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Problems

20.1 Spontaneous breaking of SU(5). Consider a gauge theory with the gauge
group SU(5), coupled to a scalar field ® in the adjoint representation. Assume that
the potential for this scalar field forces it to acquire a nonzero vacuum expectation
value. Two possible choices for this expectation value are

1 2

(®)=A4 1 and (®) =B 2
1 -3
—4 -3

For each case, work out the spectrum of gauge bosons and the unbroken symmetry
group.

20.2 Decay modes of the W and Z bosons.

(a) Compute the partial decay widths of the W boson into pairs of quarks and
leptons. Assume that the top quark mass m; is larger than my, and ignore
the other quark masses. The decay widths to quarks are enhanced by QCD
corrections. Show that the correction is given, to order a;, by Eq. (17.9). Using
sin? 6, = 0.23, find a numerical value for the total width of the W .

(b) Compute the partial decay widths of the Z boson into pairs of quarks and
leptons, treating the quarks in the same way as in part (a). Determine the total
width of the Z boson and the fractions of the decays that give hadrons, cha.rged
leptons, and invisible modes vv.

20.3 ete~ — hadrons with photon-Z?° interference

(a) Consider a fermion species f with electric charge Qs and weak isospin I % for its
left-handed component. Ignore the mass of the f. Compute the differential cross
section for the process ete™ — ff in the standard electroweak model. Include
the effect of the Z0 width using the Breit-Wigner formula, Eq. (7.60). Plot the
behavior of the total cross section as a function of CM energy through the Z°
resonance, for u, d, and p.

(b) Compute the forward-backward asymmetry for ete~ — ff, defined as
A (fol fo )d cos 8(do /d cos6)
FB = fO + f )dcos6 da/dcos&)

as a function of center of mass energy.

(c) Show that, just on the Z9 resonance, the forward-backward asymmetry is given
by
Fo_3 f
AF B — Z ERALR

(d) Show that the cross section at the peak of the Z° resonance is given by

127 0(2° — ete)I(2° — ff)
Opeak = EQZ‘ FQZ ’
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where T'z is the total width of the Z9. Notice that both the total width of the
Z9 and the peak height are affected by the presence of extra invisible decay
modes. Compute the shifts in I'z and opeax that would be produced by a hy-
pothetical fourth neutrino species, and compare these shifts to the cross section
measurements shown in Fig. 20.5.

Neutral-current deep inelastic scattering.

In Eq. (17.35), we wrote formulae for neutrino and antineutrino deep inelastic
scattering with W= exchange. Neutrinos and antineutrinos can also scatter by
exchanging a Z9. This process, which leads to a hadronic jet but no observable
outgoing lepton, is called the neutral current reaction. Compute do/dxdy for
neutral current deep inelastic scattering of neutrinos and antineutrinos from
protons, accounting for scattering from u and d quarks and antiquarks.

Next, consider deep inelastic scattering from a nucleus A with equal numbers
of protons and neutrons. For such a target, fu(z) = fy(z), and similarly for
antiquarks. Show that the formulae in part (a) simplify in such a situation. In
particular, let R, R” be defined as

, _ do/drdy(vA — vX) 5  do/dzdy(vA — vX)

" do/drdy(vA — p—X)’ " do/dzdy(vA — ptX)’

Show that R” and R” are given by the following simple formulae:
v_1_ .9 5.4
RY = 5 —sin 0w + g sin 0w (1 +7),
> 1 5 . 1
RY = 3 sin? 0, + 9 sin® 0, (1 + ;),
where

_ do/dzdy(vA — pt X)
" do/dxdy(vA — p—X)’

These formulae remain true when R” and R” are redefined to be the ratios of
neutral- to charged-current cross sections integrated over the region of z and y
that is observed in a given experiment.

By setting r equal to the observed value—say, r = 0.4—and varying sin? 0w,
the relations of part (b) generate a curve in the plane of R versus R” that is
known as Weinberg’s nose. Sketch this curve. The observed values of RY, R” lie
close to this curve, near the point corresponding to sin? 6, = 0.23.

A model with two Higgs fields.

Consider a model with two scalar fields ¢1 and ¢2, which transform as SU(2)
doublets with Y = 1/2. Assume that the two fields acquire parallel vacuum
expectation values of the form (20.23) with vacuum expectation values vy, va.
Show that these vacuum expectation values produce the same gauge boson mass
matrix that we found in Section 20.2, with the replacement

v - (vf +v%).

The most general potential function for a model with two Higgs doublets is quite
complex. However, if we impose the discrete symmetry ¢; — —¢1, ¢p2 — @2,
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the most general potential is

V(61,¢2) = —pddl b1 — p3dlda + Ai(161) + Aa(4]62)?
+ A3(¢1 1) (@ d2) + Aa(] h2) (dh1) + A5 (61 2)% + hc.).

Find conditions on the parameters u; and \; so that the configuration of vac-
uum expectation values required in part (a) is a locally stable minimum of this
potential.

In the unitarity gauge, one linear combination of the upper components of ¢

and ¢2 is eliminated, while the other remains as a physical field. Show that the
physical charged Higgs field has the form

¢t =sin BT —cos B3,
where [ is defined by the relation
v2

tanf = —.
v1

Assume that the two Higgs fields couple to quarks by the set of fundamental
couplings _ _ _

Lo = —NJ QL - $1d% — N/ e QLadlyuf + hec.
Find the couplings of the physical charged Higgs boson of part (c) to the mass

eigenstates of quarks. These couplings depend only on the values of the quark
masses and tan 8 and on the elements of the CKM matrix.




Chapter 21

Quantization of Spontaneously
Broken Gauge Theories

In Chapter 20 we saw that when a gauge symmetry is spontaneously broken,
the gauge bosons acquire mass. This phenomenon allowed us to construct a
realistic theory of the weak interactions. Up to this point, however, we have
discussed spontaneously broken gauge theories only in a simplistic way. To
isolate the physical degrees of freedom, we have used the device of going to the
unitarity gauge. However, it is not at all clear what the rules of perturbation
theory are in this gauge, or how the unitarity gauge constraint is maintained
when we compute Feynman diagrams. We have also seen that the Goldstone
bosons that are absorbed into the massive gauge bosons play an important
role in formal arguments about these theories, so we would like to quantize
these theories in a gauge that does not eliminate these particles from the
beginning.

In this chapter we will address these problems, by carrying out the for-
mal gauge-fixing of theories with spontaneously broken gauge symmetry us-
ing the Faddeev-Popov method. We will define a class of gauges, called the
R, gauges, almost all of which contain the Goldstone bosons of the original
spontaneous symmetry breaking. These particles cancel the effects of other
unphysical particles in the formalism to maintain the unitarity of the theory.
These cancellations are a more intricate version of the cancellations between
gauge and ghost degrees of freedom that we saw in Chapter 16. However, we
will see in Section 21.2 that a theory does not forget that it contains Goldstone
bosons and that, under some circumstances, the properties of the Goldstone
bosons in the theory without gauge couplings can carry over to the theory
with massive gauge bosons.

Finally, having defined the perturbation theory and clarified the role of the
Goldstone bosons in spontaneously broken gauge theories, we will carry out
some explicit loop calculations of interest in the theory of weak interactions.
Here we will see applications of the ideas of Chapter 11, that a theory with
spontaneously broken symmetry can be renormalized with the counterterms
of the symmetric Lagrangian. In Section 21.3 we will show through some
examples that this result applies with equal force to gauge theories, and that
it endows the weak-interaction gauge theory with substantial predictive power.

731



732 Chapter 21  Quantization of Spontaneously Broken Gauge Theories

21.1 The R; Gauges

In our discussion of the low-energy effective Lagrangian for weak interactions,
we proposed in Eq. (20.89) the following expression for the propagator of a
massive gauge boson:

2 g™

(4*(p)A¥(=p)) (21.1)

o
This expression is a natural first guess, generalizing the Feynman-‘t Hooft
gauge. However, it is unsatisfactory in a number of ways.

The most important of these defects concerns the treatment of gauge
boson polarization states. The propagator (21.1) contains four components,
corresponding to the transverse, longitudinal, and timelike polarizations. We
saw in Chapters 5 and 16 that, for massless gauge bosons, the unphysical
longitudinal and timelike components cancel in computations. For a massive
gauge boson, however, the longitudinal polarization state corresponds to a
real physical particle; we do not want it to cancel. Expression (21.1) does not
take this change into account.

An Abelian Example

To understand this and other formal problems that arise for gauge theories
with spontaneously broken symmetry, we need to carefully redo the Faddeev-
Popov quantization of these theories. To begin, we will quantize the sponta-
neously broken Abelian gauge theory introduced in Eq. (20.1):
2
L=—3(Fuw)?+[Dug|” = V(¢), (21.2)

with D, = 0, + ieA,. Here ¢(x) is a complex scalar field. However, it will
be most convenient to analyze the model by writing ¢ in terms of its real
components,

b= i), T

Then the infinitesimal local symmetry transformation is
1
6¢' = —a(e)s’, 8¢ =al@)¢!, A, =--dua (21.4)

Let us assume that V(¢) forces the scalar field to acquire a vacuum ex-
pectation value: (¢') = v. Then we should change variables by a shift:

¢ (z) = v + h(z); #* = . (21.5)

The field ¢? or ¢ is the Goldstone boson. The Lagrangian (21.2) now takes
the form

L=—Y(Fu)?+ 1(0h — edu)’ + L(Bup + eAu(v + h))* = V(g). (21.6)
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This Lagrangian is still invariant under an exact local symmetry,
1 .
6h = —a(z)yp, b = a(z)(v+ h), 8A, = —ga#a. (21.7)

Thus, in order to define the functional integral over the variables (h,p, A,).
we must introduce Faddeev-Popov gauge fixing.
Starting from the functional integral

Z= / DADKDy '] Akl (21.8)

we can introduce a gauge-fixing constraint as we did in Section 9.4. Following
the steps leading from Eq. (9.50) to Eq. (9.54), we find

; oG
Z=C- / DADKDy ] FAR9 6(G(A, h, o)) det(g), (21.9)
where C is a constant proportional to the volume of the gauge group and
G(A,h,p) is a gauge-fixing condition. Alternatively, we can introduce the
gauge-fixing constraint as §(G(z) — w(z)) and integrate over w(z) with a
Gaussian weight, as in the derivation of Eq. (9.56). This gives

Z=cC'. / DADIDy exp [z / d*z(L[A, h, o] — %(0)2)] det(%). (21.10)
The gauge-fixing function G is arbitrary, but we can simplify our formalism
by choosing it appropriately.

An especially convenient choice of the gauge-fixing function is

1
V€

When we form G2, the term quadratic in A, will provide the same gauge-
dependent addition to the gauge field action that we saw in the derivation
of Egs. (9.58) and (16.29). In addition, the cross term between A, and ¢ is
engineered to cancel the quadratic term of the form 0,,pA* coming from the
third term of (21.6). With this choice, the quadratic terms of the gauge-fixed
Lagrangian (£ — $G?) are

G = —=(9,A" — €evyp). (21.11)

1 1
£2 =~ A0+ (1= Do — (o).
X ) ¢ . . (21.12)
1 2 L1 _92;2 1 2§/ N2 2
+ S(0uh)? = SR + (0,9 — S ().
The mass term for the h field comes from the expansion of V(¢), as in (20.6).
The mass term for the gauge field comes from the Higgs mechanism, that is,
from the third term of (21.6). Notice that the formalism also produces a mass

for the Goldstone boson ¢:
m? = &(ev)? = EmY. (21.13)
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The fact that this mass is gauge-dependent is a signal that the Goldstone
boson is a fictitious field, which will not be produced in physical processes.
To complete the Faddeev-Popov quantization procedure, we must derive

the Lagrangian of the ghosts. This Lagrangian depends on the gauge variation
of G, which can be computed by inserting (21.7) into (21.11). We find

0G 1 1

0T _ - (-2p°- h). 21.14

s = JE( ¥ —tevloth) (21.14)
The determinant of this operator can be accounted for by including a set of
Faddeev-Popov ghosts with the Lagrangian,

Lghost = é[—62 —emi(1+ —:—)]c, (21.15)

where m = ev as in Eq. (21.13). Since this is an Abelian gauge theory, the
ghost field does not couple directly to the gauge field. It does, however, couple
to the physical Higgs field, so it cannot be completely ignored as in QED.
From the quadratic terms in the Lagrangians for A, h, ¢, and the ghosts,
we can readily find the propagators for these fields. All four propagators are
shown in Fig. 21.1. The only complicated case is that of the gauge field. The
term in (21.12) involving A, involves an operator whose Fourier transform is

9K = (1= DR R — g™

(21.16)
. KkMEY kFkvy 1
The inverse of this matrix gives the A, field propagator:
u v b uv  KMEY —i€ kHEY
(A" (k) A°( k»‘k?—mi(g k2 )+k2—§m?4< k2 )
(21.17)

_ Tt (KR
kz—mi( kz—émi(l €)>

Notice that the transverse components of the A field and the component h
of the Higgs field acquire the masses m 4, my that we found in Section 20.1.
The unphysical components of A, the Goldstone bosons, and the ghosts all
acquire the same gauge-dependent mass /Em 4.

& Dependence in Perturbation Theory

Because the parameter £ was introduced only in the gauge fixing, we expect
it to cancel out of all computations of expectation values of gauge-invariant
operators and of S-matrix elements. This cancellation can be proved to all
orders in perturbation theory by using the BRST symmetry of the gauge-
fixed Lagrangian.* Here, however, we will simply illustrate the cancellation of
¢ in a simple example.

*See, for example, Taylor (1976).
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A, :——i W_kﬂ_kyl_
i “\N‘;_AAV kz—mi(g kz—ﬁm%( f))
h: e - :__1_2
)

@ e S —

k k2 —&m?
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Figure 21.1. Propagators of the gauge field, Higgs fields, and ghosts in the
Abelian model with spontaneously broken symmetry.

S

Figure 21.2. Diagrams contributing to fermion-fermion scattering at lead-
ing order in the Abelian model with spontaneous symmetry breaking.

Consider coupling a fermion to the spontaneously broken gauge theory
through a chiral interaction:

Ly =D)L +Yp(@)Yr — Af(Provr + Vrd™PL), (21.18)

with D, = 0, +ieA, as before. This is a stripped-down, Abelian version of
the coupling of fermions to the weak interaction gauge theory. The fermion v
receives a mass

my = Af% (21.19)

from the spontaneous symmetry breaking. (This theory has an axial vector
anomaly that would render loop calculations inconsistent, but we will analyze
it only at the level of tree diagrams.)

In this theory, the leading-order diagrams contributing to fermion-fermion
scattering are those shown in Fig. 21.2. Notice that the contribution from the
exchange of the unphysical particle ¢ must be included, since this particle
appears in the Feynman rules. The ghosts do not appear in this process until
the one-loop level. Since the propagator of the physical Higgs particle h is
independent of £, the cancellation of the £ dependence must take place between
the transverse and longitudinal components of A,, and the Goldstone boson ¢.
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The graph with exchange of the Goldstone boson has the value

M, = (35) 50 ulp) =gy 1K ). (21.20)

The £ dependence of this expression must be canceled by that of the gauge
boson exchange diagram,
_AB

iMa = (—ie)a(p )’Yp( 27 )u(p)

—i kqv . 1
x q? _Zm% (glw - qQQ—Zmi(l_g))u(k )71/(

A5
27 )u(k)
(21.21)

The £ dependence of this term looks quite intricate. However, we can make
some simplifications by rewriting the gauge boson propagator as

A SR il uu[_l___l_l_ D
2(9 — +4d'¢" | — qg_gmi( 3]

q* —m4 My My
—1 ( v q"tl”) —1 (q”q”)
= (g - + . (21.22)
q? —m? m? q? —&m4 \ m?

The first term of (21.22) is £-independent. The second term can be simplified
in (21.21) by using the identity
¢*u(p)vu (

5

- )ulp) =

wp)[(# =) — (=¥ )°]ulp)
a(p') [#7° + 7 Hulp)

= msa(p' )y u(p),
and the analogous identity on the other fermion line. After making these

~ rearrangements and inserting the explicit values my = Asv/ V2 and my4 = e,
the gauge boson exchange amplitude (21.21) takes the form

M, =<—ie)2a(p/m(1;75)u<p>qumi (o - 25 o)y (55 )t
—1

+(35) ) g B 1), (21.24)

(21.23)

N ==

The second term of (21.24) precisely cancels the Goldstone boson exchange
diagram (21.20). The terms that remain in the fermion-fermion scattering
amplitude are independent of &.

This demonstration merits two additional comments. First, throughout
this book, we have become accustomed to dotting the gauge boson momen-
tum into a gauge boson vertex and finding zero or contact terms. However, in
spontaneously broken gauge theories, we typically find a different result. The
fermionic current y* (1 —~°)1 is not conserved, with the nonconservation be-
ing proportional to the fermion mass. This allows the manipulation (21.23) to
contribute terms proportional to the Higgs boson vacuum expectation value,
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which interplay with the Goldstone boson contributions. We will discuss this
point further, and find a physical application of it, in Section 21.2.

The second point concerns the final form of the gauge-invariant sum of
the gauge boson and Goldstone boson exchange diagrams. These give just the
result we would have found by neglecting the Goldstone boson and computing
the gauge boson exchange using the first term of (21.22) as the propagator:

(@A) = o (o - L), (21.25)
q= — My s
The tensor structure represents a gauge boson polarization sum. To identify
what vectors are summed over, notice that, if the vector boson is on-shell, and
if we boost to its rest frame, this structure becomes precisely the projection
onto the three purely spatial directions. These are the three polarization states
of an on-shell massive vector particle. In a general frame, still for g* on-shell,
the tensor in (21.25) remains the projection onto physical polarization states:

3 et = - (guu _ q”g”). (21.26)

et q,,=0 mA

Thus, in the cancellation of the £-dependent parts of the gauge boson propa-
gator, we also find that the Goldstone boson diagram cancels the contribution
of the unphysical timelike polarization state of the gauge boson, leaving over
the required three physical polarizations.

The perturbation theory rules that we have developed have a very differ-
ent character for different values of £. Thus, it is even more true in the case of
spontaneously broken symmetry that we can find different special simplifica-
tions by choosing different values of this gauge parameter. For £ = 0, Lorentz
gauge, the Goldstone boson is massless and has exactly the couplings it has in
the ungauged model of symmetry breaking, while the gauge boson propagator
is purely transverse:

_ T (KRN 4
e k2—m2A(9 k2 ) P =@ (220

k
This gauge is especially useful for analyzing models of symmetry breaking.
Both propagators have poles at k? = 0. However, we know that there are no
corresponding physical particles, because these poles move away from k? = 0
as we change £, while the S-matrix must be £-independent.

For £ = 1, we recover the simple form of the gauge boson propagator given
in (21.1). This choice of the gauge boson propagator is not consistent, however,
unless we also include Goldstone boson exchanges in which the Goldstone
boson is also assigned the mass m4:

i .
AAAA = femem = (21.28)

T % k2 —m?%’ k k% —m?
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This gauge, still called the Feynman-‘t Hooft gauge, is the most convenient
one for general higher-order computations.

For any finite value of &, the gauge boson and Goldstone boson propa-
gators fall off as 1/k? and thus obey the general power-counting analysis of
Section 10.1. It follows that, in any one of these gauges, the perturbation the-
ory will be renormalizable, in the sense that the divergences are removed by
a finite set of counterterms. Furthermore, the analysis of Section 11.6 tells us
that the only counterterms required are those that are symmetric under the
original global symmetry of the theory. However, we should require one fur-
ther condition of our renormalization procedure: We should insist that the
counterterms preserve local gauge invariance, and, in particular, preserve the
property that S-matrix elements and the matrix elements of gauge-invariant
operators are independent of £. This result was proved to all orders in pertur-
bation theory by ‘t Hooft and Veltman and by Lee and Zinn-Justin.! Thus,
in the gauge defined by any finite value of £, we can, in principle, straightfor-
wardly compute a physical quantity to any order. The gauges defined by the
possible values of £ are known as the renormalizability, or Re, gauges.

By taking the limit £ — oo of the R gauges, we find a gauge with very
different simplifying features. In this limit, the unphysical degrees of freedom,
which have masses proportional to V€, disappear from the theory The gauge
boson and Goldstone boson propagators become:

AAAA = (gwf _ k”ky).

o k2 —m? m% /'
The gauge boson propagator contains exactly the three spacelike polarization
states. In this gauge, the only singularities of Feynman diagrams correspond to
the propagation of physical intermediate states. Thus, the unitarity of the S-
matrix follows from the Cutkosky rules, as in the globally symmetric theories
considered in Section 7.3, without the need to worry about the cancellation
of unphysical states.t The ¢ — oo limit of the R gauges thus gives the
quantum-mechanical realization of the unitarity (or U) gauge, introduced in
Eqg. (20.12).

It is not straightforward to prove renormalizability directly in the U gauge.
In this gauge, the gauge boson propagator falls off more slowly than 1/k? at
large k. This signals trouble for the evaluation of loop diagrams. Typically, in
fact, individual loop diagrams will diverge as log £ or worse as £ — oco. Still, the
gauge invariance of the S-matrix implies that these divergences must cancel
in the sum of all diagrams contributing to a given process, so that this sum
has a smooth limit as £ — oo. There is no difficulty of principle with the
fact that we use one gauge to prove the renormalizability of spontaneously

—--=--- =0. (2129
P (21.29)

tG. 4 Hooft and M. J. G. Veltman, Nucl. Phys. B50, 318 (1972), B. W. Lee and
J. Zinn-Justin, Phys. Rev. D5, 3121, 3137, 3155 (1972), D7, 1049 (1973).

In the more sophisticated language of Section 16.4, the crucial identity (16.54),
which is required for the unitarity of the S-matrix, is true manifestly.
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broken gauge theories and another gauge to prove their unitarity. In fact, this
method of argumentation makes natural use of the underlying symmetries of
the theory.

Non-Abelian Analysis

Now that we have thoroughly examined the R, gauges for an Abelian gauge
theory, we are ready to generalize to the non-Abelian case. There is no diffi-
culty in being completely general, so let us consider a Yang-Mills gauge theory
with gauge group G, spontaneously broken by the vacuum expectation value
of a scalar field.
We will build on our classical analysis of this system following Eq. (20.13).
As in that analysis, it will be most convenient to write the scalars as a mul-
tiplet ¢; of real-valued fields. Then the gauge transformation of the ¢; takes
the form
8 = —a®(@)TLd;, (21.30)

where the T7; are real, antisymmetric representation matrices of G. Similarly,
the transformation of the gauge fields is

1 1
64, = S0 — [0t A = = (Dyo)™. (21.31)

(If the gauge group is not simple, the coupling g need not be the same for
every a.) The Lagrangian invariant under these gauge transformations is

with
D,¢i = 0u¢: + gALT ¢, (21.33)

Assume that the potential V(¢) is minimized at a point where some of
the components of ¢ acquire vacuum expectation values. As in (20.16), define

(i) = (¢0):- (21.34)
We will expand ¢; about this value:
¢i(z) = doi + xi(z)- (21.35)

It will be convenient to divide the space of values x; into two subspaces.
The vectors T%¢y correspond to symmetry transformations of the vacuum
expectation value of ¢. The field fluctuations along these directions are the
Goldstone bosons. Let {n;} be an orthonormal basis for this subspace; then
the unit vectors n; are in 1-to-1 correspondence with the Goldstone bosons.
The field fluctuations orthogonal to all of the vectors T*¢g correspond to the
(massive) physical scalar fields of the spontaneously broken gauge theory.
In the discussion to follow, the vectors T%¢y will play an important role.
We should then recall the notation for these vectors that we introduced in
Eq. (20.51):
% = T boj- (21.36)
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The matrix F'% is not generally square; it has one row for each gauge generator,
and one column for each component of ¢. However, many of its elements are
zero. Its nonzero elements connect the spontaneously broken gauge generators
and the Goldstone bosons. In Eq. (20.56), we showed that the gauge boson
masses generated through the Higgs mechanism can be written

mgb = 2Faijj' (21.37)

To give a concrete example of a matrix F'%, let us compute it in the GWS
electroweak theory. Following the conventions introduced in Eq. (20.14), we
should rewrite the Higgs field of the GWS model in terms of four real scalar
fields. A convenient parametrization is

1 [ —i(¢" —i¢?)
= — : . 21.

