the cross term between the two diagrams in Fig. 17.10 receives a
different color factor:

1\2 1, b -
(g) (e (85 - (8000 (8)i5 = 9 trft*¢°4¢"]. (17.69)
To evaluate this factor, we can make use of Eq. (16.79):
1 4 3\4 2
apbyalh _ = LT LR (N [ —
et = (G0 - 5G@)et = (3-3)3= 3

So the color factor (17.69) equals —2/27.
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24X

Figure 17.11. Feynman diagrams contributing to ¢gg — g¢g.

Assembling the color factors and the helicity cross sections, we find the
following result for the uu scattering cross section:

do, = 4mal[§+44® #+4a® 242
g(uu—»uu)— 952 i

= = 17.70
t2 §2 3 &t ( )

By crossing between the s and u channels, we find the corresponding cross
section for uu — wu:
do (uu ) dma? [4%2 482 2+ 28

- — uu) = - - - =——=|.
dt 952 12 a2 3t

(17.71)

The process uu — uu has the same cross section. This completes our catalogue
of cross sections for the scattering of quarks and antiquarks.

We turn next to processes that involve both quarks and gluons. We will
begin with the reaction gg — gg. This is the analogue of the QED annihilation
of eTe™ to v, discussed in Section 5.5. The QED cross section is

do, , _ 2ra? [a ¢

p (ete™ - yy) = 2 [f + ﬂj| (17.72)
Since the photons are identical particles, this expression should be integrated
over only half of the 47 solid angle.

The QCD reaction is considerably more complicated. As we saw in Sec-
tion 16.1, this process receives contributions from three Feynman diagrams,
shown in Fig. 17.11. These contributions must be summed over the transverse
polarization states of the gluons. If one chooses instead to evaluate the sum
over gluon polarizations by the replacement

3 ere - —ghv, | (17.73)

we saw in Section 16.3 that one must also include the (negative) cross section
for gg annihilation to a ghost-antighost pair.

The leading behavior of the gz — gg cross section as £ or & — 0 is not so
hard to evaluate. In either case, only the single diagram with the corresponding
kinematic singularity contributes. The color factor associated with the square
of either of these diagrams is the square of

()15 (t") ks
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A X X

Figure 17.12. Feynman diagrams contributing to gg — gg.

summed over the gluon colors a, b and averaged over the g and g colors ¢, k.
This gives

16
27
Thus the most singular terms are given by the QED result, with a replaced

by a5, multiplied by 16/27. The complete evaluation of the cross section is
left for Problem 17.3; the result is

(%)2 -tr[t2t°tbt?) = % -:3(02(7~))2 (17.74)

i (17.75)

da(_ ) 2ra?a ¢ 9(£2+a2)
sy - = = = — .
@ U799 = g |7 G 32

The cross sections for the remaining quark-gluon processes can be ob-
tained from this result by crossing. The result for the inverse reaction gg — ¢q
involves the same squared matrix element as (17.75); the only difference is

that we average over gluon rather than quark colors, giving a relative factor
of (3/8)2. Thus,

99 (99— aa) = (17.76)

dt 652 |{ a4\ &

a2 [ﬁ t 9 (52 +122>]
For the reaction qg — qg, cross the s and t channels in Eq. (17.75) and
multiply by 3/8 since there is one gluon color average. This gives

Aoy [ B_s, 9(52 b “2)] (17.77)

do
i 932 PN

dt

(q9 — q9) =

S

| w»

The cross section for gg — gg is identical.
The final elementary process. of QCD is gluon-gluon scattering. This has
no QED analogue, and is rather tedious to evaluate. There are four leading-
order diagrams, shown in Fig. 17.12. We discuss this process also in Prob-
lem 17.3. The final result for the spin- and color-averaged cross section is
9ra? to  su &t

252 2 2 ar]

do (99 — g99) = (17.78)

d

The various parton cross sections listed in this section can be combined
with the parton distribution functions to predict the cross section for jet pro-
duction in hadron-hadron collisions. As an example, we show in Fig. 17.13 a
comparison of the invariant mass () distribution predicted for parton-parton
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Figure 17.13. Two-jet invariant mass distribution in pp collisions at E¢m =
1.8 TeV, as measured by the CDF collaboration, F. Abe, et. al., Phys. Rev.
D48, 998 (1993). The measurement is compared to a leading-order QCD
calculation using the CTEQ structure functions described in Fig. 17.6. The
three lower curves show the invariant mass distributions for the three compo-
nents of the theoretical prediction: quark-quark (and antiquark) scattering,
quark-gluon scattering, and gluon-gluon scattering.