¢ \/i(v-i-(h—f—w&?’) (21.38)
The ﬁeldsl ¢* are the Goldstone bosons, and h is the massive Higgs boson. The

vacuum state is simply
1 /0
=7 (0):

The real representation matrices are

loas 1

T = —it% = —i— TY = —iY = —i-.

| T 5 2
A simple computation then shows, for instance, that T ¢y equals v/2 times
a unit vector in the ¢! direction. Filling in the remaining components of F'%,

with a =1,2,3,Y and 7 = 1, 2,3, we find

g 0 O
v g 0 (21.39)
2 0 g |- '
0 -¢
We do not need to include the components of F'% along the direction of the
physical Higgs field h; the vectors T*¢¢ are all orthogonal to this direction.

If we insert (21.35) into (21.32) as a change of variables, we find, for the
quadratic terms in the Lagrangian,

L2 = A5 (-0 + 040°) A5 + }(0,0°

0
0
0

(21.40)
+ 90" x: ALF% + %(mi)abAzA“b — 3 Miixix;,
where (mi)“b is the gauge boson mass matrix (21.37) and
62
M;;=—"F"V . 21.41

We proved in Eq. (11.13) that
TliMij =0 (2142)
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for all possible directions n; in the subspace spanned by the T%¢q, so the
Goldstone bosons are massless.

To study the quantum theory of this system we start with the functional
integral

Z = / DADy el £, (21.43)

Using the Faddeev-Popov gauge-fixing procedure, we define this integral, anal-
ogously to (21.10), as

z=c'. / DADY exp / d'z(£14,x] - 3(C))] det(%g), (21.44)

for an arbitrary gauge-fixing function G(A4, x). The R, gauges are defined by
the choice )
G* = NG (0 A™ — £gF%xi). (21.45)
Note that G involves only the components of x that lie in the subspace of the
Goldstone bosons.
The gauge-fixing term adds to the Lagrangian the following set of quad-
ratic terms:

(—1G%)2 = JA%(2070") AL + g0, A Fox; — 36g°[Fxi]®.  (21.46)

The term that mixes A, and x; is arranged to cancel between (21.40) and
(21.46). The final quadratic Lagrangian for the gauge and Goldstone boson
fields is

Ly = —%AZ([—g‘“’Bz +(1- %)6“8”] 6% — g*F%;Fligh ) Al

1 1
+5(0ux)* = 5E9° FiF % Xix;- (21.47)

The mass matrices of gauge bosons and Goldstone bosons in this La-
grangian are closely related to one another. The gauge boson mass matrix
is

(m%)* = g*F%F% = g*(FFT)*. (21.48)

In an R, gauge, the timelike components of the gauge bosons acquire the mass
matrix

gmy = Eg°(FFT)™. (21.49)
At the same time, the Goldstone bosons acquire the mass matrix
(m&)i; = EG°F%F% = €6°(FTF);;. (21.50)

The two matrices (21.49) and (21.50) have different numbers of zero eigen-
values, but their nonzero eigenvalues are in 1-to-1 correspondence. This is
precisely the correspondence induced by the Higgs mechanism between the
massive gauge bosons and the Goldstone bosons that they absorbed to gain
mass.
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Finally, we must construct the ghost Lagrangian. This is found from the
gauge variation of the gauge-fixing term G®. Inserting (21.30) and (21.31) into
(21.45), we find

6Ga .
b = % (%(BHD“)“" +£9(T* o) - T*(¢o + x)). (21.51)

Thus, the ghost Lagrangian is
Lahost = & [~(8,D*)® — £g*(T*po) - T*(¢o + X)) ¢”- (21.52)

Notice that the ghosts have exactly the same mass matrix (21.49) as the
unphysical components of the gauge bosons. This Lagrangian also contains
both the familiar coupling of the ghosts to the gauge fields and the coupling
to the physical Higgs fields that we found in the Abelian case (21.15).

We have now computed the kinetic energy terms for gauge fields, scalar
fields, and ghosts in an R gauge. It is straightforward to convert these results
to the calculation of propagators for these fields; the computations are exactly
the same as in the Abelian case. We find for the three propagators

. v ab
p vo_ ! w___ k'R -
a\/\a\];_/\/\b (k;z—QQFFT[g k2—{g2FFT(1 ﬁ)] )
g ‘(k?—fg?FTF—W)ij’

. ab

i
................ f— D S s—— . ]..
aigb = (gprer) (21:59)

All of these equations involve the matrix F' defined in Eq. (21.36); the appear-
ance of a matrix in the denominator should be interpreted as a matrix inverse.
The scalar field propagator also includes the mass matrix (21.41) of the physi-
cal Higgs bosons. There is no conflict between this matrix and the mass matrix
of the Goldstone bosons, since they project onto orthogonal subspaces.

Although the preceding discussion has been extremely abstract, it is not
hard to specialize to a particular example. So consider, once again, the GWS
electroweak theory, for which the matrix F'% is given by Eq. (21.39).

The gauge boson mass matrix in the GWS theory is

2 0 0 0

9
2 2
2 T_K_ 0 g 0 0
gFF - 4 0 0 g2 _gg/ )
0 0 __ggl gl2

in agreement with Eq. (20.124). (The g on the left-hand side should be inter-
preted as g’ for the fourth component of F'.) Diagonalizing this matrix gives
the familiar relations (20.62). Thus, in the basis of mass eigenstates, the four
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gauge-boson propagators decouple to give simply

- *—Z[ my ﬂ—(l—f)] (21.54
Py = e k2 — em? ’ -54)

k

where m? is m%,, m%, or, for the photon, zero. Notice that, for the photon,

this expression precisely reproduces Eq. (9.58).
The mass matrix of the Goldstone bosons in the GWS theory is

2 g2 0 0
2 T v 2
(P F =64 0 g 0
0 0 g¢g%2+g7?

These fields therefore have the propagator

: (21.55)

——— g - - = = — .
k k2 — Em?’

with m? = m¥, for ¢! and ¢? (the bosons eaten by the W*) and m? = m%,
for ¢ (the boson eaten by the Z). The field h(z), which is the physical Higgs
field, propagates independently with a mass determined by the Higgs potential
(and no factor of £ in the propagator).

Finally, there are four ghost fields. According to Eq. (21.53), these have

the propagator
7
................ = 21.56
k k2 — Em? (21.56)
with the same values of m? as the four gauge bosons.

The Feynman rules for the interaction vertices of these particles are com-
plicated to write out, due to the large number of possible combinations. How-
ever, it is quite straightforward to generate these rules by expanding the weak
interaction Lagrangian and reading off the vertices term by term. We will
work out a few examples in the following section.*

21.2 The Goldstone Boson Equivalence Theorem

From the results of the previous section, we see that perturbative calculations
in the R; gauges involve intricate cancellations among unphysical particles.
Sometimes, however, these unphysical particles can still leave their footprints
in physical observables. In this section we will see that, in the high-energy
limit, the unphysical Goldstone boson that is eaten by a massive gauge boson
still controls the amplitude for emission or absorption of the gauge boson in
its longitudinal polarization state.

*The complete Feynman rules for the weak-interaction gauge theory are given in
Appendix B of Cheng and Li (1984).
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Figure 21.3. The Goldstone boson equivalence theorem. At high energy,
the amplitude for emission or absorption of a longitudinally polarized massive
gauge boson becomes equal to the amplitude for emission or absorption of
the Goldstone boson that was eaten by the gauge boson.

When we introduced the Higgs mechanism for vector boson mass genera-
tion, we pointed out that it involves a certain conservation of degrees of free-
dom. A massless gauge boson, which has two transverse polarization states,
combines with a scalar Goldstone boson to produce a massive vector parti-
cle, which has three polarization states. When the massive vector particle is
at rest, its three polarization states are completely equivalent, but when it
is moving relativistically, there is a clear distinction between the transverse
and longitudinal polarization directions. This suggests that a rapidly mov-
ing, longitudinally polarized massive gauge boson might betray its origin as a
Goldstone boson. The strongest version of this idea is expressed in Fig. 21.3:
The amplitude for emission or absorption of a longitudinally polarized gauge
boson becomes equal, at high energy, to the amplitude for emission or ab-
sorption of the Goldstone boson that was eaten. Remarkably, this statement
is precisely correct, as a consequence of the underlying local gauge invari-
ance. This Goldstone boson equivalence theorem was first proved by Cornwall,
Levin, Tiktopoulos, and Vayonakis.f

Formal Aspects of Goldstone Boson Equivalence

The proof of the Goldstone boson equivalence theorem is based on the Ward
identities of the spontaneously broken gauge theory. To give a complete proof
of the theorem, we would have to construct and analyze these Ward identities
in some detail. However, it is possible to understand the idea of the proof by
examining the special case of the theorem in which a single massive vector
boson is emitted or absorbed in a scattering process. The analysis of this
special case requires only the relatively simple Ward identity satisfied by a
current between on-shell states.?

tJ. M. Cornwall, D. N. Levin, and G. Tiktopoulos, Phys. Rev. D10, 1145 (1974);
C. E. Vayonakis, Lett. Nuov. Cim. 17, 383 (1976). For an illuminating discussion of
the equivalence theorem, see B. W. Lee, C. Quigg, and H. Thacker, Phys. Rev. D16,
1519 (1977).

For a careful derivation of the equivalence theorem, including processes involving
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To prepare for a discussion of longitudinal vector bosons, we need some
simple kinematics. A vector boson at rest has momentum k* = (m,0,0.0)
and a polarization vector that is a linear combination of the three orthogonal
unit vectors

(0,1,0,0), (0,0,1,0), (0,0,0,1). (21.57)

If we boost this particle along the 3 axis, its momentum boosts to k* =
(Ex,0,0,k). The three possible polarization vectors are now the three unit
vectors satisfying

ek, =0, 2 =—1. (21.58)

Two of these are the first two vectors in (21.57); these give the transverse po-
larizations. The third vector satisfying (21.58) is the longitudinal polarization
vector

k Ex

el (k) = (E’O’O’ H)’ (21.59)

which is the boost of the third vector in (21.57). An important and somewhat
counterintuitive feature of (21.59) is that it becomes increasingly parallel to
k* as k becomes large. In fact, component by component,

"

e (k) = l:—n— + O(m/Ex) (21.60)
as k — oo. Since the components of k* are growing as k, this statement is
consistent with the requirement that €7, - k = 0 while &k - k = m?.

With this kinematic situation in mind, let us analyze the Ward identity
satisfied by a gauge current matrix element between on-shell states. It is sim-
plest to work in Lorentz gauge (£ = 0), where the gauge-fixing term (21.45)
does not involve the Goldstone boson fields. The Ward identity can then be

written as follows:
l\tﬁ
n iond ) _ (21.61)

o) - o

In the last expression we have written the matrix element as the sum of two
pieces. First, the current can couple directly into a one-particle-irreducible
vertex function T'*(k). This gives the class of diagrams that contribute to the
scattering of a gauge boson from the external states. However, for a sponta-
neously broken gauge theory, there is an additional term, which is not one-
particle-irreducible, in which the current creates a Goldstone boson and it is
this particle that couples to the external states through a 1PI vertex I'(k).

Let us write the relation linking the gauge current and the Goldstone
boson state as

(0] J# |m(k)) = —iFk¥, (21.62)

multiple absorptions and emissions of massive vector bosons, see M. S. Chanowitz and
M. K. Gaillard, Nucl. Phys. B261, 379 (1985).
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as in Eq. (20.46). Then the argument leading to Eq. (20.56) tells us that the
gauge boson mass is given by

m = gF, (21.63)

where g is the gauge boson coupling constant.
With these identifications, we can write the Ward identity that follows
from the conservation of the gauge current:

k, (J*) =0, (21.64)

between on-shell states. Writing each term shown in (21.61) in terms of the
appropriate one-particle-irredicible vertex function, we find

k,T#(k) + ky (igF k") %F(kz) =0. (21.65)

Thus,
k, TH (k) = mI(k). (21.66)

Now use this equation in the limit of large gauge boson momentum. Since the
gauge boson vertex is one-particle-irreducible, the momenta of propagators
inside the vertex are not, in general, collinear with k*. Then, according to
(21.60), we may replace k#/m by the longitudinal polarization vector. Notice
that this would not be permissible (but, also, is not necessary) in the second
term of (21.65). Our final result is

ez, (k)™ (k) = T(k), (21.67)

as k — oo, with an error of order m?/k?. That is, in the high-energy limit,
the couplings of longitudinal gauge bosons become precisely those of their
associated Goldstone bosons.

The equivalence theorem can be derived in another way, using the count-
ing of physical states in spontaneously broken gauge theories, which we dis-
cussed below Eq. (21.26). In the previous section, we saw that, at least at
the tree level, unitarity is maintained in spontaneously broken gauge theories
by the cancellation of diagrams that produce timelike-polarized gauge bosons
against diagrams that produce Goldstone bosons.

The situation is most clear in Feynman-‘t Hooft gauge. There, the nu-
merator of the gauge boson propagator is —g*”. We can write this in terms
of polarization vectors as

kH*EY
-

g = Y k) (k)

i=1,2,3

(21.68)

The last term is the contribution from unphysical timelike polarization states.
The unitarity of the S-matrix requires that, when a Cutkosky cut through a
diagram puts a gauge boson propagator on-shell, the contribution of this piece
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Figure 21.4. Decay of a t quark into W+ +b.

must be canceled by a Cutkosky cut that runs through a Goldstone boson line.
The required cancellation is

—|%"F”(k)|2 +[TR)? =0, (21.69)

or, diagrammatically,

Once again, since I'*(k) is a one-particle-irreducible vertex, we can use (21.60)
to replace (k*/m) by the longitudinal polarization vector €7 (k) for a high-
energy gauge boson. Then (21.69) becomes just the square of (21.67).

Through these formal arguments, we can see, at least to the tree level
in processes with single gauge boson emission, that the equivalence theorem
must be valid. However, it is much more illuminating to see the equivalence
theorem at work in explicit calculations for interesting physical processes. We
will now illustrate its influence in two examples.

Top Quark Decay

The first example is the weak decay of the top quark. This charge +2/3 quark
is sufficiently heavy that it can decay to a real W+ through t — W+ +b. The
diagram for this decay is given by the simple gauge vertex shown in Fig. 21.4.

Let us first try to guess the magnitude of the top quark width. The squared
matrix element will contain a factor of g2, times some expression with dimen-
sions of mass. Since the width should be large if the top quark mass is heavy,

a first guess might be
2

I~ m,. (21.70)
4

The correct expression, however, turns out to be enhanced by a factor of
(mg¢/mw)?.
The amplitude for this decay can be read from Eq. (20.80):

5

: ig _ 1-
2M=—QU(q)v“( Y

7 > )u(p)e;(k). (21.71)
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(We set the relevant CKM factor equal to 1.) We will now turn this amplitude
into an expression for the decay rate of the top quark. For simplicity, we will
ignore the mass of the b quark in this computation.

Squaring the amplitude in (21.71) according to our standard methods,
and then averaging over initial and summing over final spins, we find

I IMPE= q Pt —g"qp] Y. ke k). (2172

spins polarizations

We can sum explicitly over physical gauge boson polarizations by inserting
the expression (21.26) for the polarization sum. This gives

2 Kok
1 2 g v v pnhvv
3D IMP =5 [ + 0 — 9" ) {—g;w#r%]

spins \ (2173)
g (k-q)(k-p)
==\q:-p+2———|.
2 [ m, ]
For my, =0,

Then
2

2
1Y M= g m‘ ( - m—VZ,V) (1 + 2m—V2V) (21.75)
spins my my
After multiplying by phase space, we find
3 2

"G () 0 @

This is larger than our initial estimate (21.70) by a factor (m;/mw )?.

It is not difficult to find the origin of this enhancement, by using the Gold-
stone boson equivalence theorem. In the gauge theory of weak interactions,
the top quark obtains its mass from its coupling to the Higgs sector. The re-
lation between the top-Higgs coupling A\; and the top quark mass is written
in Eq. (20.103). The top quark can be heavy only if A is large. But then the
amplitude for the top quark to decay to a Goldstone boson will be enhanced
above (21.70) by the factor

2 2
A mi (21.77)
9 2miy
which is in fact the enhancement we found in (21.76).

To make the comparison more precise, we will now compute the prediction
of the equivalence theorem for the top quark decay rate into a longitudinally
polarized W boson. Recall from (20.101) that the term in the weak interac-
tion Lagrangian that couples ¢t and b to the Higgs field is

AL = —2e®Q,dtr + hic. (21.78)
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Figure 21.5. Decay of a t quark into a Goldstone boson and a b quark.

Decompose the Higgs field as in (21.38), and write

1
+ 1y ;42
= — (¢ Lti9p°). 21.79
¢ \/5(45 ¢°) (21.79)
These are the fields of the charged Goldstone bosons that are eaten by the
W=, Including the Goldstone boson in the theory adds a process t — ¢+ + b,
shown in Fig. 21.5. This process is mediated by the Lagrangian term

AL = M\bro T tr, (21.80)
which leads to the decay amplitude
. (1Y
iM = Mtu(q)( 27 )u(p). (21.81)
From this expression, we easily find
I3 IMP=Xq-p. (21.82)
spins

If we now ignore the mass of the Goldstone boson, or, equivalently, consider
the limit m: > mw, we find for the top quark decay rate

)\2 g2 m3
F=_"tm=>"——t (21.83)
327 64m m2,

in agreement with the leading term of (21.76) in this limit. Our results imply
that only the production of the longitudinal polarization state of the W is
enhanced; this is easily checked directly by substituting explicit polarization
vectors into (21.72).

In our derivation of (21.76), we summed over the physical polarization
states of the emitted W™; one might say that we used the prescription of
the U gauge to sum over polarizations. We could equally well have used the
prescription of Feynman-‘t Hooft gauge, replacing

ZGZ(k")EV(k) - —gp,ua (2184)

and also adding the contribution of the Goldstone boson emission diagram,
treating the Goldstone boson as a massive particle with mass my,. With these
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prescriptions, the gauge boson matrix element gives

2
Y IMP = 2q p) = (m%—m%v)- (21.85)

spins

The Goldstone boson emission diagram gives

g2 m2

3D IME =g p="—(mf —miy). (21.86)
spins mW
The sum of these contributions indeed reproduces (21.75) and thus gives the
same result (21.76) for the total decay rate. In Feynman-‘t Hooft gauge, the
enhancement due to the large coupling of the top quark to the Higgs sector
shows up explicitly in the Goldstone boson emission contributions to the total
rate of W production.

ete- - WHtw-

Our second example is more complicated, but also contains more interesting
physics. This is the reaction ete™ — WTW ™. In this reaction, the equiv-
alence theorem does not lead to an enhancement of the cross section, but,
rather, directs a cancellation between Feynman diagrams. As we will see, this
cancellation is essential for the internal consistency of the theory.

In Problem 9.1, we computed the cross section for ete™ annihilation into
a pair of charged scalar particles, as in Fig. 21.6(a), and found the result

do " o’
dcosB( —¢To7) = zsm 0 (21.87)

at energies much larger than the scalar mass. Just as for ete™ annihilation to
fermion pairs, this cross section falls as 1/s at high energy. It can be shown
that this behavior is required by unitarity: Since the electron and positron
annihilate through a pointlike vertex, the annihilation takes place in only one
partial wave. Unitarity puts a limit on the amplitude in this partial wave,
requiring that M be bounded by a constant, and thus that ¢ be bounded by
1/s at high energy.*

The same unitarity argument applies to ete™ annihilation to vector
bosons. Here, however, it is much less obvious that Feynman diagrams ac-
tually produce a cross section consistent with unitarity. Consider the con-
tribution of Fig. 21.6(b). We would expect that the square of this diagram
should contain a contribution to the cross section of the form of the scalar
contribution (21.87) multiplied by the dot product of polarization vectors:

do | _ P 1o’ )
Toosg & e P WIWT) ~ o fe(ky) - ek (21.88)

*Partial-wave analysis for relativistic collisions is discussed in Perkins (1987),
Chapter 4.



21.2  The Goldstone Boson Equivalence Theorem 751

¢~ ot W~ W
\\ // k_ k
l@"}\\ /’{k+ +
(2) 7 (b) g
e~ et e et

Figure 21.6. Electron-positron annihilation through a virtual photon (a) to
charged scalar bosons, (b) to W bosons.

where k; and k_ are the momenta of the outgoing W bosons. For transversely
polarized W bosons, this term is well behaved, but for longitudinally polarized
W’s it leads to problems. Using the approximation (21.60) for the longitudinal
polarization vectors, we find

k+ ck_ S

e(k4) - €(k-) — m%/V - 4m%V

(21.89)

for s > m%,. This leads to a cross section that grows much faster than is
allowed by unitarity. In principle, the cross section could be brought back down
to a proper behavior by the addition of contributions from higher orders in
perturbation theory, but this would be a most unpleasant resolution. It would
imply that the theory of W bosons becomes strongly coupled at energies such

that
2

(O a0

corresponding to center-of-mass energies of order 1000 GeV. But if the theory
of W bosons is strongly coupled at short distances, it is hard to understand
why, at large distances, it should become the simple, weak-coupling theory
that we observe.

Fortunately, there is another possible resolution of this problem. In the
weak interaction gauge theory, there are three Feynman diagrams that con-
tribute to the amplitude for ete™ — W+W ™ at the tree level; these are
shown in Fig. 21.7. Each diagram separately produces a cross section that
grows in the same manner as (21.88). However, it is possible that the badly
behaved terms might cancel among the three diagrams, leaving a more proper
high-energy behavior. If this miraculous cancellation were to occur, it would
allow the theory of W bosons to be consistently weakly coupled up to very
high energies.

Although such a cancellation seems unlikely at first sight, it is actually
required by the Goldstone boson equivalence theorem. The theorem states
that, at high energy, the cross section for producing longitudinal W bosons
should be equal to the cross section for producing the corresponding scalar
Goldstone bosons. But we know that scalar cross sections behave as 1/s, as
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Figure 21.7. Diagrams contributing to ete™ — W+ W~ in the weak inter-
action gauge theory.

indicated in (21.87). Thus, somehow, the gauge boson cross section must also
conspire to produce this result. We will now show this explicitly. We will see
that the required cancellations are directed by the Ward identities of the gauge
theory.

To prepare for this calculation, we need the Feynman rules for the vertices
shown in Fig. 21.8. The Feynman rules for the couplings of the electron to W,
Z, and 7 can be read directly from (20.80). The relative strengths of these
couplings are determined by the SU(2) x U(1) quantum numbers of the left-
and right-handed components of the electron. It is equally straightforward to
construct the couplings of the Goldstone bosons to Z and 4. Since the boson
@7 has electric charge 1, the photon coupling is just that found in Problem 9.1.
The Z coupling is determined with the additional information that the ¢+ has
I® = +1/2. All of these expressions are shown in Fig. 21.8.

The three-gauge-boson vertices that appear in Fig. 21.7 arise from the
cubic terms in the gauge field action. Since the U(1) field strength is linear in
gauge fields, these come only from the kinetic term of the SU(2) gauge field.
To identify the specific pieces we need, we must rewrite this cubic term in the
basis of mass eigenstates given by (20.63) and (20.64). This can be done as
follows:

—1(F2)? = —3(0,45 — 8,A%) g™ AP AV
= —g(0, AL — 0,A,)A*2 A" + g(5, AL — 9, A%) A1 AT
- 9(8, A3 — 8,A3) A1 AV
=1ig[(8,W,f — oW HWH™ A — (9, W — 8, W, )WHF A¥3
+1(0,43 - 0, A3)(WHTWY™ —WHTWP )] (21.91)
Finally, inserting Aﬁ = cos0y,Z, + sinf,A, and g = e/sinf,, we find the

Feynman rules shown in Fig. 21.9.
Before examining the amplitude for ete™ annihilation to vector boson
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Figure 21.8. Feynman rules of the weak-interaction gauge theory for elec-
trons and scalars coupling to photons and Z bosons.

+ =igcosfy, [g" (k-—k ) + g (—q—k_)* + g™ (g+k1)"]

Figure 21.9. Feynman rules of the weak-interaction gauge theory for WW+
and WW Z vertices.

pairs, we will first work out the amplitude for production of a pair of charged
scalars. The equivalence theorem predicts that the amplitude for production
of two longitudinal W bosons should become equal to this amplitude at high
energy. Assembling vertices from Fig. 21.8, we find that, for an electron of
either helicity, the amplitude to annihilate to scalars through a virtual photon
is

1
iMee > v* — ¢t ¢) = ie2{)7uu32-(k+ — k)M, (21.92)
where k,, k_ are the momenta of the scalars and ¢ = k + k_. The cor-

responding amplitude for annihilation through a virtual Z° depends on the
eTe™ helicities. Adding these contributions to the preceding expression, we
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find

o . 1sin?6,)? 1
zM(eLeE —¢ToT) = zez'DL'y“uL [ (3 ) 5 ] (ky—k_)*,

¢ ' sin? 6, cos2 6, q?-m3
, 1 (:-sin?6,) 1
-+ N 2
iM(ege] — ¢ @) = ie*UpYuR [q—Q T o0, e (ky—k_)*.
(21.93)

Notice that, in the high-energy limit, the amplitude for the annihilation of
right-handed electrons cancels down to

. _ _ e 1
iM(egef — ¢to7) — zvavuuR&—z—(lu —k_)*, (21.94)
which is just the amplitude for an e, with ¥ = —1, to couple to a ¢t,

with Y = 1/2, through the U(1) gauge boson B, with coupling constant
g = e/cosb,. This expression reflects the fact that the ey has no direct
coupling to the SU(2) gauge bosons. Similarly, the amplitude for left-handed
electrons tends to

1 1
4.c0s2 0, + 4sin? 0,

iM(efef, = ¢T¢7) — ie? DLvuqul—z(kJr —k_)¥

(21.95)
in the high-energy limit. This has the structure of a coherent sum of ampli-
tudes with B, and Az exchange. In just the way that we saw in Chapter 11,
the symmetry structure of a gauge theory with spontaneously broken symme-
try is recovered in the high-energy limit.

Now let us compare these results to a direct calculation of the W+W~—
production amplitude in the weak interaction gauge theory. Begin with the
case of an initial ey. Since the coupling of the electron to the W~ is purely
left-handed, the third diagram of Fig. 21.7 vanishes in this case, so the com-
putation is a bit easier. The first two diagrams of Fig. 21.7 have exactly the
same structure and sum to

. - 4 =y - T tesinf,, —i iecosb,
iM(egel = WTW ™) = ormaur|(—ie) Z (ie) + cos0, P—m3 sinly
g (ko =k ) + gV (—g—k- ) + g (k)" e (ke ey (k=)
(21.96)

This equation is valid in any of the R, gauges, since, if we ignore the electron
mass,

P RYAuR = 0. (21.97)

The second line of Eq. (21.96) contains the enhancement for longitudinal
W bosons mentioned above. If we approximate the longitudinal polarization
vectors by (21.60) and drop terms that do not grow as s — oo, this line
becomes

ko, k_
v _ A Avg u Ap v] Mtp v
(9" (k= — k)N + g™ (=g — k)" + g™ (k4 + q) ]—mw——mw
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1
= — (kg ko (bo—ky) = 2k_ - kyk2 + 2ky Kk k3] + O1)- (k——ky)>
w
S
= o (ky=k) 4 ©(21.98)
w

On the other hand, the expression in brackets in the first line of (21.96) cancels
almost completely, to

1 1 m2
— 2(_ _ __) — 42 Mz
e = +1e .
¢ ¢?-my ¢*(¢* —m%)
Using both of these simplifications, we find

S

: -+ +117 - - N
iM(eger — W W, ) =0ry\ur [(ze )—]

. (ky —k_)*.  (21.99)

2m¥,
By inserting the relation my = mzcosf,, we see that this amplitude is
identical to (21.94), as required by the equivalence theorem.

For the amplitude with an initial e, , the computation is somewhat more
involved. Now all three diagrams of Fig. 21.7 contribute, and since the last
diagram has a different kinematic structure, it will be less clear how the dia-
grams combine together. In what follows, we will demonstrate the cancellation
of the unitarity-violating enhanced terms, and we will indicate how the terms
one order smaller in m¥, /s assemble into the correct structure. However, we
will not account rigorously for all of these smaller terms. The full calculation
of these diagrams is the subject of Problem 21.2.

For the case of an initial e}, the first two diagrams of Fig. 21.7 sum to
the expression
W~ wt

—i ie(—3+ sin?0,) —i decosfy

3 N
Y, 4 LINUL [( ie) q? (ie) + sin @, cosf, ¢>—m%

sin 6,

(9" (k- =k + g (—g—k )" + g (k) ] € (ke (k-),

(21.100)

which differs from (21.96) only in the coupling of the electron to the virtual

Z°. For longitudinal W bosons, we can simplify this expression as we did
(21.96), obtaining

W, Wi ,
ms 1 1 s

_ )
= 0ryaug(ie -
V. Z e (ie?) s(s—m%)  2sin? 0, s—m% | 2m3,

(ky—k_)*.

(21.101)
The second term in brackets is a potentially dangerous contribution, which
must be canceled by the diagram with ¢-channel neutrino exchange. This
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diagram has the value

W Wi o
- (ﬁ)21"””%7"%(f)fl(h)e’;(k_), (21.102)

where ¢ is the initial electron momentum. Approximating the longitudinal
polarization vectors as before, we have

Wy L2
g° K, (U-K) K-
- :_zngm:V —F)? quL(e). (21.103)

Now we manipulate this expression as if we were proving a Ward identity.
Using the fact that uy(€) satisfies the Dirac equation,

(= KK _ur() = —(f— ¥_)ur(0) = —(¢ — k) ur(0), (21.104)

expression (21.103) reduces to

W, wi
- L: iif)LﬁuL(e). (21.105)
v 2 "m¥,

Finally, using Eq. (21.97), we can rewrite this expression as

W Wi ) )
P — ) (ky — k). 21.106
v te 25i1’12 ew Qm%/V UL’Y/\UL( )( + ) ( )

This term cancels the dangerous high-energy behavior of (21.101). To see
that the sum of diagrams has the correct high-energy limit, however, the
approximations that we have used are not quite adequate. In particular, the
correction to relation (21.60) for the polarization vectors is of order m%,/s
and must be taken into account. When all of the corrections of order m¥, /s
are included, it turns out that the sum of the s-channel diagrams (21.101) is
unchanged, while the expression for the neutrino exchange diagram (21.106)
is multiplied by the factor (1 + 2m%;,/s). Then the sum of all three diagrams
gives :

. _ _ o 1
iM(eget » WFW,) = ie*vpyur (ks — k_)*;
1 1 + 1
2cos?0, 4cos?f,sin’f, 2sin?6, |

The middle term in brackets cancels half of each of the other two terms, to
give an expression that agrees precisely with Eq. (21.95).

(21.107)
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Figure 21.10. The differential cross section for e} eﬁ — W+W~, in units
of R (Eq. (5.15)), at Ecm = 1000 GeV. The various curves show the contri-
butions to the total from individual helicity states of W~ and W; these are
denoted (h_,hy), where each helicity takes the values (+, —,0). The contri-
butions from the (+,+) and (—, —) states are too small to be visible. Notice
that both the W - WZF cross section, denoted (0,0), and the (+,—) cross
section become proportional to sin® @ at very high energy.

The calculation of Problem 21.2 gives for the complete annihilation am-
plitude

iM(efef, =WiW,) =ie*vpyaup(ky — k-)*é

1 s mQZ 1 2

' [2sin2 Bw{ Cs—md (Zm%V * ) + 32 (21.108)

B 8m%, } m_%(%s-l-m%‘,)]

$32(1+32—28 cos §) m¥,\ s—m% /|’

where 3 = (1 — 4m%,/s)!/? is the W boson velocity. The high-energy limit

of this expression indeed reproduces (21.107). The contributions to the dif-

ferential cross section for eze;g — WTW~ from this and the other possible
helicity states are plotted in Fig. 21.10.

These cancellations among the diagrams of Fig. 21.7 occur by virtue of
the Ward identities of the gauge theory. That is, they occur only because
the theory has an underlying local gauge invariance. At the beginning of our
discussion, we argued that these cancellations are necessary to insure that
the theory remains, in a consistent way, weakly coupled up to arbitrarily
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high energy. In Section 20.1, we showed that one can generate masses for
vector bosons by spontaneously breaking local gauge invariance. We have now
argued the converse of that result: that the only theories of massive vector
bosons that do not have violent high-energy behavior are those that result
from spontaneously broken gauge theories. !

21.3 One-Loop Corrections to the Weak-Interaction
Gauge Theory

The final topic in our study of spontaneously broken gauge theories is the
computation of one-loop corrections in the weak-interaction gauge theory.
As we discussed in Section 20.2, tree-level diagrams produce a number of
intricate predictions for the couplings of the Z° and the cross sections for
neutral current reactions. In general, these predictions are modified by the
effects of one-loop diagrams. In this section we will study some examples of
these one-loop corrections.

As in any renormalizable field theory, the one-loop diagrams of the elec-
troweak gauge theory are typically ultraviolet divergent. These divergences
can be absorbed by adjusting the underlying parameters of the theory. These
adjustments define a set of counterterms which, by renormalizability, render
the full set of one-loop diagrams of the theory finite. Those amplitudes that
are not adjusted by hand then become predictions of the theory.

In Chapter 11, we saw that this general procedure, which applies to any
renormalizable field theory, gives especially rich information when applied to a
theory with spontaneous symmetry breaking. In a theory with spontaneously
broken symmetry, the amplitudes of the theory vary markedly for different
particles in the same multiplet of the original symmetry. However, the coun-
terterms of the theory respect the symmetry relations. Thus, the adjustment
of an amplitude for one particle leads to definite predictions for other particles
that are not related by any manifest symmetry.

Theoretical Orientation, and a Specific Problem

At the end of Section 11.6, we presented a useful framework for organizing
calculations of the predictions of renormalizable theories with spontaneous
symmetry breaking. We defined a zeroth-order natural relation to be a rela-
tion among observable quantities in the theory that is true for any values of
the parameters in the Lagrangian. Since the counterterms of the theory shift
the values of the underlying parameters without adding new terms, a zeroth-
order natural relation will not be corrected by these counterterms. Thus, if the
theory is renormalizable, the one-loop corrections to a zeroth-order natural

tThis statement is proved systematically in the paper of Cornwall, Levin, and
Tiktopoulos cited at the beginning of this section.
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relation will be finite, and will in fact be definite predictions from the quan-
tum structure of the field theory. Though we discussed this idea originally in
theories with spontaneously broken global symmetry, it applies equally well
to theories with spontaneously broken gauge symmetry. In this section, we
will apply this idea to derive finite one-loop corrections to relations in the
weak-interaction gauge theory.

It is easy to find zeroth-order natural relations in the electroweak theory.
The leading-order predictions given in Section 20.2 involve a relatively small
number of free parameters. Many of these predictions are made for energies at
which the quark and lepton masses can be ignored; then they depend only on
the coupling constants g and ¢’ and the vacuum expectation value v, which
sets the scale of spontaneous symmetry breaking. The remaining ingredients
of the weak-interaction theory are given in terms of these parameters; for

example,
v v
mw =95, mz=vVg+g?g,

VE+g? V2 8miy 2
Even in this set of quantities, we have four relations that depend on three
underlying parameters, so there is one relation of observable quantities that
is independent of the parameters of the Lagrangian.

Since many of the predictions of the weak interaction gauge theory are
determined by the parameter sin®#6,,, it is useful to define sin®6,, in terms
of observables and then use this definition as a basis for constructing natural

relations. In our discussion of the precision tests of electroweak theory in
Section 20.2, we used the definition

e =

2

2 _ mw

sy =1— —~ 21.110

w m2Z ( )
as a standard for comparison of different experiments. But since the three
most accurately known weak-interaction observables are a, G, and mz, it is
useful to construct another physical definition of sin? 8, based on these three
quantities. Define 6y such that

1/2
dna, ) , (21.111)

\/iGpmzz

where a, is the running coupling constant of QED evaluated at the scale Q2 =
mZ. The renormalization group insists that it is the value of the electric charge
at the weak-interaction scale that enters precision electroweak predictions,
and this observation is confirmed by summing radiative correction diagrams
involving light quarks and leptons. The current best values of the quantities
in Eq. (21.111) give '

sin 26y = (

52 =sin? 6y = 0.2307 & 0.0005. (21.112)



760 Chapter 21  Quantization of Spontaneously Broken Gauge Theories

Thus, this quantity provides a very accurate standard of reference.

Once Eq. (21.111) is taken to define a reference value of sin6,,, the
equations of Section 20.2 that connect sin®#6,, to other observables become
zeroth-order natural relations. For example, the tree-level equations

2 1 _ 29 32 _ (sin2 0. )2
miy 9 . (3 —sin®6y,)° — (sin”6,,)
W _ o520, — 21.113
mg 0w ERT (1 —sin?6,,)2 + (sin? 6,2 ( )

are natural relations linking four observables of the weak interactions. The
corrections to these relations will be well-defined predictions of the theory.

In principle, we could now compute all of the one-loop diagrams that
correct the parameters my, mz, Gr, a, and ASg. However, this is a very
complicated exercise, requiring an extensive technical apparatus.? In this sec-
tion we will focus on radiative corrections from one simple source that can
be considered independently. Aside from the question of anomalies, the elec-
troweak theory does not restrict the number of quark or lepton generations.
Thus, it is sensible, and gauge invariant, to compute the one-loop corrections
due to one quark or lepton doublet. For definiteness, we consider the effects
of the (¢,b) quark doublet.

By focusing on the radiative corrections due to heavy quarks, we dramat-
ically simplify the calculational task before us. The various observables of the
weak-interaction gauge theory are extracted from the measurement of scatter-
ing amplitudes with light fermions, leptons or quarks, in the initial and final
states. For example, G is measured from the strength of a low-energy weak-
interaction process, usually chosen to be the rate of muon decay: p — v,e™ .
For any such process, there are one-loop corrections of many kinds, as shown
in Fig. 21.11. In addition to corrections to the vector boson propagator, there
are vertex corrections, box diagrams, and diagrams with real photon emis-
sion. In general, the contributions of the various classes of diagrams are not
gauge invariant; rather, gauge invariance results from cancellations between
the classes of diagrams in Fig. 21.11(b), (c), and (d). However, since heavy
quarks do not couple directly to the light leptons, the (¢, b) doublet contributes
only the single diagram shown in Fig. 21.11(f), which must be gauge invariant
by itself. This same conclusion applies to the (¢, b) correction to other leptonic
weak interaction processes. If we ignore the CKM angles that mix the ¢ and b
with other species, the conclusion extends also to weak-interaction processes
involving light quarks.

A similar situation occurs with other species of particles, such as those
of the Higgs sector. The coupling of Higgs sector particles to a light quark
or lepton is proportional to the fermion’s mass, which we can often ignore.
Thus the most important contributions from Higgs-sector particles are prop-
agator corrections. The case in which the spontaneous symmetry breaking is
produced by a single scalar field ¢ is particularly straightforward to analyze;

A detailed theoretical discussion of one-loop corrections to the electroweak theory
can be found in W. Hollik, Fortscr. d. Physik 38, 165 (1990).



21.3  Onme-Loop Corrections to the Weak-Interaction Gauge Theory 761

ZO
(© {}y " >«y (@) W " w
S
(e) >i>/ " W (f
i t

Figure 21.11. Examples of radiative corrections to u decay in the weak in-
teraction gauge theory: (a) lowest-order diagram; (b) propagator corrections;
(c) vertex diagrams; (d) box diagrams; (e) real photon corrections; (f) the
contribution of the (¢,b) doublet.

this is done in Problem 21.4. Loop corrections from particles that do not cou-
ple directly to the external fermions are often termed oblique, since they enter
the low-energy weak interactions only indirectly.

Influence of Heavy Quark Corrections

Our task, then, is to compute the corrections to relations (21.113) due to
the (¢,b) doublet. These two relations depend on five observable quantities—
mz, mw, A%, @, and Gp—with the last two parameters entering through
0., and Eq. (21.111). We will express these five quantities as functions of the
bare parameters g, ¢’, and v, with corrections proportional to cémbinations of
t and b vacuum polarization diagrams. The zeroth-order terms will naturally
cancel out when we compute the corrections to the relations (21.113).

The loop amplitudes that we require are shown in Fig. 21.12. To deal
with these contributions most straightforwardly, we introduce a uniform no-
tation for vacuum polarization amplitudes. Denote the vacuum polarization
amplitude involving the gauge bosons I and J as

(21.114)

where [ and J may be v, W, or Z. When the gauge bosons are massive,
the vacuum polarization amplitudes need not be transverse by themselves, so
1% (g) need not vanish at g% = 0. Thus, we will change our notation from the

case of QED and write the decomposition of IT’/(g) into tensor structures as

7(q) = I15(¢*)g" — Ald®)g"q”. (21.115)
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(a) 7

(b) 1474

(e) t,b

(c) ¥

b

ZO

Figure 21.12. One-loop corrections from ¢ and b to weak-interaction ob-
servables: (a) mz; (b) mw; (c) o; (d) GFr; (e) Afp-

In all of the examples to follow, the factors ¢# will dot into currents of light
leptons, to give zero as in Eq. (21.97). Thus the form factor A(g?) will drop
out of our calculations. Our previous result that II#(q) vanishes in QED at
g*> = 0 appears in this formalism as the set of constraints

I, (0) = I, 7(0) = 0. (21.116)

For the other amplitudes, our sign conventions are chosen so that a positive
value of I17;(m?) gives a positive mass shift to the gauge boson. Let us also
define

dIlyy

dq2 q2=0,

I, (0) = (21.117)

this is the quantity we called II(0) in Eq. (7.73).

Now we use this notation to write the loop corrections to each of the five
observables. The first two diagrams in Fig. 21.12 are simply mass corrections,
and so, straightforwardly,

2
v

m% = (¢* + 9'2)? +zz(m%),

(21.118)

2
my = %= + Huww (my).
Note that both vacuum polarization amplitudes are evaluated at the poles in
the respective propagators. To evaluate the shift of & by one-loop corrections,
we consider the effect of Fig. 21.12(c) on the low-energy Coulomb potential.
The values of the leading-order propagator and the one-loop correction com-
bine to give the factors

—ie? g —i
q,f (1+znw(q2).?), (21.119)
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where, in this equation, e? is given in terms of bare variables as in (21.109).
Thus, the observed value of a, in the limit ¢ — 0, is modified according to

the relation 5 1
g°g

Ao = g (1+11,,(0)). (21.120)

In a similar way, the diagrams of Fig. 21.12(d) give a modified strength of
the 4-fermion weak interaction process that leads to p decay. The leading and
one-loop diagrams sum to

2 .
g ( ‘ ’ - )
— 1+l —F ). 21.121
q2_m%V +1 WW(q )qg_m%/v ( )
Then the effective strength of the weak interaction vertex at g? = 0 is shifted
as follows:

V2 202
Notice that, in the approximation of keeping only oblique corrections, the
strength of every low-energy weak interaction amplitude is corrected by this
same factor.

Finally, the polarization asymmetry A§ j is corrected by a (t,b) loop dia-
gram according to Fig. 21.12(e). The analogous diagram with an intermediate
ZY is summed into the Z° propagator and does not affect the form of the ver-
tex. At zeroth order, the coupling of the Z° to any left- or right-handed light
fermion is given, according to Eq. (20.71), by

= : (21.122)

G (1 Tt
w

/

Vo +g2(T° - g” Q). (21.123)

g2 + gl2

The coefficient of Q is the bare value of sin®#,,. The loop diagram in Fig.
21.12(e) adds to this a contribution

ill zﬁ(qz)g - (ieQ). (21.124)

To discuss asymmetries at the Z° resonance, we set ¢> = m%. The term
(21.124) adds to the piece of (21.123) proportional to Q; thus it shifts the
bare value of sin? 6,,. When we include this correction, the Z° coupling takes

the form
Vg?+ g2 (T? - 2Q), (21.125)

where

2 2y
2_ 9 © H”Z(;”Z). (21.126)

8% = -

g2 + g/2 /g2 ¥ g/g m%
The asymmetries at the Z° resonance discussed in Section 20.2 are computed
as ratios of these couplings. Thus, to include the oblique radiative correction
to A£ r> for any light fermion species f, we reevaluate formula (20.96), using
s2 in place of the zeroth-order sin? 6,,.
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We might, in fact, say that s2 gives an additional way to define sin? 6,
from observable quantities, to be compared to the definitions s%, given in
(21.110) and s? given in (21.111). Speaking strictly, the value of sin®6,, de-
termined by the asymmetries at the Z° depends on the quark or lepton quan-
tum numbers through vertex corrections that are not included in the analysis
above. However, these species-dependent corrections are small and can be
systematically subtracted to define a universal s? that determines the weak
interaction asymmetries of all fermion species.*

The three definitions of sin? 8,, all agree at zeroth order but receive differ-
ent radiative corrections. If we include only the oblique corrections, it is easy
to produce compact formulae for the three quantities. From (21.126), we have

2 II )
. z
s2= gzi——g’Z — sin @, cos OWmLZZ. (21.127)
In the prefactor of the one-loop correction, we can ignore the distinction be-
tween the bare and renormalized values of sin®#6,,. We can obtain a similar
expression for s%, by taking the ratio of the two formulae in (21.118):
2 2
2 g 1 2 myy 2
Sy =—5——=— —5(1I myy) — —5-llzz(m%) ). 21.128
b= s~ g (Tww(mdy) = 1s(n)). (21128)
Finally, we can evaluate the oblique corrections to sin? fy defined by (21.111).
This is most readily done by writing 66y for the difference between the true
and the bare value of 6y, and then expanding (21.111) as follows:
ba 6Gp sm?,
S oo .

2
Gp my

2 cos 290 600 = % sin 290 [ (21129)
The shifts of @, Gr, and m% can be read from (21.120), (21.122), and (21.118).
Then we can reconstruct

2
ZL_l_gE + 2sin 90 COSs 605 00. (21130)

SiIl2 00 =
Assembling the pieces and evaluating the coefficients of the vacuum polariza-
tion diagrams to zeroth order, we obtain

g/2

02 2 1 1
sin 01,0 COoSs 0w [ ;7(0) + %HWW(O)"‘ m—2ZHZZ(m2Z):| )
(21.131)
It is not difficult to discover that each of the equations (21.127), (21.128),
and (21.131) contains ultraviolet divergences. However, if the weak interac-
tion gauge theory is renormalizable, these divergences should cancel when we

sin?p =

cos? 6, — sin? 8,

*This is explained clearly in D. Kennedy and B. W. Lynn, Nucl. Phys. B322, 1
(1989).
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compute the corrections to any zeroth-order natural relation. In the situa-
tion that we consider, renormalizability implies that the various definitions of
sin? 0, should differ only by expressions that are ultraviolet-finite.

We are now almost prepared to check this prediction explicitly. We can
clarify the structure of the ultraviolet divergences in our relations for the var-
ious quantities sin? @, by recasting the vacuum polarization amplitudes to
make more explicit the quantum numbers to which the gauge bosons cou-
ple. Recall from Eq. (20.71) that the Z boson couples to the combination of
SU(2) and electromagnetic quantum numbers (7% — sin® §,,Q). Similarly, the
W bosons couple to T*, or, equivalently, to T, T2. It is useful to break up
the vacuum polarization amplitudes into terms that depend on these specific
quantum numbers. We will also extract the coupling constants indicated in
(20.71). Thus we replace

2
I,y = €elgq,

IL,Z:(

lzz = (sin 0y, cos 8,

e 2

e?

sin 6, cos @, )

[H3Q — Sil’l2 HwHQQ] s
e 2

21.132
) [Hgg — 2sin? 01130 + sin* GwHQq] , ( )

where @ denotes the electric charge and 1,2,3 denote the components of
weak-interaction SU(2).