scattering with the invariant mass distribution of two-jet events observed in
high-energy pp collisions. The overall normalization of the theoretical predic-
tion is uncertain by about a factor of 2 due to the ambiguity of the choice
of Q? used to evaluate as(Q?) in the parton cross sections, and due to simi-
lar ambiguities in deriving parton distributions from deep inelastic scattering
cross sections. This uncertainty is reduced to about 30% when corrections of
order a; are included. Still, it is remarkable that the lowest-order QCD pre-
diction tracks the observed distribution as a function of the two-jet invariant
mass as it falls by six orders of magnitude. Thus, for the jet production cross
section, as for hard processes involving leptons, QCD indeed gives a reason-
able description of the behavior of the strong interactions at large momentum
transfer.
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17.5 Parton Evolution

Now that we have examined the predictions of QCD at the leading order for
several strong interaction processes, we should investigate the corrections to
these predictions at the next order in a,;. We saw in Section 17.2 that the
corrections from individual diagrams may contain mass singularities, singu-
larities associated with collinear emission processes which appear in the limit
of zero mass. For the process of eTe™ annihilation to hadrons, we saw that
these mass singularities, and the infrared divergences from soft gluon emis-
sion, cancel in the expression for the total cross section. It can be shown that
this is a general feature of processes in which quarks and gluons are produced
in the collision of leptons or photons. However, when quarks or gluons ap-
pear in the initial state of a parton subprocess, the corrections to the process
will, in general, have mass singularities that do not cancel. In this section we
will demonstrate this effect and work out its physical interpretation. We will
find that these singular terms predict a violation of Bjorken scaling by terms
depending on the logarithm of the momentum scale. In fact, they lead to a
precise set of differential equations that govern the momentum dependence of
the parton distributions.

The basic phenomena associated with mass singularities in QCD are al-
ready present in the physics of collinear photon emission in QED at high
energies, and so it is most straightforward to begin by studying that case. In
this section, we will show that collinear photon emission leads to an analogue
of a parton distribution function for the electron. We will derive a differen-
tial equation describing this distribution function, first constructed by Gribov
and Lipatov. Finally, we will generalize this equation to QCD, following the
construction of Altarelli and Parisi.}

In Chapters 5 and 6, we studied several examples of QED processes
that involved diagrams with ¢- or u-channel singularities. In these cases, we
found that the total cross section was generally enhanced by an extra factor
log(s/m?) in the high-energy limit. For example, in Eq. (5.95) we saw that
the u-channel exchange diagram in Compton scattering, Fig. 17.14(a), leads
to an integral that, in the high-energy limit, takes the form

dcosf
(14 cosf)’

The singularity as cos@ — —1 is cut off by the electron mass, leading to the
logarithmic enhancement factor. Thus the collinear photon emission costs a
factor that is not o but rather alog(s/m?). Emission of multiple collinear
photons, as in Fig. 17.14(b), gives contributions of order (alog(s/m?))™. To
improve the accuracy of perturbation theory, it would be useful to find a pro-
cedure for summing these terms to all orders in a. In QCD, the corresponding

V. N. Gribov and L. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972); G. Altarelli
and G. Parisi, Nucl. Phys. B126, 298 (1977). We also strongly recommend reading
the papers of J. Kogut and L. Susskind, Phys. Rev. D9, 697, 3391 (1974).
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(a) (b)

Figure 17.14. Diagrams with mass singularities associated with collinear
photon emission: (a) leading order; (b) higher order.

Figure 17.15. General form of diagrams with mass singularities in QED.

factor for collinear gluon emission would be

2
Qs (Q2) log Q_21
7
where p is the momentum scale where nonperturbative QCD effects become
important. Comparing with Eq. (17.17), we see that this product is of order 1.
Thus, in this case, the resummation of large logarithms is essential if we are
to make any quantitative predictions.