A vacuum polarization amplitude can always be viewed as an expectation
value of a pair of currents. From this viewpoint, the quantities on the right-
hand side of (21.132) are expectation values of currents with definite quantum
numbers. For example, I3 is an expectation value of a pair of SU(2) currents
J#3. Acting on the standard fermions, J* is a left-handed current and Jg is
a vector current.

The ultraviolet divergences in the expectation values of currents in
(21.132) have the form

33 ~ (A + Bg?) log A2,
Iy ~ (A+ B¢?) log A?,
3 ~ (Bg?) log A?,
oo ~ (Cq?) log A%

We will demonstrate this explicitly later in this section. However, we can
understand this structure from the following rough argument: Since the sym-
metry of the theory should be recovered at large momentum, the amplitudes
II33 and II;;, which differ only by their orientation in the symmetry space,
should have the same ultraviolet divergences. The divergence in the slope
of II3g should be related to that in the slope of Il33 because @ = T3 +Y
and I3y is unimportant asymptotically since tr[TY] = 0. We pointed out

(21.133)
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in Eq. (21.116) that I3 and Ilgg vanish at ¢> = 0; thus they have no ¢2-
independent divergences.

Now we will rewrite the two zeroth-order natural relations in (21.113) in
such a way that we can apply (21.133). To do this, we take the differences of
Egs. (21.127), (21.128), and (21.131) to obtain

9 . 9 sin? @, cos? 0, [Mzz(m%) Iww(0) /
S, —sin“ g = — — 3 - 5 - 11, (0)
cos? 6, — sin“ 6, my myy
cos? 8, — sin® 0, I1,z(m%)
sin 0, cos @y, m? ’
My w(m3 m3y, Tz z(m2 . I,z (m?%
sy — 2= — (2 W)+ i ZZ(z Z)—G-smewcosGw#.
mz mz Mz mz

(21.134)
Inserting (21.132), and also using the relation my = mz cosf,, in the coeffi-
cients of terms already of one-loop order, we find after some algebra

2

2 .2 € 2 2
2 _gin2 0, = 1 (0 — I
s7 —sin® 6y P Gw)mr‘é{[ 33(m7z) — 111 (0) — Mzq(m%)]
+ sin® 8, cos® B, [Tl (m%) — m3 Il (0)] },
2
e .
54 — s = —5 [H33(m2z) —1II;; (m%,) — sin® 0wH3Q(m2Z)].

(21.135)
If indeed the ultraviolet divergences of the vacuum polarization integrals have
the structure of (21.133), then the divergent part of each expression in brackets
in (21.135) vanishes, and the weak interaction gives definite, finite predictions
for the differences of s2, s%,, and sin? 6.

Computation of Vacuum Polarization Amplitudes

We can verify the divergence structure (21.133) by computing the vacuum
polarization diagrams for ¢ and b quarks explicitly. Rather than computing
these one by one, it is easiest to compute, once and for all, the most general
fermionic vacuum polarization amplitudes, and then to recover the amplitudes
required in the previous paragraph as special cases of these.

Consider, then, the two vacuum polarization amplitudes shown in Fig.
12.13. The diagrams are built from two fermion propagators with different
masses m1 and meg, linked by left- or right-handed currents. We call the vac-
uum polarization amplitude with two left-handed currents IT%" (¢?), and that
with one left and one right-handed current IT%’; (¢%). Since the vacuum polar-
izations depend on only one momentum and two vector indices, there is no
way that they can contain an invariant involving e#*??. Thus, the amplitudes
with other combinations of currents are related to these by

Mn(e®) =TS (@), TS (a?) = T2A(a?) (21.136)
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Figure 21.13. Elementary vacuum polarization amplitudes of fermionic cur-
rents.

In addition, there is no difficulty in regularizing these diagrams using dimen-
sional regularization with an anticommuting +°, the regularization prescrip-
tion we endorsed at the end of Section 19.4. The vacuum polarization of a
vector current is reconstructed as

47, (¢*) = I77.(¢°) + IR7(6°)- (21.137)

The vacuum polarization of purely left-handed currents is given by

s O =0 [ e ()

()]

d*k 1++° 1
[ et @ 0 (50 T
(21.138)
The prefactor (—1) comes from the fermion loop. There is no possible tensor
structure antisymmetric in p and v, so we can now drop the 4% term. From
here, the calculation proceeds as in Section 7.5. We combine denominators
using

1
1
dz s 21.139
(=) (k+ ! —
where
¢=k+ xq, A =zmi + (1—z)m? — z(1-x)g>. (21.140)

Then, integrating with dimensional regularization and following the steps
leading to Eq. (7.90), we find

1
(2
d ng 1— 2
M d/’~’/ T Az d/2[ (z(1-2)g (21.141)

0
— L@m} + (1—2)m?)) — z(1-2)¢"¢"].

Notice that both IIf; and its first derivative with respect to ¢* are logarith-
mically divergent.
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The vacuum polarization amplitude 17" can be obtained in a very similar
fashion. From the Feynman rules,

4 A5
~Or = [ o|on (S50

) ety

_ / d*k tr[ by (1+75)] 1
~ e DT T e = md) ((ha)? = m)
(21.142)
From here, the same manipulations as in the previous paragraph lead to

1
2i P2-9) 1
V\EQI%N N (42 ,/dx A2-d/2 [g"mams]. (21.143)
0

As a check, we can use (21.141), (21.143), and (21.136), setting m; = mo = m,
to assemble the QED vacuum polarization of vector currents. We find

4 (¢%) = 2 [T, + Iy + Ty, + 7]

“8e? | 3 (21.144)
- (47r8)d/2/ 2(22 d/2)[ (1-2)¢*g"” — z(1—z)q"¢"],
0

where now A = m? — z(1—z)q?. This coincides precisely with our result from
Section 7.5.

As we argued below (21.115), only the terms in the vacuum polarization
amplitudes proportional to g*” will enter our expressions for weak-interaction
radiative corrections. Thus, we can summarize the calculation of the basic
vacuum polarization amplitudes by quoting the results for this leading form
factor:

1 _d
Mr(q®) = Nrr(g®) = — : /dw re-;) [z(1-z)¢®
0

2 d
My zr(¢%) = OrL(¢?) = — e /da: e d/2 [mama]. (21.145)
0
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From these terms, we can assemble any desired vacuum polarization of ¢ and b
quarks in the weak-interaction gauge theory. To make use of these expressions
more easily, we will expand the quantities (21.145) in the limit d — 4. If we
set € = 4 — d, the integrands of the expressions above simplify according to

1 re-9 1 12
= oA = [E — ~ + log(4r) — log A]. (21.146)
Let
E= —3— — 7+ log(4r) — log(M?), (21.147)

/

where M is an arbitrary subtraction scale. It is useful to define

1
bo(12X) = bo(mt, i g3 = [ do log(A(m md, %) /M%),
0
1
b1(12X) = bl(mpmeX) /da:aclog(A(ml,mz,qX)/M2)
0

ba(12X) = ba(m, 3, %) = [ dwa(1-z) log(Alm,m3, %) /M?).

(21.148)
The abbreviated notation will prove useful below. In (21.148), X labels a
momentum scale; we will need gx = 0, my/, mz. Note that for equal masses,

b1 (11X) = 1bo(11X). (21.149)
With this notation,
4
22(6) = = gz [ (3% = 30md +m3) B — a&b,(12X) -
21.150
+ 3 (361 (12X) + m2by(21)]
and
2
Mpr(¢%) = ~ [mimoE — mymabo(12X)]. (21.151)

We can now reconstruct all of the specific vacuum polarization amplitudes
that appear in Eq. (21.135) in terms of divergences proportional to E and
finite parts proportional to the b;. The simplest is the expectation value of
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electromagnetic currents, which is given in our present notation by

Maaleh) = -3 o5 | (3) (4ekE — diba(te)

(21.152)
2

+ ()" (304 E — giba(bbX))]-
The prefactor 3 is the trace over colors. As we expect from QED, (21.152)
contains a divergence only in a term proportional to ¢%. The divergent parts
of the other amplitudes are

12
12
M1 (q%) = @R ik — tmP+m)]|E+ -, (21.153)
2 12 110
M3q(9x) = N [§a%]E+--

These divergences indeed follow the pattern claimed in Eq. (21.133), and thus
the predictions of the weak interaction gauge theory given in (21.135) are free
of ultraviolet divergences.

The Effect of m,

Using the notation we have developed, we can write the finite parts of the
relations (21.135) in a compact form. The first relation becomes
2 3o

—sin26n = 1_1 1_1
st —sint b = 9w){(4 Yoo (t2) + (3 — 1)ba(0b2)

1 m; m%

= 1 (= [b1(82) — by(b10)] + — [b1(bbZ) — by (t00)])

my my
+ 2sin® 8, cos® Oy, (§[b2(ttZ) — by(tt0) — m%bh(t0)]
+ L{ba(BbZ) — ba(bb0) — mZb)(bbO))]) } (21.154)
Similarly, the second relation becomes
3 .
sty =52 = ——{(4 ~ §sin? 0u)ba(t2) + (§ — A sin® 0,,)ba(502)

— X cos? 0,by (tbW)

=

mg my
(- (b1 () — by (btW)] + 2 [b1(802) — ba (t5W)]) }
myz Z

(21.155)

Though it is now straightforward to work out the complete expressions

for the relations (21.154) and (21.155), we will content ourselves here with
identifying the most important term in the limit in which the ¢ quark mass
becomes large. Notice that, in each of these expressions, there are terms with
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coefficients proportional to m7/m%. These are easiest to understand within
the simpler combination of vacuum polarization amplitudes

12 1

1131 (0) — I33(0) = @an?i

[m‘f (b (££0) — by (b£0)) + m3 (by (bbO) — by (tbO))]

1
__3 21 ™Mi 2y M
= 162 /d$ {xmt log ue + (1—z)m; log e
0

2 1— 2
— (em? + (1-z)m2) log w}

M2
1

3 o, ami+ (1—z)m? 9
=152 /dm {xmt log — + (’)(mb)}
0

16 2

for my > my. If my is also much greater than mz, one can find a contri-
bution proportional to m?/m?% in each of the relations (21.154), (21.155) by
replacing the argument ¢% = m% with ¢% = 0, using (21.156), and ignoring
all other contributions. One can show, by detailed examination of (21.154)

and (21.155), that this procedure gives the complete leading term in m;. The
result is

3a m?
2 2 t
s% —sin“fy = — —
* 16 20, — sin? 8,,) m? ’
m(cos? 0, — sin® B,,) m3 (21.157)
9 2 3o m2
Sw — S, = —2+...7

167 sin? 0, Mm%,

where the omitted terms are of order o with no enhancement.

The enhancement factor m?/m% is exactly the one that we found in our
study of top quark decay in Section 21.2. It reflects the fact that some elec-
troweak couplings of the top quark are effectively proportional to A, the top
quark coupling to the Higgs sector, instead of simply to the weak interaction
coupling g. ’

The complete numerical evaluation of the formulae for s? and s, is shown
in Fig. 21.14. To compare the results of this section to experiment, we have
included, in addition to the top quark effect, the m;-independent one-loop cor-
rections from loops containing W and Z bosons and light quarks and leptons.
In the figure, the predictions are compared to the value of s? obtained from
the measurement of the Z° polarization and forward-backward asymmetries
and the value of s%, obtained from measurement of the W boson mass.

According to the figure, the weak interaction gauge theory requires the top
quark mass radiative correction (or a similar radiative correction from some
other heavy particle) for its consistency with experiment. The top quark is
predicted to have a mass approximately equal to 170 GeV. A recent analysis
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Figure 21.14. Dependence of s2 and s%v on the top quark mass, for fixed «,
GF, mz. The three curves in each group correspond to three different values
of the Higgs boson mass: 100, 300, 1000 GeV from bottom to top. The curves
are compared to values of s2 and s%v, taken from the article of Langacker
and Erler quoted in Table 20.1, and the CDF /D0 value of the top quark mass
given in Eq. (21.159).

of all neutral current weak interaction data has given the prediction?
m; = 169 + 24 GeV. (21.158)

Just as this book was being completed, the CDF and DO experiments at
Fermilab announced the observation of the production of top quark pairs in
proton-antiproton scattering. From kinematic fits to events believed to contain
top quarks, these experiments reported!

me = 180 + 13 GeV. (21.159)

The discovery of the top quark in just the range required by precision elec-
troweak measurements is quite remarkable. We can only conclude that, in the
domain of weak interactions as well as those of electromagnetic, strong, and
scalar interactions that we have studied earlier, the fluctuations predicted by
quantum field theory make their imprint on the phenomena of Nature.

tP. Langacker and J. Erler, in Review of Particle Properties, Phys. Rev. D50,
1304 (1994).

IF. Abe, et. al., Phys. Rev. Lett. 74, 2626 (1995); S. Abachi, et. al., Phys. Rev.
Lett. 74, 2632 (1995).
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Problems

21.1 Weak-interaction contributions to the muon g — 2. The GWS model of
the weak interactions leads to two new contributions to the anomalous magnetic mo-
ments of the leptons. Because these contributions are proportional to G pm%, they are
extremely small for the electron, but for the muon they might possibly be observable.
Both contributions are larger than the contribution of the Higgs boson discussed in
Problem 6.3.

(a) Consider first the contribution to the muon electromagnetic vertex function that
involves a W-neutrino loop diagram. In the R; gauges, this diagram is accom-
panied by diagrams in which W propagators are replaced by propagators for
Goldstone bosons. Compute the sum of these diagrams in the Feynman-‘t Hooft
gauge and show that, in the limit my, > my, they contribute the following
term to the anomalous magnetic moment of the muon:

Grpmi 10
GM(V) = -87-(-2—\/5 . ?

b) Repeat the calculation of part (a) in a general R¢ gauge. Show explicitly that
3
the result of part (a) is independent of £.

(c) A second new contribution is that from a Z-muon loop diagram and the corre-
sponding diagram with the Z replaced by a Goldstone boson. Show that these
diagrams contribute

GrpmZ /4 8 16
7) = _ #.(_ 8.2, 16 .4 )
au(Z2) =N 3-l~381n Ow 3 sin O

21.2 Complete analysis of ete™ —» WTW—.

(a) Using explicit polarization vectors, work out the amplitudes for ete™ —
W+W ™ from left- and right-handed electrons to states in which the W+ and
W~ have definite helicity. For the cases in which both W bosons have longi-
tudinal polarization, verify that Eq. (21.99) gives the correct high-energy limit
for right-handed electrons, and verify the complete expression (21.108) for left-
handed electrons. For the cases in which one W is longitudinally polarized and
the second is transversely polarized, show that the individual diagrams give con-
tributions to the amplitudes that grow like /s, but that the complete amplitudes

fall as 1/4/s.

(b) Show that the contributions to e} e*}i — W-WT found in part (a) reproduce
Fig. 21.10, and that the differential cross section for el_{ez — W~W is about

30 times smaller. How many of the qualitative features of the figure can you
understand physically?

21.3 Cross section for du — W ™~. Compute the amplitudes for du — W™~
for the various possible initial and final helicities. Ignore the quark masses. In this
approximation, only the annihilation amplitude from dy % g is nonzero. Show that the
scattering amplitudes for all final helicity combinations vanish at cos = —1/3, where
0 is the scattering angle in the center-of-mass system. Compute the differential cross
section as a function of cos#6.
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Dependence of radiative corrections on the Higgs boson mass.

Consider the contributions to weak-interaction radiative corrections involving
the physical Higgs boson h® of the GWS model. The couplings of the h® were
discussed near the end of Section 20.2. Show that, if we ignore terms proportional
to the masses of light fermions, the Higgs boson contributes one-loop corrections
to the processes considered in Section 21.3 only through vacuum polarization
diagrams. It follows that the contributions to vacuum polarization amplitudes
that depend on the Higgs boson mass are gauge invariant.

Draw the vacuum polarization diagrams in Feynman-‘t Hooft gauge that involve
the Higgs boson, and compute the dependence of the various vacuum polarization
amplitudes on the Higgs boson mass my,.

Show that, for m;, > myy, the natural relations discussed in Section 21.3 receive
corrections

9 9 a (14 9sin?8,,) m2
sy — 80 = 5 log —=-,
cos2 B, — sin® By, 48 miy,
5 2
2
S%V —sL = aE log —2—h
w

The effect of varying my, is displayed in Fig. 21.14 and is included as a theoretical
uncertainty in the prediction (21.158). More accurate experiments might allow
one to predict my, from its effect on electroweak radiative corrections.



Final Project

“Decays of the Higgs Boson

At the end of Section 20.2, we discussed the mystery of the origin of sponta-
neous symmetry breaking in the weak interactions. The simplest hypothesis
is that the SU(2) x U(1) gauge symmetry of the weak interactions is broken
by the expectation value of a two-component scalar field ¢. However, since
we have almost no experimental information about the mechanism of this
symmetry breaking, many other possibilities can be suggested.

Eventually, this problem should be resolved by experimental observa-
tion of the particles associated with the symmetry breaking. To form incisive
experimental tests, we should compute the properties expected for these par-
ticles. We saw in Section 20.2 that, if the symmetry is indeed broken by a
single scalar field ¢, the symmetry-breaking sector contributes only one new
particle, a scalar h® called the Higgs boson. The mass my, of this particle is
unknown. However, the couplings of the h° to known fermions and bosons are
completely determined by the masses of those particles and the weak inter-
action coupling constants. Thus, it is possible to compute the amplitudes for
production and decay of the h° in some detail. More complicated models of
SU(2) x U(1) symmetry breaking typically contain one or more particles that
share some properties with the h°. Thus, this study is a useful starting point
for the more general analysis of experimental tests of these models.

In this Final Project you will compute the amplitudes for the Higgs bo-
son h? to decay to pairs of quarks, leptons, and gauge bosons. The computa-
tions beautifully illustrate the working of perturbation theory for non-Abelian
gauge fields. Those decays of the Higgs boson that involve quarks and gluons
bring in aspects of QCD. Thus, this exercise reviews all of the important tech-
nical methods of Part III. Except for a question raised at the end of part (a),
the problem relies only on material from unstarred sections of Part III. The
material in Chapter 20 plays an essential role. Material from Chapter 21 en-
ters the analysis only in parts (b) and (f), and the other parts of the problem
(except for the final summary in part (h)) do not rely on these. If you have
studied Section 19.5, you will have some additional insight into the results of
parts (c) and (f), but this insight is not necessary to work the problem.

Consider, then, the minimal form of the Glashow-Weinberg-Salam elec-
troweak theory with one Higgs scalar field ¢. The physical Higgs boson h° of
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this theory was discussed in Section 20.2, and we listed there the-couplings of
this particle to quarks, leptons, and gauge bosons. You can now use that in-
formation to compute the amplitudes for the various possible decays of the h°
as a function of its mass my. You will discover that the decay pattern has a
complicated dependence on the mass of the Higgs boson, with different decay
modes dominating in different mass ranges. The dependences of the various
decay rates on my illustrate many aspects of the physics of gauge theories
that we have discussed in Part III.

In working this exercise, you should consider my, as a free parameter. For
the other parameters of weak-interaction theory, you might use the following
values: my = 5 GeV, my = 175 GeV, my = 80 GeV, mz = 91 GeV, sin? 6,
= 0.23, as(mz) = 0.12.

(a) Compute first the rate for h° — ff, where f is a quark or lepton of the
standard model. After a completely trivial computation, you should find

o - ( amy, m:} 4m§)3/2
L8 = 1D = (5aer) s (= o) Nl
where N.(f) = 1 for leptons, 3 for quarks. If you have studied Chapter
18, you might improve this result for the case in which the fermion f
is a quark, by computing the leading-log QCD corrections for the case
mp, > my. Remember that the quark mass m, is determined at the quark
threshold M? ~ m2.

(b) If mp > 2mw, the Higgs boson can decay to WTW—; if it is just a bit
heavier, it can also decay to Z°Z°. Compute the decay widths to these
final states. You can check your result in the following way: If m), >
mw, the dominant contribution to the decay comes from production of
longitudinally polarized W or Z bosons, and this contribution can be
estimated at follows:

TR = WHW )= T(h® — ¢t¢™), T(h® — Z°Z°) ~T(h° — ¢3¢%),

where ¢T, ¢ are the Goldstone bosons of the Higgs sector and the quan-
tities on the right-hand sides of thése relations are computed in the un-
gauged Higgs theory. Explain why this statement should be true, and
verify it explicitly.

(c) The third important decay mode of the Higgs is the decay to 2 gluons.
The amplitude for this decay is generated by diagrams involving quark
loops. Compute these diagrams, using dimensional regularization. The di-
agrams will be finite, but nevertheless there is a subtle contribution which
apparently depends on the regulator. Check that you have computed the
amplitude correctly by verifying that it is gauge invariant. Then square
the amplitude and construct the decay rate. You should find

2 2 2 2
0 - amp ) my . ayg i } my, i
F(h — 29) it (8 Sin2 ew ) m%V 971_2 Eq I( mg ) bl
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Decays of the Higgs Boson T

where the sum runs over all quark species and I(mj, /m?) is a form factor
with the property that I(z) — 1 as x — 0 and I(z) — 0 as z — oo.
This property implies that the dominant contribution to the decay rate
comes from very heavy quarks. You need not evaluate I(z) explicitly at
this stage; just leave it in the form of a Feynman parameter integral.

The existence of the process h® — 2g implies the existence of the inverse
process g+ g — h°, which is a mechanism for production of Higgs bosons
in proton-proton collisions. Using the parton model, derive a relation
between the partial width T'(h® — 2g) and the total cross section for
pp — k% + X. Compute this cross section numerically (in nanobarns) for
a 30 GeV Higgs for pp collisions of center of mass energy 1-40 TeV. (1
TeV = 10% GeV.) For the purposes of this problem set (though this is
not actually a good approximation) you may ignore the @Q? dependence
of the gluon distribution function and take simply

folx) =8 -31;(1 —z)".

You may also set I(m?/m?) = 1; this is correct to about 10%.

The final decay mode that you should consider is h® — 2. Consider first
the contribution from the loop diagrams involving quarks and leptons.
Show that the result is simply expressed in terms of the form factor
I(m?/m?) that you derived in part (c).

Next, compute the contribution to this decay amplitude from the loop
diagram involving W bosons, and the various diagrams one must add to
this to obtain a gauge-invariant result. It is easiest to work in Feynman-
‘t Hooft gauge. Add this contribution to that of very heavy quarks and
leptons, each with electric charge Q. Your result should reduce to the
following expression in the limit mj < my:

D — 29) = (L2 .

a? 5 212
. . . N — 7.
8sin?@,,/ m% 1872 ‘;Qf =7

Now work out the detailed behavior of the form factor I(z) defined in part
(c). Reduce your expression from part (c) to a one-parameter integral.
then evaluate this integral numerically. Plot I(m?2 /m?) over the range 50
GeV < my, < 500 GeV, and compute the decay width I'(h® — 2g) numer-
ically (in keV) over this range. The computation of part (f) introduces
an addition form factor; compute this function in the same way.

Finally, put together all the pieces. Find the branching fraction of the
h¥ into each of its five major decay modes bb, tt, gg, Wt W, Z°Z°. for
Higgs bosons of mass 50 GeV — 500 GeV.
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Chapter 22

Quantum Field Theory at the Frontier

In this textbook we have surveyed the most important ideas of quantum field
theory. Working from the basic concepts that come from fusing relativity,
quantum mechanics, and fields, we have built an elaborate structure, which
includes such remarkable elements as coupling constant renormalization and
non-Abelian gauge fields. We have seen at many points that the strange and
abstract elements of this structure actually intersect with observation and even
produce explanations for unexpected aspects of the behavior of elementary
particles.

In the course of our study, we have arrived at a complete theory of the
strong, weak, and electromagnetic interactions of elementary particles. Each
element of this theory has been described as a quantum field theory, and
these quantum field theories have turned out to have very similar structure
as gauge theories coupled to fermions. At various points in our discussion, we
have noted that these theories have passed stringent quantitative experimental
tests. We have not had space to describe the wide variety of experiments
that contribute to our faith in these theories, but today almost all particle
physicists consider this SU(3) x SU(2) x U(1) gauge theory as established. In
fact, most of these people refer to this theory condescendingly as ‘the standard
model’.

Though the best data to support the standard model have come from
experiments of the past five years, the ideas behind it are much older. Most
of the theoretical developments described in this book were concluded in the
1970s, a generation removed from the current frontier of physics. But this
does not mean that quantum field theory is irrelevant to that frontier, any
more than quantum mechanics and electrodynamics have lost their relevance
after many years of exploration. On the contrary, the theory of elementary
particles—Ilike other areas of physics that depend on quantum fluctuations in
continua—still holds deep mysteries, and quantum field theory remains the
principal tool for exploration of these questions.

In this final chapter, we will flash forward to the present day and discuss
the relevance of quantum field theory to current questions in the physics
of the fundamental interactions. We will present what are, in our view, the
outstanding unsolved problems of elementary particle physics and describe
how quantum field theory is being used to confront these problems. Many of
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these applications involve aspects of quantum field theory that are beyond
the scope of this book. These include the use of quantum field theory in the
regime beyond the reach of perturbation theory and the use of quantum field
theory to explore the special properties of theories with higher spin and local
symmetry. In these areas our discussion will be mainly qualitative, but we will
give references that provide points of entry into each of these subjects.

It should be obvious that our discussion in this final chapter will express
our personal opinions and by no means represents the consensus of experts
in quantum field theory. In addition, any collection of ‘current problems’ in
a rapidly developing area of research should quickly become dated. In fact,
we hope the readers of this book will quickly make this chapter obsolete by
solving the problems that we highlight here.

22.1 Strong Strong Interactions

One paradoxical aspect of our discussion of the strong interactions is that all
of our concrete results were obtained by assuming that these interactions are
weak. At large momentum transfer, we argued, this assumption is actually
valid due to asymptotic freedom. Still, it is uncomfortable that we have left
the most obvious questions about strongly interacting particles—for example,
their masses and low-energy interactions—in a mysterious regime excluded
from our analysis.

To work with QCD in the region where the strong interactions are strong,
we need to answer three questions: First, how do we describe the forces that
bind quarks together into hadrons? Second, what is an appropriate description
of the quark-antiquark and three-quark systems bound by those forces? And
finally, how do we compute scattering amplitudes and matrix elements of
currents using these bound states?

At this moment, there is no derivation of the complete force between
quarks from the QCD Lagrangian. Explicit calculations can be done only
in the limits of weak and strong coupling. In the weak-coupling limit, the
result is a Coulomb potential with an asymptotically free coupling constant.
The strong coupling limit, on the other hand, gives a linear potential which
confines color in the way that we described, but did not derive, at the end
of Section 17.1. The derivation of this result is quite unusual and brings in a
new set of mathematical methods.

So far in this book, we have not discussed a strong coupling approximation
to a quantum field theory. There is a simple reason for this: In a quantum
field theory in which the coupling g? is very large, the elementary particles or
their bound states typically acquire masses that grow with g2. For g% — oo,
these masses become comparable to the cutoff A and the field theory ceases
to have a local continuum description.

Wilson proposed to solve this problem in a radical way, by replacing
spacetime with a lattice of discretely spaced points. Such a lattice is easiest
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to visualize in Euclidean spacetime, and so we can use a functional integral
over fields on a lattice to approximate Euclidean Green’s functions. Such a
theory can have a well-defined strong coupling limit. A theory of this type is
very similar to a lattice model of a magnetic system.

In fact, we can understand this construction of a quantum field theory
by using the concepts of Chapter 13. A lattice theory with fluctuating spin
variables at each lattice site is described in the large by a quantum field
theory of scalar fields with the symmetry of the underlying spin variables.
Typically, the strong-coupling limit of the quantum field theory corresponds
to the high-temperature limit of the magnet, in which the correlation length
is much smaller than the lattice spacing. Decreasing the coupling constant
corresponds to decreasing the temperature. Eventually, the coupling constant
comes close to a fixed point of the renormalization group, and one can use
this fixed point to define a limit of the lattice functional integral in which the
lattice spacing is taken to zero.

To build a lattice model of the strong interactions, one needs to find a set
of variables on the discrete lattice that correspond in the large to non-Abelian
gauge fields. Wilson proposed that the fundamental variables for such a theory
should be the line elements from one lattice vertex v, to a neighboring vertex
V2,

U(vg,v1) = Pexp [ig/dx" Azt“]. (22.1)

To construct the lattice gauge theory with gauge group G, one should inte-
grate over a finite group transformation U for each link of the lattice. Tak-
ing a product of these U matrices around a closed path, one can construct
gauge-invariant observables, just as we did in Section 15.3. An appropriate
Lagrangian can also be constructed as a sum of gauge-invariant products of
the U matrices about elementary closed loops of the lattice.*

In a spin system, the defining property of the high-temperature phase is
the exponential decay of correlations

(5(0) - 5(x)) ~ exp[~|x|/¢] (22.2)

as |x| — oo. The analogous property of the gauge-invariant correlation func-
tion of U matrices around a closed path P is

<H U> ~ exp[—A/€2], (22.3)
P

where A is the area spanned by the path. This behavior is in fact seen explicitly
in the expansion of Wilson’s lattice gauge theory for strong coupling. A pair
of color sources that stand a distance R apart for a Euclidean time T are
represented by a large rectangular loop of width R and length T'. For such a

*This construction was introduced by K. Wilson, Phys. Rev. D10, 2445 (1974).
The construction is described pedagogically in M. Creutz, Quarks, Gluons, and Lattices
(Cambridge University Press, Cambridge, 1983).
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loop, we can compare the result (22.3) to the expression for the energy of an
excited state in Euclidean time,

(exp[—HEgT]) ~ exp[—RT/€?]. (22.4)

Then we see that static sources of gauge charge, in the strong-coupling limit,
are attracted to one another by a potential energy

V(R) ~ R/€? (22.5)

at sufficiently large R. Similarly, when one introduces dynamical quarks into a
lattice gauge theory and studies their properties in the strong-coupling limit,
configurations with large separation of color sources are suppressed in the
Euclidean functional integral by factors of the form of (22.3). The strong-
coupling limit then predicts the permanent confinement of quarks into color-
singlet bound states.

The argument we have just given applies equally well to gauge theories
based on Abelian or non-Abelian symmetry groups. But non-Abelian gauge
theories have the important additional property of asymptotic freedom. In this
context, that implies that a theory with weak coupling at short distances flows
to a theory with strong coupling at large distances. If we imagine integrating
out short-distance degrees of freedom as we described in Section 12.1, and
if there is no zero of the 3 function or other barrier to the renormalization
group flow, we should eventually arrive at an effective theory for which the
strong-coupling expansion is a good approximation. Thus, in the particular
case of non-Abelian gauge theories, asymptotic freedom allows us to connect
a short-distance picture based on free quarks and gluons to a large-distance
picture based on color confinement.

It would be wonderful if the strong-coupling picture that we have de-
scribed led to mathematical equations in continuum spacetime describing the
motion of permanently confined quarks and antiquarks. Many authors have
tried to write such equations by imagining the area suppression of the Wilson
loop correlation function (22.3) to result from a physical surface that spans the
loop. For the large rectangular loop associated with color sources, this surface
can be interpreted physically as the lines of color electric flux that run from
one source to the other (as in Fig. 17.1), swept out through Euclidean time.
At one moment of Euclidean time, this surface can be idealized as an abstract
one-dimensional excitation, often called a string. Unfortunately, the quantum
properties of an idealized string turn out to be very complicated, since each
small element of the string must be considered as an independent quantum
degree of freedom. The only systems of string equations that have actually
been solved have bizarre features, including unwanted massless particles. Up
to now, no one has succeeded in writing an equation for the quark-confining
string that is useful for quantitative calculations of quark bound states."

For one approach to color confinement from a picture involving Wilson loops and
strings, see A. A. Migdal, Phys. Repts. 102, 199 (1983).
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However, the lattice regularization of a non-Abelian gauge theory suggests
another approach to quantitative calculations in strong-interaction theory. By
approximating QCD by a lattice gauge theory with a nonzero lattice spacing
and a finite spacetime volume, we reduce the functional integral to a finite
number of bounded integrations, that is, an integral over SU(3) group matri-
ces for each of the finite number of links in the lattice. A lattice of size, for
example, 20* allows the lattice spacing to be smaller than the size of a hadron
while the full size of the lattice is much larger than a hadronic radius. Then
one can compute correlation functions by evaluating the integrals numerically,
by the Monte Carlo method. Since the functional integral with a finite lattice
spacing is related to the original functional integral with zero lattice spacing
by integrating out short-distance degrees of freedom, the lattice approxima-
tion can be systematically improved by computing the short-distance effects
perturbatively, using asymptotic freedom to justify a weak-coupling analysis.*

This numerical method has now become the principal theoretical tool for
quantitative calculations in hadron physics. This method currently gives the
masses of the low-lying mesons and baryons to accuracies of 10-20%; it also
allows the calculation of weak interaction matrix elements of hadrons at the
25% level. As computers become more powerful, this numerical method can
be pushed to higher accuracy.

Eventually, it will be interesting to ask whether these nonperturbative
numerical calculations are consistent with our precision knowledge of the per-
turbative region of QCD. At the time of this writing, the first such comparison
has been made: We have listed in Table 17.1 a value of o, from 1 and T spec-
troscopy. In this calculation, the experimentally determined masses of éc and
bb bound states are compared to values computed numerically with lattice reg-
ularization. The comparison of these values gives the required bare coupling
constant of the lattice theory, which can be converted to a value of as(mz)
in the convention of the table. The resulting estimate for as;(mz) does agree
reasonably well with purely perturbative determinations.

What is the future of nonperturbative calculations in hadron physics? On
the one hand, we expect to see further development of numerical lattice meth-
ods. These methods have hardly begun to address problems of hadron-hadron
scattering and multiparticle matrix elements, and this seems an important di-
rection for the future. In addition, these methods should eventually supply an
engineering understanding of hadrons at the percent level or better. On the
other hand, we hope also to see a quantitative continuum approach to hadron
structure, in which dynamical quarks interact with some appropriate type of
string degrees of freedom.

For an introduction to numerical lattice gauge theory, see From Actions to An-
swers, T. DeGrand and D. Toussaint, eds. (World Scientific, Singapore, 1990).
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22.2 Grand Unification and its Paradoxes

If we put aside our questions about the low-energy, nonperturbative behavior
of QCD, the SU(3) x SU(2) x U(1) gauge theory gives an apparently complete
description of elementary particle interactions at those energies that we have
probed experimentally. But what happens beyond our current reach? Does
this theory need modification, or could it continue to be valid at much higher
energies?

The SU(3) x SU(2) xU(1) gauge theory contains three independent gauge
coupling constants, and the observed values of these couplings are larger for
the larger components of the gauge group. This pattern can be explained by a
bold hypothesis about the behavior of the gauge couplings at very high energy.
If at some very large energy scale, these three couplings were equal, the values
of the SU(3) and SU(2) couplings would increase at smaller momentum scales
due to their asymptotically free renormalization group equations, while the
value of the U(1) coupling would decrease, resulting in the observed pattern of
couplings at low energies. An even bolder hypothesis would be that the three
gauge symmetries are subgroups of a single large symmetry group, which is
spontaneously broken at very high energy scales. The simplest choice for this
larger symmetry is SU(5). In that theory, the coupling constants of SU(3) x
SU(2) x U(1) have the following relation to the underlying SU(5) coupling at
the scale of SU(5) breaking:

5
gs=03=g= \/;9/- (22.6)

The idea that the SU(3) x SU(2) x U(1) gauge group is embedded in a larger
simple group is known as grand unification; the particular choice of SU(5) as
the unifying group is due to Georgi and Glashow.* The observed quarks and
leptons can be seen to fit neatly into an anomaly-free chiral representation of
SU(5); this embedding leads to a natural explanation of the fractional charges
of quarks.t

Within this framework, we can extrapolate the values of the three coupling
constants from the energy scale of mz upward. The result of this extrapolation
is shown as the solid lines in Fig. 22.1. The coupling constants do come close
together at very high energies, though they do not actually meet. The dashed
lines in the figure show the evolution with a modified set of renormalization
group equations, to be explained in Section 22.4; with this choice, the three
couplings meet accurately within their current uncertainties. In any event,
the evolution of coupling constants occurs on a logarithmic scale in energy, so
grand unification cannot be achieved without assuming an enormous value—of
order 101 GeV—for the symmetry-breaking scale.

*H. Georgi and S. L. Glashow, Phys. Rev. Lett., 32, 438 (1974). The remarkable
hubris of this paper makes it required reading for every student.

TFor a pedagogical introduction to grand unification, see Ross (1984).
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Figure 22.1. Extrapolation in energy of the coupling constants of the
SU(3) x SU(2) x U(1) gauge model, g3, g, and 1/5/3¢’. The solid lines are
plotted using the § functions corresponding to the known set of elementary
particles; the dashed lines are plotted using the g functions corresponding to
a supersymmetric multiplet of particles.

The idea of a grand unification at such enormous energies raises many
difficult questions, but it also suggests a wonderful opportunity. There is an-
other enormous energy scale in quantum field theory, the scale at which the
gravitational attraction of elementary particles becomes comparable to their
strong, weak, and electromagnetic interactions. Conventionally, one defines
the Planck scale as the energy for which the gravitational interaction of par-
ticles becomes of order 1:

Mplanck = (Gn/he) ™12 ~ 10 GeV. (22.7)

However, already at energies of order 10'® GeV, the gravitational attraction
of particles is comparable to the gauge force due to the vector bosons of a
grand unified theory. Though this scale is still slightly higher than the scale
at which the standard model coupling constants meet, it is not unreasonable
to hope that grand unification is somehow related to the unification of gravity
with the forces of elementary particle physics.

On the other hand, the introduction of this large scale into physics leads
to a number of conceptual problems. The first of these problems, which one
meets immediately upon suggesting this extension of the standard model, is
the Higgs boson mass. In our discussion at the end of Section 20.2, we came
to a somewhat ambiguous conclusion about the nature of the Higgs boson. As
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a part of the gauge theory of weak interactions, we need some new sector that
will cause the spontaneous breaking of SU(2) x U(1). This might be supplied
by the vacuum expectation value of a scalar field, or by the more complicated
dynamics of a new sector of particles. At this moment, we do not know which
hypothesis is to be preferred.

If SU(2) x U(1) is broken by the vacuum expectation value of an elemen-
tary scalar field, that scalar field should be part of the grand unification. This
leads to a serious conceptual problem. In order to produce a vacuum expec-
tation value of the right size to give the observed W and Z boson masses, the
Higgs scalar field must obtain a negative mass term, of the size

—u? ~ —(100 GeV)?2. (22.8)

Unfortunately, the (mass)? of a scalar field receives additive renormalizations.
In a theory with cutoff scale A, 2 can be much smaller than A2 only if the
bare mass of the scalar field is of order —AZ, and this value is canceled down
to —u? by radiative corrections. If we envision that our theory of Nature
contains the very large scales of grand unification, we must take seriously the
idea that the appropriate value to take for A in this discussion is 10'¢ GeV or
larger. This seems to require dramatic and even bizarre cancellations in the
renormalized value of u2. :

We met a situation of this type in the theory of phase transitions. At zero
temperature, a ferromagnet typically has a spin expectation value of the order
of the underlying atomic parameters. As the temperature is raised, or as some
other variable in the system is changed, the magnetization decreases. Finally,
by fine adjustment of the temperature, we can arrive at a situation where the
system approaches a critical point. In the very near vicinity of this point, the
expectation value of the spin field is much smaller than the value predicted
from atomic parameters, and the system is described by an approximately
massless continuum scalar field theory.

In statistical mechanics, this picture of the light scalar field makes sense
because there is an experimenter sensitively adjusting a dial. In the theory of
weak interactions, there is no one obviously making a fine adjustment that
gives the (mass)? of the Higgs boson a value 28 orders of magnitude or more
below its natural value. Thus, it is a mystery why the Higgs boson mass should
be so small compared to the grand unification scale. Particle physicists refer
to this question as the gauge hierarchy problem.

How can one naturally arrange a Higgs field mass term to be so much
smaller than the underlying mass scale of the fundamental interactions? One
possible strategy would be to arrange for a symmetry of the fundamental
Lagrangian that forbids the Higgs boson mass term and that is very weakly
broken. This idea turns out to be very difficult to implement. To build a theory
of this type, one would need to create a scalar field theory in which additive
radiative corrections to the Higgs boson mass must cancel to any foreseeable



22.2  Grand Unification and its Paradoxes 789

order in perturbation theory. But the Higgs mass term is very simple in form,
AL = p?|9)?, : (22.9)

and it is hard to imagine any principle that would keep this term from being
generated by radiative corrections. There is one proposal for a symmetry
with this property, but it requires the introduction of a profound principle
called supersymmetry that entails deep modifications of fundamental physics.
In particular, it requires a large number of new elementary particles, some
of which should have masses below 1000 GeV, within the reach of the next
generation of accelerators. We will discuss this possibility further in Section
22.4.

In this discussion, the problem of the Higgs mass stemmed from the hy-
pothesis that the Higgs boson was an elementary particle. An alternative view-
point, already suggested at the end of Section 20.2, is that the Higgs boson is
a composite state bound by a new set of interactions. This idea also leads to
observable experimental consequences, since the mass scale of these new in-
teractions must be close to the weak interaction mass scale. In the simplest
theories of this type, the symmetry breaking of the Higgs sector is modeled
on the dynamical chiral symmetry breaking of the strong interactions, which
we discussed in Section 19.3. The new strong interactions required by the the-
ory lead to a spectrum of new particles with masses of about 1000 GeV.}
Thus, the two conflicting hypotheses on the nature of the sector that breaks
SU(2) x U(1) both lead to new phenomena observable at future accelerators,
and possibly even at present ones.

Just as these two different theories of the Higgs sector present com-
pletely different answers to the question of why the weak-interaction symmetry
SU(2) x U(1) should be spontaneously broken, they also imply completely dif-
ferent answers to the question of the origin of the quark and lepton masses. In
a model in which the Higgs field is elementary, the quark and lepton masses
are derived from the renormalizable couplings of fermions to the Higgs field.
These couplings would presumably be part of the grand unification and could
be predicted only by theories that made explicit reference to the grand unifi-
cation scale. In principle, the knowledge of these couplings could give us clues
as to the details of the grand unification. Even if the Higgs field is compos-
ite, we cannot avoid the fact that the generation of masses for the quarks and
leptons requires the breaking of SU(2) x U(1). Thus, these mass terms must
arise from couplings of the quarks and leptons to the Higgs sector of interac-
tions. In this class of models, the interactions leading to the quark and lepton
‘masses must arise at energies close to the scale of the Higgs sector strong
interaction and may eventually be observable experimentally.

From either viewpoint, it is still mysterious why the spectrum of quarks

}The properties of these models of the Higgs sector, known to specialists as tech-
nicolor models, are described in R. Kaul, Rev. Mod. Phys. 55, 449 (1983) and K. D.
Lane, in The Building Blocks of Creation, S. Raby, ed. (World Scientific, 1993).
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and leptons covers 5 orders of magnitude, from the electron at 0.5 MeV to
the top quark at 175 GeV. It is also not understood what gives rise to the
pattern of quark mixings encoded in the CKM matrix and the magnitude of
CP violation. Even with detailed confirmation of the standard model, these
questions seem today very far from solution.

The enormous mass scale of grand unification can also enter one more
physical quantity, one that poses an even greater paradox than that of the
Higgs boson mass. When we first quantized a field in Section 2.3, we discovered
that the energy density of the vacuum in free scalar field theory received an
infinite positive contribution from the zero-point energies of the various modes
of oscillation. With a cutoff scale A, this zero-point energy is given roughly
by

(0| H |0) ~ A% (22.10)

At many other points in our discussion, we found similarly large contributions
to the vacuum energy. The filling of the Dirac sea in the quantization of the
free fermion theory led to a downward shift in the vacuum energy with a
similar ultraviolet divergence. Spontaneous symmetry breaking gives a finite
but still possibly large shift in the vacuum energy density,

A (0| H |0) ~ —cv?, (22.11)

with dimensionless ¢, for a field vacuum expectation value v. The spontaneous
breaking of the weak interaction SU(2) x U(1) symmetry and of the strong in-
teraction chiral symmetry both would be expected to shift the vacuum energy
density in this way.

In elementary particle physics experiments, this shift of the vacuum en-
ergy is unobservable. Experimentally measured particle masses, for example,
are energy differences between the vacuum and certain excited states of H, and
the absolute vacuum energy cancels out in the calculation of these differences.
However, there is a way that the absolute vacuum energy could potentially
be observed, through the coupling of the vacuum energy to gravity. Accord-
ing to Einstein, the energy-momentum tensor of matter ©#” is the source of
the gravitational field. A vacuum energy density (0| H |0) = A contributes to
this source a term

O = N(O") + M\g", (22.12)

where the first term on the right is subtracted to have zero vacuum expecta-
tion value. The vacuum energy term has the form of Einstein’s cosmological
constant and thus potentially affects the expansion of the universe.

In fact, measurements of the cosmological expansion exclude a large cos-
mological constant. The current limit is

A <1072 g/em® ~ (107 GeV)*. (22.13)

We have no understanding of why A is so much smaller than the vacuum
energy shifts generated in the known phase transitions of particle physics,
and so much again smaller than the underlying field zero-point energies. The
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discrepancy in A between the experimental bound (22.13) and naive intuition
is 120 orders of magnitude! The solution to this problem may come from one
of many sources. It may be that the formalism of the quantum field theory
of gravity requires that the vacuum energy be subtracted from the energy-
momentum tensor that appears in Einstein’s equations of gravity. It may be
. that there is a new physical mechanism coming from particle physics or from
gravity itself that sets the total vacuum energy to zero. Or it may be that
the overall scale of energy-momentum is genuinely ambiguous and is set by a
cosmological boundary condition. At this moment, all of these possibilities are
just guesses. All we know for certain is that the unification of quantum field
theory and gravity cannot be straightforward, that there is some important
concept still missing from our current understanding.*

22.3 Exact Solutions in Quantum Field Theory

From the idea of grand unification, with its great promise and mystery, we
turn to the study of model quantum field theories that are so simple that they
can be solved exactly. Throughout this book, we have stressed the intrinsic
complexity of quantum field theory and the importance of using perturbation
theory as a replacement for exact knowledge. But there are a variety of quan-
tum field theories for which exact solutions are known. In this section, we will
describe some of these and review the insights we have gained from them.

In searching for exact solutions to quantum field theory models, there
is no reason to restrict our attention to four-dimensional spacetime. In fact,
we have seen examples of two-dimensional theories with similar complexity of
renormalization and short-distance behavior. At the same time, these theories
occupy a one-dimensional space, and their degrees of freedom can be visualized
as links in a chain. This allows some powerful simplifications.