In QED, diagrams with mass singularities associated with one collinear
emission are of one of the forms shown in Fig. 17.15. In each case, the cir-
cle represents a scattering process with large momentum transfer. The mass
singularity appears when the denominator of the intermediate propagator van-
ishes, that is, when the intermediate state is almost on-shell. Thus, it is natural
to consider the first diagram in Fig. 17.15 to be a transition to a real photon
and an almost-real electron, followed by the interaction of the electron with
the remaining particles in the amplitude. The second diagram should have a
similar interpretation with an almost-real photon in the intermediate state.

The only subtlety comes in defining the polarization of the intermediate-
state particle. For the case of an intermediate-state electron, the numerator
of the propagator is

¥=> u(k)u (k). (17.79)

Thus, when k2 — 0, the photon emission vertex and the remaining part of
the amplitude are contracted with on-shell polarization spinors for a massless
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electron. The analogous statement for the diagram with the photon in the in-
termediate state would be that the electron emission vertex and the remaining
photon amplitude should be contracted with physical transverse polarization
vectors for the intermediate-state photon. Since the numerator of the photon
propagator is g"¥, it is not obvious that the photon propagator reduces in this
way. But it is true. To see this, use the expansion for g#” in terms of massless
polarization vectors given in Eq. (16.20):

g =€ e + el Zeﬂeﬁ. (17.80)

Here €}, are transverse polarization vectors. The forward polarization vector
¢!y is proportional to the photon momentum ¢*. When we contract €y with
the QED scattering amplitude on the right, we will obtain zero by the Ward
identity, and the contraction of €3* with the electron emission vertex similarly
gives zero. Thus, for the purpose of computing the singular term as the photon

momentum ¢ goes on-shell, we may replace
—zg’“’ '
el Z €€ (17.81)

and evaluate the photon emission and absorption amplitudes with transverse
polarization vectors.

Matrix Element for Electron Splitting

By replacing the numerator of the intermediate propagator with a sum over
polarization vectors, we decouple the photon or electron emission vertex from
the rest of the diagram. We will now evaluate this vertex explicitly between
physical polarization states of massless particles. The kinematics is shown in
Fig. 17.16. The two final particles should be almost collinear, with a small rel-
ative transverse momentum. We can choose the incident electron momentum
to lie along the 3 axis and the outgoing momenta to lie in the 1-3 plane. Let
z be the fraction of the energy of the initial electron that is carried off by the
photon. Then the three 4-momenta can be written as

p=(p,0,0,p),
q = (2p,p1,0,2p), (17.82)
k=~ ((1—2)]), “pLaO’(l_z)p)~

These three vectors satisfy p> = ¢® = k? = 0, up to terms of order p? .

In the process where a real photon is emitted, we should have p? and ¢?
exactly zero, and k2 slightly off-shell by an amount of order p? . We will need
to know the value of k2, which appears in the virtual electron propagator. So
let us modify Egs. (17.82) to satisfy the condition g% = 0 up to terms of order
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k

Figure 17.16. Kinematics of the vertex for emission of a collinear electron
or photon.

p%, rewriting ¢ and k as

Pl

q= (zp’pL1OaZ - g)’
P , (17.83)
b1
k=((1— — 1- —).
(( Z)p, Pi, Oa( z)p + 2Zp)
With this modification,
P2
k= —pl - 2(1-2) > + O(pl).
Thus, if the photon is real and the electron is virtual, we have
p?
=0, Kk=-=L (17.84)

z

Reciprocally, in the process with a real electron and a virtual photon,

k2 =0 2 _ M (17.85)
R N T '

These more accurate expressions will be needed only in the propagator of the

virtual particle. The matrix element of the electron-photon vertex begins in

order pj, so it is not significantly affected by the modification of (17.82) to

(17.83), and is the same (to lowest order) no matter which particle is virtual.

We now calculate the matrix elements of the QED vertex between massless

states of definite helicity. If the initial electron is left-handed, the final electron

must also be left-handed, by helicity conservation. Then the photon emission
vertex is given by

iM = (k) (—iev,)ur(p)ef (q), (17.86)

where the photon polarization vector may be either left- or right-handed.
Recalling the helicity-basis expressions

7u=(0 UO"), uL(p)=\/ﬁ(£(§))) (for m = 0),

Ou
we can write more explicitly

iM = iey/2T=2)py/3p€ ()0 € (D) e5(a). (17.87)
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