In our discussion of the axial anomaly in two dimensions in Section 19.1,
we showed that the photon of two-dimensional massless QED becomes a mas-
sive boson. More detailed examination of this theory shows that this boson
is a noninteracting particle. The theory is originally formulated in terms of
fermions, interacting through Coulomb forces. However, it is possible to ex-
actly rewrite the theory as a theory of a scalar field that creates and destroys
fermion-antifermion pairs. Heuristically, a particle and an antiparticle moving
down the light-cone in one-dimensional space do not separate and therefore
comprise one bosonic degree of freedom. In a wide class of models, the bosonic
theories rewritten in this way are free-field theories. A remarkable model of
this type is the Thirring model,

L =ipy - Soy v, (22.14)

*The cosmological constant problem and a variety of unsuccessful solutions are
reviewed in S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
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in two dimensions. In this model, the replacement of the fermion field by a
boson field leads to a free field theory. Using this field theory, one can com-
pute correlation functions of fermion bilinears explicitly and show directly
that these operators have anomalous dimensions. In renormalization-group
language, the model contains a line of fixed points parametrized by the cou-
pling constant g.f

A more general class of two-dimensional models can be solved by visu-
alizing them in a Hamiltonian picture as a one-dimensional chain of coupled
field operators. The prototype of this method is a problem in the statistical
mechanics of magnets, the one-dimensional chain of coupled spins. Consider a
long chain of N discrete sites, with a spin-1/2 system at each site. The Pauli
sigma matrices o; act on the two-dimensional Hilbert space at the site ¢. The
Hamiltonian for the spin chain is then

H=Y (-Joi oi1). (22.15)

Since
oi 011 =2(0} 0, 0700 )+ ooy, (22.16)

this Hamiltonian conserves the number of up spins. The state with all spins
down is an eigenstate of the Hamiltonian, and the states with one spin up in a
state of definite momentum are also eigenstates. In 1934, Bethe analyzed the
problem of two spins up and computed their S-matrix. He then discovered an
amazing fact, that by multiplying the S-matrices for the two-spin problem, he
could find the exact eigenstates of the Hamiltonian for any number of spins up.
By considering N/2 spins up, he found the ground state of the system. This
technique, now known as Bethe’s ansatz, has been used to solve a wide variety
of one-dimensional problems in condensed matter physics and quantum field
theory. For example, this technique has been used by Andrei and Lowenstein
to solve the Gross-Neveu model presented in Problem 11.3 and to demonstrate
that the spectrum of this model has the properties expected from asymptotic
freedom.}

Even where it is not possible to solve a model for all values of its parame-
ters, it is sometimes possible to find exact information about two-dimensional
models at points where they contain massless fields. It is well known that a va-
riety of classical two-dimensional partial differential equations can be solved by
exploiting techniques of complex variables. For example, the two-dimensional
Laplace equation V2¢ = 0 is invariant to conformal mappings z — w(z),

tFor an introduction to these models, see S. Coleman, Phys. Rev. D11, 2088
(1975), Ann. Phys. 101, 239 (1976).

{For an introduction to Bethe’s ansatz and its generalizations, see N. Andrei, K.
Furuya, and J. H. Lowenstein, Rev. Mod. Phys. 55, 331 (1983), L. D. Faddeev, in
Recent Advances in Field Theory and Statistical Mechanics, J. B. Zuber and R. Stora,
eds. (North-Holland, Amsterdam, 1984), and R. J. Baxter, Exactly Solved Models in
Statistical Mechanics (Academic Press, London, 1982).
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where z = x + iy. Two-dimensional quantum field theories with massless
particles often have this conformal symmetry at the classical level, though
generically it is anomalous. In special systems, however, these anomalies van-
ish and the quantum theory is invariant to conformal mapping. These theories
typically contain operators with anomalous dimensions, indicating that each
such theory is a new, nontrivial fixed point of the renormalization group. The
conformal symmetry of the theory can be used to compute these anomalous
dimensions.

As an example of this class of theories, consider the two-dimensional non-
linear sigma model in which the basic field is not a unit vector, as we discussed
in Section 13.3, but rather a unitary matrix of a Lie group G. The Lagrangian
of this theory is

c d*z tr[8,UT0"U]. (22.17)

=i
Like the theory of Section 13.3, this model is asymptotically free. However,
Witten has shown that, by adding to this Lagrangian a particular perturbation
of a rather complicated form first written by Wess and Zumino, one can find a
fixed point of the renormalization group with manifest G x G global symmetry.
This theory is conformally invariant, and all operator correlation functions can
be computed using the conformal symmetry.*

One result of the nonperturbative exploration of quantum field theory
was the realization that field theories can contain particle states that are not
simply related to the quanta of the original fields. In the weak-coupling limit
of a quantum field theory, such new states can appear as new solutions of the
classical field equations. Consider, for example, ¢* theory in two dimensions
in the broken-symmetry phase. The equation of motion is

2 2
%qﬁ - %da —p2¢ + A3 =0. (22.18)

Treating this equation as a classical partial differential equation, we can find
the time-independent solution

© Ty
z) = —= tanh —. 22.19
o(x) iy 7 (22.19)
This is a field configuration that begins in one well of the potential at £ = —oo

and crosses over to the other well as x — +o00. This solution has an energy
of order u/A, larger by a factor of 1/A than the mass of a ¢ quantum. Since
the original equation (22.18) was Lorentz-covariant, the boosts of this solution
must also be solutions to the classical partial differential equation. It is natural
to suggest that, in the ¢* quantum field theory, these solutions form a new
set of massive particles. Such solutions, and the particles corresponding to

*For an introduction to conformally invariant two-dimensional quantum field the-
ories, see P. Ginsparg, in Fields, Strings, Critical Phenomena, E. Brezin and J. Zinn-
Justin, eds. (North-Holland, Amsterdam, 1989).
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them, are often called solitons, borrowing a more specialized term from the
literature on two-dimensional partial differential equations.?

Many examples are now known of particles that are associated in this
way with classical solutions of a quantum field theory. In theories with spon-
taneously broken symmetry, the appearance of such particles is often related
to the topology of the set of vacuum states; the ¢* theory above gives a simple
example of this relation. These examples are not limited to two dimensions
but can also occur in theories that are potentially realistic. Such solutions
can have magical properties. One interesting example is found in the SU(2)
gauge theory with a Higgs scalar field in the vector representation, the Georgi-
Glashow model considered in Section 20.1. ‘t Hooft and Polyakov showed that
this theory has a classical solution in which the Higgs field ¢, has the form

¢a(x) = f('xl)l'w (2220)

They showed that, when the gauge theory is interpreted as a unified model of
weak and electromagnetic interactions, this solution is a magnetic monopole!
In addition, particles that arise as heavy classical states in the weak coupling
limit can have a more intricate relation to the dynamics of the theory when the
coupling is increased. For example, in theories of the type of two-dimensional
QED or the Thirring model in which fermions can be replaced by bosons, a
weak-coupling limit is obtained by adding to the theory a large fermion mass.
Then the original fermions are recovered from the bosonic representation of
the theory as classical solutions very similar to that given in (22.19).

In some theories, one can find classical solutions of the Euclidean field
equations. These solutions, called instantons, are localized in Euclidean time
as well as in space. Thus, they are interpreted as quantum processes that
modify the effective Hamiltonian of a quantum field theory. The most famous
example of an instanton is found in four-dimensional non-Abelian gauge theo-
ries. It was shown by ‘t Hooft that this field configuration leads to a quantum
process that violates the conservation of the U(1) axial current in QCD. We
have explained in Section 19.3 that this violation of current conservation is
exactly what is needed to explain the spectrum of light mesons in QCD.

There is probably much more to be learned, especially about the strong-
coupling behavior of gauge theories, by deeper analysis of the classical solu-
tions to the field equations, and of the interrelations of the many exactly or
partially solvable two-dimensional field theories.

tFor an introduction to the use of solutions of the classical field equations in the
analysis of problems in field theory, see S. Coleman (1985), Chaps. 6 and 7, and R.
Rajaraman, Solitons and Instantons (North-Holland, Amsterdam, 1982).
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22.4 Supersymmetry

Among the properties that a quantum field theory might possess to make it
more beautiful or more mathematically tractable, there is one higher sym-
metry with particularly far-reaching implications. This is a symmetry that
relates fermions and bosons, known (without hyperbole) as supersymmetry.
In this section, we will introduce some of the purely mathematical conse-
quences of supersymmetry, and then discuss the question of whether the true
field equations of Nature could be supersymmetric.

A generator of supersymmetry is an operator that commutes with the
Hamiltonian and converts bosonic into fermionic states. Such an operator must
carry half-integer spin, in the simplest case spin 1/2. Let Q4, with a = 1,2,
be the left-handed spinor components of this operator. Their Hermitian con-
jugates, QL, form a right-handed spinor. The anticommutator {QQ,QE} is
a 2 X 2 matrix with positive diagonal elements; thus it cannot vanish. This
matrix commutes with H but transforms nontrivially under Lorentz transfor-
mations. A Lorentz-covariant expression for this anticommutator is

{Qa, QL } = 204, P, (22.21)

where P* is a conserved vector quantity. Such quantities are severely re-
stricted; a theorem of Coleman and Mandula states that, if a quantum field
theory in more than two dimensions has a second conserved vector quantity
in addition to the energy-momentum 4-vector, the S-matrix equals 1 and no
scattering is allowed. Thus the only possible choice for P* in Eq. (22.21) is the
total energy-momentum. The Coleman-Mandula theorem also rules out any
higher-spin conservation laws. This eliminates the possibility that a supersym-
metry generator could have spin 3/2 or higher. The most general possibility
is a collection of spin-1/2 operators with the anticommutation relations

{QL, Q) } =260k P, (22.22)
with 4,7 = 1,..., N. In the following discussion, we will mainly consider only
the simplest case, N = 1.

The algebra (22.22) of conserved quantities has profound conseqgences for
the theory. Since the right-hand side of (22.22) is the total energy-momentum,
it involves every field in the theory. To reproduce this algebra, the left-hand
side must also involve every field. The representations of this algebra pair
every bosonic state with a fermionic state at the same energy, and vice versa.
If supersymmetry is an exact symmetry of the quantum field theory, it must
act on every sector of the theory. In a realistic model, even the gravitational
field must have a fermionic partner. This means that Einstein’s equations of

gravity must be generalized to a new set of geometrical equations that involve
a fermionic (spin-3/2) field.

tAn excellent introduction to the formalism of supersymmetry is J. Wess and J.
Bagger, Supersymmetry and Supergravity (Princeton University Press, 1983).
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The first consequences of making a quantum field theory supersymmetric
are easy to understand. For every (complex) scalar field, one must introduce
a chiral fermion field. The self-interactions of the bosonic fields are related
to the interactions of these fields with the fermions; for example, a possible
interaction Lagrangian with coupling constant A is

AL = =N*|¢|? — IaypTa?y. (22.23)

We have written a more general supersymmetric Lagrangian in Problem 3.5.
Similarly, for every gauge field, one must introduce a chiral fermion in the
adjoint representation of the gauge group. This fermion, called the gaugino,
mediates interactions of the scalar fields with their fermionic partners whose
strength is given by the gauge coupling g.

The special relation between the bosonic and fermionic interactions leads
to great simplifications in the renormalization of supersymmetric theories.
Some of these simplifications can be anticipated. Since supersymmetry re-
quires that each scalar particle have a fermionic partner of the same mass,
these particles must have the same mass renormalization. But we have seen
that the fermion mass is multiplicatively renormalized and thus is only log-
arithmically divergent, while a scalar mass term is additively renormalized
and thus can be quadratically divergent. Supersymmetry must imply that
the quadratic divergences of scalar mass terms automatically vanish. In fact,
these cancellations occur in every order of perturbation theory, with loop dia-
grams involving bosons canceling against diagrams with virtual fermions. To
see another simplification required by supersymmetry, take the vacuum ex-
pectation value of the anticommutation relation (22.21). The vacuum state
has zero momentum: P*|0) = 0. If the vacuum state is supersymmetric,
Qa 0) = Q};0) = 0. Then Eq. (22.21) implies

(0| H |0) = 0. (22.24)

We have noted already that bosonic fields give positive contributions to the
vacuum energy through their zero-point energy, and fermionic fields give neg-
ative contributions. We now see that, in a supersymmetric model, these con-
tributions cancel exactly, not only at the leading order but to all orders in
perturbation theory.

Deeper examination of supersymmetric theories leads to additional, and
quite unexpected, cancellations in renormalization theory. For example, one
can show that the coupling constants in scalar-fermion self-interactions, such
as A in (22.23), are renormalized only through field strength renormalizations.
Thus the relative size of two different scalar interactions remains unchanged.
If a particular type of renormalizable interaction is omitted, it cannot be gen-
erated by renormalization, in contrast to the case in ordinary field theory.
The simplest supersymmetry does not constrain the renormalization of gauge
couplings, but higher supersymmetries can have a profound effect: In N = 2
supersymmetric models, the 3 function vanishes if the leading-order term is
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arranged to be zero. In N = 4 supersymmetric models, this cancellation is au-
tomatic and 3(g) = 0 exactly. These models give examples of four-dimensional
quantum field theories with no ultraviolet divergences.*

Supersymmetry thus endows a quantum field theory with remarkable,
even magical properties. But is it possible that the true equations of Nature
could possess such a high degree of symmetry? Since we are certain that
there is no charged boson with the same mass as the electron, we know that
supersymmetry cannot be an exact symmetry of Nature. But it is tempting
to guess that it might be a spontaneously broken symmetry of the underlying
equations.

In fact, this conjecture has fruitful consequences for the grand unified the-
ories that we discussed in Section 22.2. The problem of the Higgs boson mass
that we highlighted in that section has an elegant solution in supersymmetry
models. In a supersymmetric version of the standard model, the Higgs field
is one of a large number of scalar fields with various SU(3) x SU(2) x U(1)
quantum numbers. For all of these scalar fields, the mass terms get only a
logarithmic multiplicative renormalization. If supersymmetry were broken in
such a way as to give mass differences of a few hundred GeV between the ob-
served fermionic quarks and leptons and their scalar partners, one would also
find a Higgs boson (mass)? of the correct size. There are good reasons, which
follow from more detailed properties of the theory, why it is the Higgs field,
rather than some other scalar field, that obtains a vacuum expectation value. !

If this set of ideas is correct, the scalar partners of quarks and leptons
would be light enough to be discovered experimentally in the near future. In
that case, these scalar particles and the fermionic partners of gauge bosons
would affect the renormalization of coupling constants between present en-
ergies and the grand unification scale. This might potentially disturb the
prospects for grand unification, but, instead, it improves them: the dashed
lines of Fig. 22.1, with a more impressive meeting of the three coupling con-
stants, were generated by replacing the conventional §# functions with ones
including the supersymmetric partners.

The last of the problems discussed in Section 22.2 is also ameliorated by
the introduction of supersymmetry. In a grand unified theory with broken
supersymmetry, those momentum scales that are much larger than the mass
differences of supersymmetry partners give no contribution to the vacuum
energy. Thus the natural size of the cosmological constant in these theories
is A ~ (100 GeV)?. This reduces the cosmological constant problem to a
discrepancy of 50 orders of magnitude—but this is not nearly enough.

*Supersymmetric models with vanishing 3 function are reviewed by P. West, in
Shelter Island II, R. Jackiw, N. N. Khuri, S. Weinberg, and E. Witten, eds. (MIT
Press, Cambridge, 1985).

tSupersymmetric models of quarks and leptons, and their observable conse-
quences, are reviewed in H. P. Nilles, Phys. Repts. 110, 1 (1984), and in H. E. Haber
and G. L. Kane, Phys. Repts. 117, 75 (1985).
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It is an exciting prospect that supersymmetric partners of the particles of
the standard model might soon be seen in experiments. What we anticipate, in
any event, is that the experiments of the next generation will make a definite
choice between this hypothesis for the nature of the Higgs sector and the other
possibilities discussed in Section 22.2. Either way, we will have advanced our
knowledge one step toward the truly fundamental equations.

22.5 Toward an Ultimate Theory of Nature

What are these fundamental equations? Do they involve quantum field theory,
or some very different organizing principle? Any answer to this question must
be completely speculative. Nevertheless, there are some principles, and an
example, that can guide this search.

For all the attention we have given in this book to the basic interactions
of particle physics, we have given very little attention to gravity. In part,
this is because the quantum theory of gravity has no known observational
consequences. But it is also true that the quantum theory of gravity is still
ill-formed and uncertain. If gravity is treated as a weak-coupling field the-
ory with Feynman diagrams, one quickly finds that the divergences of these
diagrams render the theory nonrenormalizable. This is no surprise, because
gravity is a theory in which the coupling constant has inverse mass dimen-
sions, with the mass scale mpjanck given by (22.7). In our general philosophy
of renormalization, all of the complexity of this theory should be concentrated
at the scale mpianck.

At the scale where quantum fluctuations of the gravitational field are im-
portant, we must expect profound changes in physics. If these changes occur
within the context of quantum field theory, they will at the least entail fluc-
tuating spacetime geometry and topology. But it seems equally probable that
quantum field theory will actually break down at this scale, with continuous
spacetime replaced by a new discrete or nonlocal geometry.

One particular model for the behavior of spacetime at very small dis-
tances is string theory, the dynamics of abstract one-dimensional extended
objects. In Section 22.1, we mentioned that such objects seemed to occur
naturally in attempts to describe quark confinement in QCD, but that the
detailed properties of these objects made them unsuitable for strong inter-
action phenomenology. Among the disappointing properties of these systems
were the appearance of massless spin-2 states of the string, and a constraint
that the dimension of spacetime must be increased unless the spectrum of the
theory contained many massless spin-1 states. In 1974, Scherk and Schwarz
made the remarkable suggestion that string theory was a correct mathemat-
ical description of a different problem, the unification of elementary particle
interactions with gravity. They interpreted the spin-2 quantum as the gravi-
ton and the spin-1 quanta as gauge bosons of a gauge theory.} A decade later,

1J. Scherk and J. H. Schwarz, Nucl. Phys. B81, 118 (1974).
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Green and Schwarz put this conjecture on a firmer footing by showing that
a particular string theory could be interpreted as a grand unified theory in
ten spacetime dimensions, with all gravitational and gauge Ward identities
automatically satisfied and all anomalies automatically canceling. Since that
time, many other solutions to the constraint equations of string theory have
been found, some of which correspond to unified models of gauge interactions
and gravity in four dimensions. These models can naturally incorporate su-
persymmetry and, under that condition, give ultraviolet-finite results for all
scattering amplitudes, including those of gravitons.*

String theories solve the ultraviolet divergence problems of quantum field
theory by rejecting the idea that elementary particles are pointlike objects
with contact interactions. Rather, in string theory, quarks, leptons, gauge
bosons, and gravitons are extended loops of string excitation which thus in-
teract nonlocally. Since particles cannot be definitely localized, spacetime it-
self takes on a nonlocal character. In some sense, distances much less than
the Planck length 1/mpjanck do not exist in the string description of grav-
ity. As yet, it is not clear how to understand intuitively the sort of geometry
that string theory requires. This mathematical problem is now being actively
investigated.

If indeed the truly fundamental geometry of Nature is nonlocal, discrete,
or discontinuous in some other way, then the grand program for the fun-
damental interactions that we have set forth in this book must be altered
in an essential way. The most elementary equations of Nature ‘will not be
gauge-invariant quantum field theories, but instead theories built from very
different elements. Even the principles -of model construction will be differ-
ent from those based on gauge and Lorentz invariance that we have discussed
here.

On the other hand, quantum field theory will still play an essential role in
the interpretation of this structure. All of the processes we now observe, even
the elementary particle processes at the highest energies currently accessible,
occur over distances 15 orders of magnitude larger than the sizes of the strings
or other fluctuating structures that appear in the underlying equations. The
relation of experimental observations to these fundamental structures is thus
very similar to the relation of macroscopic observations to the underlying
atomic structure of matter. In the study of matter, we use a classical, New-
tonian description of atoms to bridge this gap and to relate the properties of
gases, liquids, and solids to underlying atomic properties. We might say that
the quantum theory of atoms gives rise to a set of effective Newtonian equa-
tions that is extremely powerful in the macroscopic domain. Especially in the
theory of gases, this Newtonian description was also used as a tool to realize
the existence of atoms and to derive their properties.

*A technical introduction to string theory and its use in building unified models
has been given by M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, 2
vols. (Cambridge University Press, 1987).
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Similarly, whatever the nature of Planck-scale physics, it leads to some
effective continuum quantum field theory. This quantum field theory might
well be an accurate approximation to the underlying physics already at dis-
tances of 100 Planck lengths, corresponding to momenta of 107 GeV. From
here to the scale of weak interactions, and from there up to the wavelength
of light, and from there to the size of the universe, quantum field theory can
be treated as the basic framework for the equations of physics. By recogniz-
ing the symmetries of the particular set of field equations that Nature has
provided us, we can learn to compute all of the details of physical processes
over this whole enormous domain. And, by contemplating the origin of these
symmetries, perhaps we will also be able to see through to the next level and
unlock the true structure of spacetime. '
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Reference Formulae

This Appendix collects together some of the formulae that are most commonly
~ used in Feynman diagram calculations.

A.1 Feynman Rules

In all theories it is understood that momentum is conserved at each vertex, and
that undetermined loop momenta are integrated over: [d*p/(27)*. Fermion
(including ghost) loops receive an additional factor of (—1), as explained on
page 120. Finally, each diagram can potentially have a symmetry factor, as
explained on page 93.

¢* theory: L = %(8,@)2 - %m2¢2 - %¢4
Scalar propagator: p: = o niﬁ i (A1)
¢* vertex: = —iA (A.2)
External scalar: > =1 (A.3)

(Counterterm vertices for loop calculations are given on page 325.)

Quantum Electrodynamics: £ =i — m)y — 2(F..)? — epy*yA,

Dirac propagator: - = ;(]j +2m) - (A.4)
p p° —m* + 1€
—igu
Photon tor: ~ANANAN = A5
propagator 5 7+ ic (A.5)

(Feynman gauge; see page 297 for generalized Lorentz gauge.)
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m
QED vertex: /j\ = iQey" (A.6)

(Q = —1 for an electron)
>—<——— = u’(p) (initial)
External fermions: p (A7)
>_._ =%°(p) (final)
p
>_._ = %°(p) (initial)
External antifermions: P (A.8)
Ye =v(p) (fma)
p—>
|\/\/\/\/\ =€, (p) (initial)
External photons: P (A.9)
W =¢,(p) (final)
p —>

(Counterterm vertices for loop calculations are given on page 332.)

Non-Abelian Gauge Theory:
L= —m)y — (8,45 — 8,A%)% + gAYt
_ gfabc(auAg)A,u,bAuc _ %92(feabAZAg)(fGCdAucAUd)
The fermion and gauge boson propagators are the same as in QED, times
an identity matrix in the gauge group space. Similarly, the polarization of

external particles is treated the same as in QED, but each external particle
also has an orientation in the group space.

a,
Fermion vertex: = igy*t® (A.10)

a, p abe v
gf*c[g" (k — p)*

3-boson vertex: vk = +g"P(p—q)* (A.11)

L
b,v T ep +9% (g — k)]
a; p b’ v _Z'g2 [fabefcde (gupgua_guagyp)
4-boson vertex: = + face fbde (g"* gP% —g"? g"?) (A.12)

¢p d, o + fadefbce (g;u/gpa _gupgua)]
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b,
Ghost vertex: “% = —gfabept (A.13)
a"’% o c
iéab
Ghost propagator: @ ... ; ........ b = i (A.14)

(Counterterm vertices for loop calculations are given on pages 528 and 532.)
Other theories. Feynman rules for other theories can be found on the fol-
lowing pages:

Yukawa, theory page 118

Scalar QED page 312

Linear sigma model page 353
Electroweak theory pages 716, 743, 753

A.2 Polarizations of External Particles

The spinors u®(p) and v*(p) obey the Dirac equation in the form
0= (¥—m)u’(p) =a*(p)(¥ — m)
= (#+m)v*(p) = v°(p)(¥ + m),

where g = y*p,. The Dirac matrices obey the anticommutation relations

(A.15)

{77} = 29" (A.16)
We use a chiral basis,
0 o -1 0
no_ 5 _
where
ot =(1,0), ot =(1,-0o). (A.18)

In this basis the normalized Dirac spinors can be written

; s - s
ww=(2E), ve-(LVEIT) @
Nads VT
where £ and 7 are two-component spinors normalized to unity. In the high-
energy limit these expressions simplify to

1

N 7(1—-p-o)¢* (o) = la-p-o)m°
u(p>~@(%(l+ﬁ'a)§s), (p)’vﬁ(_iuw.a)ns)' (4.20)
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Using the standard basis for the Pauli matrices,

(01 s [0 —i s (1 0
d=(1o) o=(0 ) o= h)  aw

we have, for example, £&* = (J) for spin up in the z direction, and £* = (9) for
spin down in the z direction. For antifermions the physical spin is opposite to
that of the spinor: n° = ((1]) corresponds to spin down in the z direction, and
S0 on.

In computing unpolarized cross sections one encounters the polarization
sums

Do) =p+m, > () p) =F-m (A.22)

For polarized cross sections one can either resort to the explicit formulae
(A.19) or insert the projection matrices

() () o

which project onto right- and left-handed spinors, respectively. Again, for
antifermions, the helicity of the spinor is opposite to the physical helicity of
the particle.

Many other identities involving Dirac spinors and matrices can be found
in Chapter 3.

Polarization vectors for photons and other gauge bosons are convention-
ally normalized to unity. For massless bosons the polarization must be trans-
verse:

e* =(0,¢), where p-€ =0. (A.24)
If p is in the +z direction, the polarization vectors are
1 1
e = —(0,1,1,0), e = —(0,1,—1,0), © (A.25
\/5( ) \/5( ) (A.25)

for right- and left-handed helicities, respectively.
In computing unpolarized cross sections involving photons, one can re-
place

Z e;eu — —Guv; (A.26)

polarizations

by virtue of the Ward identity. In the case of massless non-Abelian gauge
bosons, one must also sum over the emission of ghosts, as discussed in Sec-
tion 16.3. In the massive case, one must in addition include the emission of
Goldstone bosons, as discussed in Section 21.1.
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A.3 Numerator Algebra

Traces of v matrices can be evaluated as follows:
tr(l) =4
tr(any odd # of v’s) =0
tr(y*7") = 4"
tr(y#yyPy7) = 4(g"" g7 — g**g"? + g7 ¢"*) (A.27)
tr(v%) =0
tr(y7"7°) = 0
tr(y*y P77 °) = —die" 7
Another identity allows one to reverse the order of v matrices inside a trace:
tr(y#y"yPy7 ) = (e 7Py, (A.28)
Contractions of v matrices with each other simplify to:
Vi =4
VY Y = =2y
YA = 49"°
VYV = =27

v

(A.29)

(These identities apply in four dimensions only; see the following section.)
Contractions of the e symbol can also be simplified:

eo‘ﬁwea[gw =-24

ePenp, = —66H, (A.30)
P a0 = —2(6V56% — 6¥56,)

In some calculations, it is useful to rearrange products of fermion bilinears
by means of Fierz identities. Let uq,...,us be Dirac spinors, and let u;;, =
%(1 — ¥°)u; be the left-handed projection. Then the most important Fierz
rearrangement formula is

(@17 uer)(uspyuuar) = — (U107 uar) (Usryuusr)- (A.31)
Additional formulae can be generated by the use of the following identities
for the 2 x 2 blocks of Dirac matrices:

(0")aB(u)vs = 2€areps;  (0%)ap(Tu)vs = 2€ayeps. (A.32)

In non-Abelian gauge theories, the Feynman rules involve gauge group
matrices t® that form a representation r of a Lie algebra G. The symbol G
also denotes the adjoint representation of the algebra. The matrices t* obey

[t®,t%] = i febete, (A.33)
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where the structure constants fo*¢ are totally antisymmetric. The invariants
C(r) and Cs(r) of the representation r are defined by
tr[t?t?] = C(r)6?, t%t% = Co(r) - 1. (A.34)
These are related by _
o) = 2 6y () (A.35)
T dG) '

where d(r) is the dimension of the representation. Traces and contractions of
the t® can be evaluated using the above identities and their consequences:

t47¢% = [Co(r) — 3C2(G)]E°
facdfbcd — CQ(G)éab (A.36)
fetetbte = 1iCy (Gt
For SU(N) groups, the fundamental representation is denoted by N, and
we have
1 N?Z -1
2’ 2N
The following relation, satisfied by the matrices of the fundamental represen-
tation of SU(N), is also very helpful:
1

1
()i (") ke = 3 <5ie5kj - N‘Sijéké)- (A.38)

C(N) = Ca(N) =

C(G)=Ca(G)=N.  (A.37)

A.4 Loop Integrals and Dimensional Regularization

To combine propagator denominators, introduce integrals over Feynman pa-
rameters:

1

1 (n—1)!
— = [dx;---dz, 6D x;—1 = (A.39
Ad; A, 0/ : O ) i T et vy &)
In the case of only two denominator factors, this formula reduces to
1 h 1
— = [ dx . (A.40)
AB 0/ [zA + (1—:1:)B]2

A more general formula in which the A; are raised to arbitrary powers is given
in Eq. (6.42).

Once this is done, the bracketed quantity in the denominator will be a
quadratic function of the integration variables p!'. Next, complete the square
and shift the integration variables to absorb the terms linear in pf'. For a
one-loop integral, there is a single integration momentum p#, which is shifted
to a momentum variable £#. After this shift, the denominator takes the form
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(¢2 — A)™. In the numerator, terms with an odd number of powers of £ vanish
by symmetric integration. Symmetry also allows one to replace

o — éezg‘“’, (A.41)

e — ()2(g" g% + """ +g"g%).  (A.42)

d(d+2)

(Here d is the spacetime dimension.) The integral is most conveniently evalu-
ated after Wick-rotating to Euclidean space, with the substitution

O =i, 2= —f% (A.43)

Alternatively, one can use the following table of d-dimensional integrals in
Minkowski space:

/ die 1 ()i D(n—9) (i)"_% (A.44)

@md (2= A"~ (4n)¥2 T(n) \A
die 2 (1) lid D(n—¢-1)  1\n—g-1

/ i @— D7 = @i 3 T(n) (z) (A-45)
dde 1% _ (—l)n_li g F(n_é_l) 1 n—g—l

/ e Ay = @) 3 T(n) () (A.46)
d4  (#)? (1" d(d+2) T(n—$-2) 1 1\n—5-2

/ i @AW =~ @ 4 T (z) (A-47)
die puevgers (—1)7i T(n—9-2) /1 \n—§-2

/ @ni @Ay (4m)a2  T(n) ()

x i(g""g‘”’ +g"°g"7 +¢"7g"%) (A48

If the integral converges, one can set d = 4 from the start. If the integral
diverges, the behavior near d = 4 can be extracted by expanding

1\2-4 \
(K) =1-(2-%)logA+---. (A.49)

One also needs the expansion of I'(z) near its poles:

I'(z) = i -7+ O(x) (A.50)

near x = 0, and

1
—7+1+---+—+(’)(a:+n)) (A.51)
n n
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near * = —n. Here « is the Euler-Mascheroni constant, v = 0.5772. The
following combination of terms often appears in calculations:

re-%)

94
(47)4/2 (%) ‘= @ (% —log A — v + log(4r) + O(e)), (A.52)

with e =4 — d.

Notice that A is positive if it is a combination of masses and spacelike mo-
mentum invariants. If A contains timelike momenta, it may become negative.
Then these integrals acquire imaginary parts, which give the discontinuities
of S-matrix elements. To compute the S-matrix in a physical region, choose
the correct branch of the function by the prescription

- (r

where —ie (not to be confused with € in the previous paragraph!) gives a tiny
negative imaginary part.

Traces in Eq. (A.27) that do not involve 4° are independent of dimen-
sionality. However, since

gm’guv = 5”;1. =d (A‘54)
in d dimensions, the contraction identities (A.29) are modified:
Yy =d
7Y = —(d=2)7"
VY VPV = 49”7 — (4=d)y"?
VYAV = =277 + (4= Py

(A.55)

A.5 Cross Sections and Decay Rates

Once the squared matrix element for a scattering process is known, the dif-
ferential cross section is given by

do = 1 ( d3pf __1_>
2EA2Ep lva—vs| \'5 (27)3 2E; (A.56)
: 2
x | M(pa,ps — {ps})|” (2m)*6™) (pat+ps — X py)-

The differential decay rate of an unstable particle to a given final state is

1 a3 1 )
= 2ma (I} o E) [M(ma — (o)) @m)*6@ (pa - Tpy)- (A57)

For the special case of a two-particle final state, the Lorentz-invariant phase
space takes the simple form

(I;I/ gf)f3 %)(27?)45(4)(2101 -2 pf) = /di);m 8%(%)’ (A.58)
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where |p| is the magnitude of the 3-momentum of either particle in the center-
of-mass frame.

A.6 Physical Constants and Conversion Factors
Precisely known physical constants:

c=2.998 x 10'° cm/s
h =6.582 x 10722 MeV's
e=—-1.602x 107 C
62
T dnhe  137.04

Gr
=1 5 GeV~?
(he)? 166 x 107° GeV

= 0.00730

The values of the strong and weak interaction coupling constants depend on
the conventions used to define them, as explained in Sections 17.6 and 21.3.
For the purpose of estimation, however, one can use the following values:

(10 GeV) = 0.18
as(mz) =0.12
sin?6,, = 0.23

Particle masses (times c?):

e: 0.5110 MeV p: 938.3 MeV
p: 105.6 MeV n: 939.6 MeV
T: 1777 MeV 7 139.6 MeV
W*: 802 GeV 70 135.0 MeV
Z%: 91.19 GeV
Useful combinations:
h
Bohr radius: ag = =5.292 x 1072 cm
amec
electron Compton wavelength: A= mhc =3.862 x 107! cm
classical electron radius: Te = ah =2.818 x 10713 cm
MeC
8mr2
Thomson cross section: or = 3 ¢ = 0.6652 barn

U . 4o 86.8 nbarn
annihilation cross section: 1R = =

" 3E2,  (Ecm in GeV)?
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Conversion factors:

(1 GeV)/c* =1.783 x 107 g
(1 GeV)™(hc) = 0.1973 x 107! cm = 0.1973 fm;
(1 GeV)~2(hc)? = 0.3894 x 10727 cm? = 0.3894 mbarn
1 barn = 107 cm?
(1 volt/meter)(ehc) = 1.973 x 1072° GeV?
(1 tesla)(ehc?) = 5.916 x 1077 GeV?

A complete, up-to-date tabulation of the fundamental constants and the prop-
erties of elementary particles is given in the Review of Particle Properties,
which can be found in a recent issue of either Physical Review D or Physics
Letters B. The most recent Review as of this writing is published in Physical
Review D50, 1173 (1994).
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Center-of-mass coordinate, 148
Channels, 157
Characteristics, method of, 418
Charge conjugation, see C
Charge, conserved, 18
of a Dirac particle, 62
see also Coupling constants, Current
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for ¢* theory, 324-329, 408-409
for Yukawa theory, 329-330, 409
for QED, 331-334
for linear sigma model, 353-354
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for computation of effective action,
370-372
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533, 544
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258, 334-335, 410, 425
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in GWS theory, 701-703, 713-716
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797
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Coupling to EM field, 78
Covariant derivative, 78, 483, 485,
487488, 490, 499
in GWS theory, 703
CP invariance, 64-65, 596, 721-726, 790
CPN model, 466-468
CPT invariance, 64, 71, 76
Creation and annihilation operators, 26,
58, 123 :
Critical exponents, 272-274, 435-438,
440-451, 462, 466
definitions, 441
relations among, 447
measurements of, 437, 449-451
Critical point, 267, 269-274, 395, 406,
436, 440, 461, 465, 788
Cross section, 4, 99-107, 237, 808
relation to S-matrix, 106-107
Rutherford, 130
Thomson, 163, 809
for linear sigma model, 128
for Coulomb scattering, 130, 154, 169
for ete™ — ptpu—, 136, 143, 809
for eTe™ — hadrons, 140, 262, 552
for bound state production, 151
for Compton scattering, 163
for ete™ — vv, 168
for Bhabha scattering, 170
for ep elastic scattering, 208
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Cross section, cont.
for ete™ — gqg, 261, 553
for deep inelastic scattering, 558
for deep inelastic v, ¥ scattering, 561
for Drell-Yan process, 566, 568
for parton-parton reactions, 568
for elementary QCD processes, 569—
572
forete™ - WtwW—, 757, 773
for du — W, 773
Crossing symmetry, 155, 168, 230
CTEQ collaboration, 563, 573, 590, 643
Current, conserved, 18, 244
electromagnetic, xxi
of charged scalar field, 18
of classical point particle, 177
of Dirac fields, 50-51
for rotations, 60
normalization of, 430
of fermions in non-Abelian gauge
theory, 491, 533
of fermions in GWS theory, 705
see also Axial vector current, Con-
servation laws, Noether’s theorem,
Ward identity
Custodial SU(2) symmetry, 719
Cutkosky rules, 233-236, 515
Cutoff, ultraviolet, 80, 266268, 394-406,
409, 464-465, 788-790
momentum, as a regulator, 257, 394-
395, 458-461, 662
Cutting rules, see Cutkosky rules

D (degree of divergence), 316
D (measure of functional integral), 276
DO experiment, 772
Dr, see Feynman propagator
de Broglie wavelength, 103, 277
Decay rate of a particle, 101, 107-108,
127, 151, 237, 808
Decomposition of group representations,
501-502
Deep inelastic scattering, 475-480, 547,
555-563, 591-592, 621-647
from a photon, 649
neutral-current, 709, 712, 729
neutrino, 559-561, 593-594, 606,
634-635, 709, 712
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Definition of a quantum field theory, 283
Definition of a theory at scale M, 408
Definition of physical parameters, 325
Degree of divergence, see D
DELCO experiment, 138
Delicate adjustments, 406, 788
DELPHI experiment, 711
6 (critical exponent), 441, 446447
6 function, xx—xxi
functional, 295
in parton splitting functions, 580-581
6z, bm, 01, etc., see Counterterms
Al =1/2 rule, 611-612
ATT baryon, 546
Democracy, functional, 276
Derivative interactions, 80, 312, 399
Detector sensitivity, 200-202, 207-208
Determinant, see Functional determi-
nant
Dielectric property of vacuum, 255, 541
Differential cross section, see Cross
section
Dilatation current, 683
Dimensional analysis of renormalizabil-
ity, 80, 322, 402 ‘
Dimensional regularization, 248-251,
257, 333, 409, 524, 662, 681, 684,
767, 807-808
Dimension of space, effect on scalar field
theory, 465-466
Dirac, P. A. M., 40
Dirac algebra, see v*
Dirac equation, 3, 13, 35, 40-44, 803
solutions of, 45-48
see also y#
Dirac field, 42-75
bilinears of, 49-52
quantized, 58
see also Feynman rules
Dirac Hamiltonian, 52
Dirac hole theory, 61, 658-659, 790
Dirac matrices, see y*
Dirac representation, 40-41
reducibility of, 41-50
Dirac spinors, 41, 803
Disclaimers, xv-xvi
Disconnected diagrams, 96, see also
Connected diagrams, Exponentiation

Discontinuities, see Analytic properties
of amplitudes
Discrete symmetry, 348, see also C, P, T
Disorder, 460-461
Dispersion relations, 619-621, 632-634
Displacive phase transitions, 469
Distribution functions, see Parton
distribution functions
Distributions, xx—xxi
1/(1—x)4, 581
Divergence-free theories, 321, 797
Divergences, see Infrared divergences,
Ultraviolet divergences
Domains in a ferromagnet, 267
Double logarithm, see Sudakov double
logarithm, Two-loop diagrams
Double-slit experiment, 276-277
Double-well potential, 271, 349
Drell-Yan process, 564-568
Duality, particle-wave, 26
Dyson, F., 82

e (electron charge), xxi
in GWS theory, 702
ete™ annihilation
to muons or 7 leptons, 4, 131-153, 171
to hadrons, 139-141, 259-262, 474,
548-554, 615-621, 710-711, 728-729
to scalars, 312, 750-754
to WTW—, 750-757, 773
Eg, E7, Eg (Lie algebras), 497, 681
E[J] (vacuum energy), 365-367
Eating, of Goldstone boson, 692, 744
Effective action, 364-391, 443-444, 533,
535-537, 720
computation of, 370-379
as generating functional, 379-383
Callan-Symanzik equation for, 444
Effective coupling constant, see Running
coupling constant
Effective field theory, 266, 800
Effective Lagrangian, 396-403
for W exchange, 559, 605
Effective mass, 403, 600-603, 669-670
Effective potential, 367-369, 375, 384,
391, 443-445
for O(N) ¢* theory, 376-379, 451-453
for Coleman-Weinberg model, 469-470



Electric dipole moment of neutron, 726
Electromagnetic current, 18, 50-51, 705
Electromagnetic field, 78-79
quantization of, 79, 123, 124, 294-298
in GWS theory, 701-702
Electromagnetic field tensor, 33, 78,
484-485, 492
Electromagnetic potential, see Coulomb
potential
Electromagnetism, xxi, 33, 64, 473, see
also QED
Electron, 4, 124
structure of, 575-587
see also Cross sections, eTe™ annihila-
tion, X(p)
Electroweak theory, see GWS theory
Energy functional, 365-367, 370, 372,
379-380
Energy, in EM field, 179
Energy, infinite, 21
Energy, negative, 26, 54

Energy-momentum fractions, see Parton ~

distribution functions
Energy-momentum tensor, 19, 310, 430,
682-685, 790-791
symmetric, 642
for electromagnetic field, 33, 683-685
for QCD, 630, 642, 685
Enhancements, see Logarithmic en-
hancements
€ (4 —d), 250, 377, 449
€ expansion, 436, 449
eMVPI | xx
contraction identities, 134, 805
Equal-time commutation relations, 20
Equality of coupling constants, 514, 531
Equation of motion, 16, 25
for Green’s functions, 306-312
for gauge field, 500
Equivalence theorem, Goldstone boson,
743-758
Equivalent photon approximation,
209-210, 579
Estimation of divergent part of a dia-
gram, 529
n (critical exponent), 273-274, 441, 443,
447, 466
Euclidean space, 293, 394-395, 439, 807
4-momentum in, 193
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Euler-Lagrange equation, 16, 308
Event shapes, 593-594
Evolution equations, see Altarelli-Parisi
equations
Evolution of parameters, see Running
coupling constant, Callan-Symanzik
equation
Evolution of parton distributions, 574—
593, 644-647
Exactly solvable field theories, 81, 405.
791-794
for large N, 463-465, 467
Exotic contributions to anomalous
magnetic moments, 210
Experimental tests of quantum field
theory, see Critical exponents, QED.
QCD, GWS theory
Exponentiation, 126, 207 i
of disconnected diagrams, 96-98, 113,
399
Extended supersymmetry, 425, 796-797
External field, 185, 292, 304
Feynman rule for, 129
External leg corrections, 113, 175, 195
External lines, see Feynman rules
External source, see Classical source
Extreme limit ¢% — oo, 642-643

fe(z) (distribution function of electron
in electron), 580-581, 583
f7(x) (distribution function), 477, 556
f~(z) (distribution function of photon in
electron), 579, 583
f*(x) (distribution function), 632
f~(z) (distribution function), 635
fabe (structure constants), 490, 495,
498-499, 806
f= (pion decay constant), 670-676, 687
Fi1(¢?) (form factor), 186, 196, 230, 260,
334
infrared divergence, 199-200
F»(¢?) (form factor), 186, 196
Fy (exceptional Lie algebra), 497
%. (matrix connecting currents to
Goldstone bosons), 698-700, 718,
739-742
of SU(3), 502
see also Lie algebra



824 Index

F,,, (field tensor)
electromagnetic, 33, 78, 484-485, 492
non-Abelian, 488-489, 494
Faddeev-Popov Lagrangian, 514, 517
Faddeev-Popov method, 295-298, 512—
515, 533-534, 731-734, 741, see also
Ghosts
Fermi constant, see Gg
Fermi-Dirac statistics, 57, 120, 313,
546-547
Fermion couplings, in GWS theory,
703-705
Fermion loops, 120, 801
Fermion masses, 723
in GWS theory, 704, 713-715
Fermion minus signs, 116, 119-120
Fermion number nonconservation, 657—
659, 686687
Fermion self-energy, see ¥(p)
Fermion-antifermion annihilation, see
ete™ annihilation, Cross section
Fermion-fermion scattering
nonrelativistic, 121-123, 125-126
in broken gauge theory, 735-737
Fermions and antifermions, 59
Feynman rules for, 115-120
Ferromagnets, see Magnets
Feynman, R. P., 82, 275, 476
Feynman boundary conditions, 31, 95,
287-288
Feynman diagrams, 3, 5, 211
for correlation functions, 90-99
for scattering amplitudes, 109-115
general procedure for evaluating, 138
relation to S-matrix, 229
optical theorem for, 232-236
for computing functional determi-
nants, 304-305
for computation of Vg, 375
see also Feynman rules, Perturbation
theory
Feynman gauge, 297, 416, see also
Feynman-'t Hooft gauge
Feynman parameters, 189-190, 342, 806
Feynman prescription, see Feynman
boundary conditions
Feynman propagator, 31, 63, 213, 287-
288, 293, 302

Feynman rules, 5, 8, 94-95, 114-115,
801-803
position-space, 94, 114
momentum-space, 95, 115
symmetry factors, 93, 118
for correlation functions, 94-95
for scattering amplitudes, 114-115
for interaction with an external field,
129, 304
for counterterms, 325, 331-332, 528
functional derivation of, 284-289
for ¢* theory, 94-95, 114-115, 325,
801
for Yukawa theory, 118
for QED, 123, 303, 331-332, 801-802
for scalar QED, 312
for linear sigma model, 353-354
for nonlinear sigma model, 455-456
for non-Abelian gauge theory, 506-
508, 514-515, 528, 802-803
for scalar non-Abelian gauge theory,
544
for Abelian Higgs model, 734-735
for broken gauge theory, 742
for GWS theory, 716, 743, 752-753
Feynman-'t Hooft gauge, 513, 535, 640,
732, 737-738, 746, 749-750
Fictitious heavy photons, see Pauli-
Villars regularization
Field operator, 20
interpretation of, 24, 26
Field rescaling, see Field-strength
renormalization
Field tensor, see Fj,,
Field-strength renormalization, 211-230,
408-410, 417, 421-422
for electron (Z3), 216, 220-221, 330-
335
for photon (Z3), 246
for ¢* theory, 328-329, 345
for Yukawa scalar, 330
for non-Abelian gauge theory, 531-533
for local operators (Zp), 429-432
see also Counterterms
Fierz transformations, 51-52, 75, 170,
607-609, 805
Fine-structure constant, see o
Finite quantum field theories, 425



First-order phase transition, 269-270
Fixed point (of renormalization group),
401-405, 424-426, 791-793
free-field, 401-403, 407
and critical exponents, 443
Wilson-Fisher, 405, 435, 439, 441, 445,
448-449, 454, 461-462, 466
effect on operator product expansion,
614
see also Renormalization group,
Running coupling constant
Flavor (of quarks), 139, 259, 546
Flavor mixing, 714-715
Flavor symmetry, 670-671
Flavor-changing neutral currents, 725
Flipped spinor, 68
Flow of coupling constant, 420
Flow of Lagrangian, 401
Fluctuations, 294, 393-394, see also
Correlation length
Fluids, 266, 437, 439
Forces of Nature, symmetries of, 64,
719-727
Form factors
for QED current, 184-188, 208-209,
229
for axial vector current, 671-672
for deep inelastic scattering, 625,
647-648
Forward Compton amplitude, 623-627
Forward polarization, 511
Forward scattering amplitude, 230-232
Forward-backward asymmetry, 711-712
4, factors of, xxi
Four-gauge-boson vertex, 507
Four-momentum, xix, 212-213
Four-photon amplitude, QED, 320, 344
Four-point function, see Correlation
functions, Asymptotic behavior of
amplitudes
Four-vectors, xix
built out of spinors, 72
Fourier transforms, xx—xxi
Fourth neutrino species, 729
Fractional charges, 546, 786
Free energy, 364-367, see also Gibbs free
energy
Free field theory, 19-29, 404, 458
Free-field fixed point, 439, 441

Index 825

Frequency, positive/negative. 26. 45, 48
Fujikawa’s derivation of axial vector
anomaly, 664—-667
Functional, 276
Functional delta function, 295
Functional derivative, 276, 289-290
Functional determinant, 287, 295, 304—
305, 313, 371-375, 391, 512-514,
517, 535-540
from Gaussian integration, 301
methods for evaluating, 304, 374
Functional integral, 275-314, 394-400,
458, 503, 512-514, 534
methods for evaluating, 284-288,
299-301, 370-373
momentum slicing, 395-399
chiral transformation of, 664—-667
lattice definition, 783-785
Functional quantization
of scalar fields, 282-292
of spinor fields, 298-303
of gauge fields, 294-298, 512-515,
733-734, 741-743
Fundamental constants, 809-810
Fundamental representation, 499, 501
Furry’s theorem, 318

g (Landé g-factor), 188, see Anomalous
magnetic moment
G2 (exceptional Lie algebra), 497
GFp (Fermi constant), 559, 708, 760-763.
809
v (Callan-Symanzik function), 410-417.
427
for operators, 428-435, 604, 612615
matrix, 430, 610-611, 615
for ¢* theory, 413, 466
for linear sigma model, 448
for nonlinear sigma model, 457, 464
for QED, 416
for ¢2, 432, 448
for currents, 432, 602
for gq, 601
for nonleptonic weak interactions, 611
for twist-2 operators, 636, 640
for proton decay operator, 647
v (critical exponent), 441, 447



826 Index

~ (Euler-Mascheroni constant), 250, 377
~# (Dirac matrices), 8, 40-41, 803
traces of, 132-135, 805
contraction identities, 135, 805
contraction identities in d dimensions,
251, 808
in two dimensions, 652
in d dimensions, 251
see also Fierz identities
45 (chirality matrix), 50
traces including, 134, 805
in d dimensions, 662, 667, 681-682,
767
see also Axial vector anomaly
I'(z) (Gamma function), 250, 807
I[¢c1] (effective action), 366-367
Gauge boson mass, see Higgs mechanism
Gauge dependence, 416, 526, 601
Gauge field, 79, 295, 481-491, see also
Gauge invariance, Photon, IT*¥(q)
Gauge hierarchy problem, 788
Gauge invariance, 78-79, 244, 295,
481-494, 533, 689-777
of S-matrix, 298
and axial current conservation, 651,
658
Gauge transformation, 78, 482-491
Gauge-covariant derivative, see Covari-
ant derivative
Gauge-dependent mass, 734
Gauge-fixing function, 295-296, 733,
741, see also Faddeev-Popov method
Gaugino, 796
Gauss’s law, for non-Abelian gauge
theory, 542
Gaussian integrals, infinite-dimensional,
279, 285, 300-301, see also Func-
tional integration
Gell-Mann, M., 545-546
Generalized couplings, 433-435, 442
Generating functional, 379-383
of Green’s functions, 290-292, 302
of connected correlation functions, 380
of 1PI correlation functions, 383
Generations of quarks and leptons, 707,
714-715, 721
Generators of a Lie algebra, 38, 490, 495
of Lorentz transformations, 71-72
see also Lie algebra

Geometric series, in self-energy dia-
grams, 220, 228
Geometry, discrete or nonlocal, 798-800
Georgi-Glashow model, 696, 794
Ghosts, 514-521
interpretation of, 515-517
in Abelian Higgs model, 734
in non-Abelian Higgs theories, 742-743
see also BRST symmetry, Faddeev-
Popov method, Feynman rules
Gibbs free energy, 269-271, 293, 364—
367, 443, 445-446
Callan-Symanzik equation for, 445
Glashow, S., 700
Glashow-Weinberg-Salam theory, see
GWS theory
Global aspect of nonconservation of
axial current, 657-659
Global properties of Lie groups, 496
Gluons, 127, 259, 476, 480, 547
polarization sums, 571
spin of, 596
see also Cross sections, Parton distri-
bution functions, Twist-2 operators
God-given units, xix
Goldberger-Treiman relation, 672
Goldstone boson, 267, 351-352, 455, 460,
690-700, 672, 718, 731-732, 741-743,
see also Higgs mechanism
Goldstone boson equivalence theorem,
743-758
Goldstone’s theorem, 351-352, 363, 388,
669-670, 699
Gordon identity, 72, 186, 192
Graininess of spacetime, 402
Grand unification, 681, 786-791, 799
scale of, 786787, 797
Grassmann numbers, 73, 298-302, 518
Gravitational anomaly, 681, 706-707
Graviton, 126, 798-799
Gravity, 64, 402, 683, 787-791, 795-800
Greek indices, xix
Green’s function
retarded, 30, 32, 62-63
Feynman, 31, 63
for Klein-Gordon equation, 30-32, 503
for Dirac equation, 62-63
for interacting fields, 82, 406-422
see also Correlation functions



Greenberg, O., 546
Gribov-Lipatov equations, xvi, 586-587,
see also Altarelli-Parisi equations
Gross, D. J., 479, 531
Gross-Neveu model, 390-391, 438, 792
Ground state, 20-22, 82, 86, see also
Vacuum
Group theory relations, 495-502, 805—
806
use in diagram computations, 523,
529-530, 569-572
Groups, continuous, 38, 486, 495
GUT, see Grand unification
GWS (Glashow-Weinberg-Salam) theory
of weak interactions, 474, 677, 689,
700-719, 740, 742743, 747-775
experimental tests of, 707-713, 771-
772
stripped-down version, 735
symmetries of, 64, 719-727
see also W, Z, Higgs boson, Fermion
masses, Gauge boson masses

Hadron-hadron collisions, 563-573, 785
Hadrons, 473, 546-547, 552, 782
Hall effect, quantum, 197-198
Hamiltonian, 16, 19
Dirac, 58
abandoning of, 283
see also Analogies to statistical me-
chanics
Han, M., 546
Harmonic oscillator, 20, 313
h, as unit of action, 277
h.c. (Hermitian conjugate), xx
Heaviside step function, xx
Heaviside-Lorentz units, xxi
Heavy quarks
as constituents of proton, 559, 643
photoproduction of, 597
radiative corrections from, 688, 760-
772
Heisenberg equation of motion, 25
Heisenberg picture, 20, 25, 283
Helicity, 47
projection operators, 142
dependence of utp~ production,
141-146

Index 827

Helicity conservation, 142, 166
Helium, superfluid, 267, 437
Helmbholtz free energy, 364-367
Hepp, K., 337-338
Hidden symmetry, 347
Hierarchy problem, 788
Higgs boson, 210, 715-717, 740, 743
mass, 716
couplings to fermions, 721
decays of, 775-777
production in hadron collisions, 777
effect on radiative corrections, 712,
772, 774
origin of, 787-789
Higgs field, 734
vacuum expectation value, 701, 719
in model with two doublets, 729-730
" in supersymmetric models, 797
Higgs mechanism, 470, 690-700, 744-747
gauge boson masses from, 693, 700
vacuum polarization and, 691, 698-700
see also Gauge invariance, Unphysical
degrees of freedom
Higgs sector, 717-719, 726, 760, 789, 798
symmetries of, 721
High-momentum degrees of freedom,
393-406
History of quantum field theory, xv
Holes as antiparticles, 61, 658
Horrible products of bilinears, 52
HRS experiment, 169, 256
Hydrodynamic-bacteriological analogy,
418-420
Hydrogen, see Atomic energy levels
Hydrogen maser, 197
Hyperboloid of 4-momentum vectors, 24
Hyperboloids in energy-momentum
space, 212-213
Hyperfine splitting, 197-198

i€ in functional integrals, 286

Identical particles, 22, 108

Imaginary part of scattering amplitude,
230-237, 253, see also Analytic
properties of amplitudes

Impact parameter, 103

Improper Lorentz transformation, 64



828 Index

In states, see Asymptotic states
Inconsistencies, in vector field theories,
81, 508-511, 757-758
Infinitesimal group element, 495
Infinities, see Infrared divergences,
Ultraviolet divergences
Infrared divergences, 55, 176, 184, 195,
260-262, 550, 553, 574
of electron vertex function, 199-202
of electron self-energy, 217
interpretation of, 202-208
regulator for, 195, 207, 217, 361
Infrared-stable fixed point, 427, 435
Initial conditions, see Altarelli-Parisi
equations
Instantons, 794
Integrals
in d dimensions, 249-250, 807
over anticommuting numbers, 299-301
Interaction picture, 6, 83-87
Interactions among vector fields, 489,
491
Interactions found in Nature, 79, 473
Interactions, effect on single-particle
states, 109
Interchange identities, see Fierz transfor-
mations
Interference phenomena, in condensed-
matter systems, 197-198
Internal lines, 5, 8
Interpolation of Vg, 368-369
Interpretation of field operator, 24, 26
Invariant mass distribution for jet
production, 572-573
Invariant matrix element (M), see
S-matrix, scattering amplitude
Inverse Compton scattering, 167
Inverse propagator, 381, 383
Invisible decays of Z boson, 728-729
Irreducible representation, 498, 501-502
Irrelevant operators, 402, 407, 443, 451,
485
Isospin singlet axial current, 673-674
Isospin, 127, 486, 546, 611, 668, 670, 719
Isotriplet currents, 668
Isotropic magnets, 437
ITEP sum rules, 620-621

J(z) (source term in L), 290

J/ particle, 141, 152, 593-594

Jackiw, R., 370

Jacobi identity, 495-496, 499, 597

Jets of hadrons, 140, 261, 476, 553554
in hadron collisions, 568-573

Jona-Lasinio, G., 668

Josephson effect, 197-198

K meson, 259, 612, 725
Killén-Lehmann spectral representa-
tion, 214, 619, see also Analytic
properties of amplitudes
Killing, W., 496
Kinematics, 104
for eTe™ annihilation, 136
for Compton scattering, 162-164
for deep inelastic scattering, 476-477
for hadron-hadron collisions, 565-568
for collinear particle emission, 576-578
for massive vector bosons, 745
Klein-Gordon equation, 13, 17, 25
Lorentz invariance of, 36
complex, 18, 75-76
see also Feynman rules, scalar field
Klein-Gordon Lagrangian, 16
Klein-Nishina formula, 163

L subscript, 605
L3 experiment, 711
Lab frame, 162
Ladder operators, 26, 58, 123
Lagrange equation, 16
Lagrangian, 15, 35
fundamental significance, 283, 466,
798-800
most general gauge-invariant, 485, 489,
720-722
Klein-Gordon, 16
Dirac, 43
Maxwell, 37
for ¢* theory, 77
for QED, 78, 483
for scalar QED, 80
for Yukawa theory, 79
for linear sigma model, 349-350
for nonlinear sigma model, 454-455
for non-Abelian gauge theory, 489, 491



Lagrangian, cont.
for GWS theory, 704, 715-716, 720-
724
see also Effective Lagrangian
Lagrangian density, 15
Lagrangians, space of, 401
Lamb shift, 197-198, 253
A (coupling constant), 77
A (cosmological constant), 790
A« (fixed point), 426
Ae (electron-Higgs coupling), 713
A (ultraviolet cutoff), 80, 194
A (QCD scale), 552
Landé g-factor, see Anomalous magnetic
moment
Landau gauge, 297, 470, 529
Landau theory of phase transitions,
269-272, 293, 436, 439, 447, 450
Landau-Ginzburg free energy, 470
Large-distance behavior of QCD, 548,
782-785
Large-N limit, 463-465, 467
Laser, polarized, 167
Lattice gauge theory, 547-548, 782-785
Lattice statistical mechanical models,
449-451
Least action, principle of, 15
Lee, B., 347
Left-handed current, 51
Left-handed particle, 6, 47
Left-handed spinors, 44
Left-handedness of W couplings, 559—
560, 703
Left-moving fermions, 652
Legendre transform, 365-366, 370
Lehmann, H., 222
Lehmann spectral representation, 214
Length contraction, 23
Lepton number conservation, 727
Lepton pair production in hadron
collisions, 564-568
Leptons, 473, 726-727
Lie algebras, 38, 495-504
classification of, 496
see also Group theory relations,
Groups
Lifetime, see Decay rate
Light-cone, 14
Lightlike polarization states, 511

Index 829

Linear sigma model, 127-128, 349-363,
373-379, 385-387. 389-390, see also
Feynman rules

Liquid crystals, 367

Liquid-gas critical point, 449-450

Liquid-gas transition, 267, 272-274

Local conservation laws, 18

Local divergence, 337

Local phase rotation, see Gauge trans-
formation

Local symmetry, see Gauge invariance

Locality of ultraviolet divergences, 386

Logarithm of a dimensionful quantity,
251

Logarithmic enhancements

in Compton scattering, 164

in bremsstrahlung, 184, 200-202,
207-208

from multiloop diagrams, 341, 422,
551

in corrections to Veg, 378-379, 451—
453

from mass singularities, 574-575, 579

from QCD, 603-612, 647

Long-range correlations, 395, 442, see
also Correlation length

Longitudinal fraction, 477, 555

Longitudinal polarization, 161, 481

of massive gauge boson, 692, 732, 743
see also Higgs mechanism, Goldstone
boson equivalence theorem

Longitudinal rapidity, 566

Longitudinal W production, 754

Loop diagrams, 12, 401, see also One-
loop diagrams

Loop integrals, evaluation of, 189-195,
806-808

Loops of fermions, 120

Lorentz algebra, 39

Lorentz contraction, 23

Lorentz gauge, 79, 123, 178, 295, 737,
745

generalized, 296, 513
Lorentz group, 7, 38, 71-72
Lorentz invariance, 35, 186, 212
of Dirac equation, 42
violation by gauge fixing, 544
Lorentz transformations, 35-47
of Dirac field, 42, 59



830 Index

Lorentz-invariant 3-momentum integral,
23

Low-energy hadronic interactions, 782

Lowering operators, 497

LSZ (Lehmann-Symanzik-Zimmermann)
reduction formula, 222-230

m(Q) (running mass parameter), 600—
603
mz (Z boson mass), 593
M (renormalization scale), 377-378,
407-408, 410-417
M?(p) (scalar self-energy), 227-228,
236-237, 328-329
two-loop contribution, 345
in linear sigma model, 361-363
sign convention for, 228
M (scattering amplitude), 104
Magnetic field, 179, 269, 292, 293, 364—
367
Magnetic moment, see Anomalous
magnetic moment
Magnetic monopole, 794
Magnetic susceptibility, 266, 441, 446-—
447
Magnetization, 269, 364-367, 440, 441,
446, 788
Magnets, 266-274, 293, 347, 364-367,
406, 439, 449-450, 783, 788, 792
symmetry of, 437-438
ind > 4, 404
see also Analogies to statistical me-
chanics
Majorana equation, 73
Majorana fermions, 73-74
Majorana mass term, 73, 678, 726-727
Mandelstam variables, 156-158, 162,
170, 476
at parton level, 557
Marginal operators, 402, 407, 451, 454
Mass(es)
table of values, 809
bare vs. physical, 214
of an unstable particle, 237
relation to correlation length, 273
derived from effective action, 383
of o, 7 fields, 348-352, 355, 363
of quarks, 599-603, 670-671

Mass(es), cont.
of top quark, 772
of 7 meson, 670
of nucleon, 672
of hadrons, 782, 785
of vector field, 81, 470, 484-485, 758
of photon in two dimensions, 653, 791
of W and Z bosons, 701, 703, 710,
712, 740, 762
of unphysical particles, 733-734
of fundamental fermions, 713-715,
723, 789-790
of neutrinos, 714-715, 726
of Higgs boson, 716
see also Higgs mechanism
Mass matrix, in scalar field theory,
351-352
in broken gauge theory, 693, 700
Mass operator, 402, 406, 431-436, 442
Mass renormalization, 220-221, 227-228,
328-333, 397, 408-409, 431-436
in classical electrodynamics, 221
in supersymmetric models, 796
see also M2(p), £(p), IT*¥(q)
Mass scale, arbitrary, see Renormaliza-
tion scale
Mass shell, 33
Mass singularities, 554, 574-575, 579,
587-588
Massive gauge bosons, 689-777
propagator for, 734
see also W boson, Z boson
Massive vector boson, 173-174
Massless particles, 128, 267-268, 350—
352, 388, see also Goldstone boson
Matrix element, see Scattering ampli-
tude
Maxwell construction, 368-369
Maxwell’s equations, xxi, 3, 33, 37,
78-79, 177, 474, 500
Measure of functional integral, 276-279,
281-282, 285
chiral transformation of, 664-667
Measurement, 28
Meissner effect, 692
Mermin-Wagner theorem, 460-461
Mesons, 546-549
Metastable vacuum state, 368-369
Metric tensor, xix



Minimal coupling, 78, 473
Minimal subtraction, see M S
Minimum of effective potential, 378-379
Minus signs for fermions, 116, 119-120
Miracle, 353-354
Mixing
of operators, 430, 610-612, 615
of quark flavors, 605, 714-715, 722
Model quantum field theories, 791-794
Mgller scattering (e~ e~ scattering), 157
Moment sum rules, 634, 641-643
Momentum, canonical, 16
Momentum conservation in diagrams,
111
Momentum cutoff, see Cutoff
Momentum density, 16
Momentum operator, xx, 19, 26, 58
Momentum scale, for evaluating as, 552,
554, 568, 573
Momentum sum rule for parton distribu-
tions, 563, 644
Momentum transfer, in hadron colli-
sions, 475
Momentum-space Feynman rules, see
Feynman rules
Monte Carlo method, 785
Mott formula, 169-170, 209
MS (modified minimal subtraction),
377, 391, 470, 593
Multiloop diagrams, 335-345
asymptotic behavior, 341, 344-345
Multiparticle branch cut, see Analytic
properties of amplitudes
Multiple photon emission, 202-207,
582-584
Multiplets of leptons and quarks, 707
Muon, 4, 131, 335, 473, see also Anoma-
lous magnetic moment
Muon decay, 709, 727
radiative corrections to, 760-761, 763
Muon neutrinos, 559
Muon-proton scattering, 555
Muonium, hyperfine splitting, 197-198
Mythology, xvi

N (number of spin components), 437
Nambu, Y., 546, 668

Index 831

Naturalness. see Delicate adjustments,
Zeroth-order natural relations
Ne’eman. Y., 546
Negative degrees of freedom. 517, 520
Negative energy, 13, 26, 54. 658. 790
Negative frequency, 48
Negative mass squared, 348
Negative norm, 79, 124, 161. 481. see
also BRST symmetry, Unphysical
degrees of freedom
Nested divergences, 335-338
Neutral-current weak interactions.
709-712, 729
Neutrinos, 473, 559-561, 704. 729
mass, 714-715, 726
number of, 729
see also Deep inelastic scattering
Neutron, 546, 562, 671
Compton wavelength, 197-198
electric dipole moment, 726
Nilpotent operator, 519
Noether’s theorem, 17, 60, 308-310, 683,
see also Current, Symmetry
Non-Abelian gauge symmetry. see Gauge
invariance
Non-Abelian gauge theories, 81. 479—
480, 486-491, 505-548, 692-700,
739-743
Non-Abelian group, 487
Noncompact group, 41
Nonleptonic decay, 605
Nonlinear sigma model, 454-467, 793,
see also Asymptotic freedom, Feyn-
man rules
Nonlinear terms in Lagrangian, 77
Nonlocal divergence, 337, 343-344
Nonorthochronous transformation, 64
Nonperturbative methods, 405, 782-785.
791-794
Nonperturbative QCD, 612, 782-785
Nonrelativistic bound states, 148
Nonrelativistic expansion of spinors, 187
Nonrelativistic quantum mechanics,
275-282
Nonrenormalizable interactions, 321—
322, 399, 434, 485
Nonuniversal correction, 466
Nordsieck, A., 202
Norm, see Negative norm



832 Index

Normal order, 88, 116

Normalization of distribution functions,
562-563

Normalization of spinors, 45-48

Normalization of states, 22, 149

Notation, xix—xxi

v (critical exponent), 436-437, 440-441,
443, 447, 449, 462, 465

v (kinematic variable in deep inelastic
scattering), 633

Nuclear force, 122

Nucleon, 79, 671-672

Numerical computations of quarkonium
spectra, 593-594

Numerical lattice calculations, 785

0(2), 389, 438

0(3), 486, 496

0(4), 127, 719

O(N), 74, 349, 351, 454-455, 497
O(N)-symmetric ¢* theory, see Linear

sigma model
Oblique corrections, 761
Odd parity, 67
w (critical exponent), 466
2 (vacuum of interacting theory), 82, 86
On-shell particle, 33
One-loop corrections
to electron scattering, 211
in GWS theory, 758-772
One-loop diagrams, computation of
in QED, 189-196, 216-218, 247-252,
332-334
in ¢* theory, 326-330
in linear sigma model, 356-363
in non-Abelian gauge theories, 521
533
1PI (one-particle-irreducible) diagrams,
219, 228, 245, 328, 331, 381-383,
408, see also Callan-Symanzik
equation, Effective action
One-particle states, Dirac, 59
One-point amplitude
in QED, 317-318, 344
in linear sigma model, 355, 360-361
OPAL experiment, 711
OPE, see Operator product expansion
Operator mixing, 430, 638, see also vy

Operator product expansion, 612-649,
see also Callan-Symanzik equation
Operator rescaling, 429-432, see also v
Operators, relevant vs. irrelevant, 402,
407
Optical theorem, 230-237, 257, 511-512,
515, 616, 622-623, see also Analytic
properties of amplitudes
Orbital angular momentum, 60-61
Order parameter, 269, 273
Orthochronous transformation, 64
Orthogonal group, see O(N)
Orthogonality of spinors, 48
Oscillations in total cross section, 621
Out states, see Asymptotic states
Overlapping divergences, 335-338

P (parity), 65-67, 71, 75-76, 185, 344—
345, 485, 720-727
in gauge theories, 676
violation in weak interactions, 64, 709,
712
Pair annihilation, see et
Cross section
Pair creation, 13
Paradigm interactions, 77-79
Paradigm reaction, 131
Parasiuk, O., 337-338
Parity-violating deep inelastic form
factor, 647-649
Partial-wave analysis, 750
Particle-wave duality, 26
Particles, as field excitations, 22
Partition function, 292, 312-314, 364,
367
Parton distribution functions, 477-478,
556, 562-563, 588-593, 621-622, 632,
634-635
for proton, 562-563
for neutron, 562
for photon, 649
antiquark component, 561, 562-563,
588
gluon component, 562-563, 588, 777
evolution of, 574-593, 644-647
at small z, 597-598
see also Altarelli-Parisi equations

e~ annihilation,



Parton model, 476-480, 547, 556-557,
597, 625-627, 648
Path dependence of comparator, 491-
494
Path integral, 275-282, see also Func-
tional integral
Path ordering, 493, 504
Pauli sigma matrices, xx, 34, 804
Pauli, W., 58
Pauli-Villars regularization, 194, 218,
248, 257, 662, 686, 688
‘Periodic boundary conditions, 657658,
687
Perturbation theory, 5, 77, 82
in quantum mechanics, 5-6
for correlation functions, 87
validity of, 401, 405-406, 422, 425,
552, 554
Phase, C P-violating, 724-726
Phase diagram, for a ferromagnet, 270
Phase invariance, local, 482
Phase rotation, 78, 496
Phase space, 106, 137
two-body, 808
three-body, 260-261
Phase transitions, 268-274, 791, see also
Critical exponents, Critical point
¢* theory, 77, 82-99, 109-115, 289,
323-329, 439-440
Feynman rules for, 94-95, 114-115,
325, 801
two-particle scattering in, 109-112
divergences of, 324
one-loop structure, 326-329
spontaneously broken, 348
renormalizaton group analysis, 394—
406
existence of, 404
mass renormalization of, 409
limit my — 0o, 454-455
see also Linear sigma model
#% interaction, 398
o1 (classical field), 366-367, 370
Photon, 6, 78-79, 701-702
see also Bremsstrahlung, Compton
scattering, Electromagnetic field,
Feynman rules, TI(g?)

Index 833

Photon distribution function, 579, 583
Photon mass, 81, 653, 690-691
as infrared regulator, 195
induced by bad regulator, 248
Photon polarization sums. 159-160
Photon self-energy, see II*¥(q)
Photon sources, polarized, 167
Photon structure functions, 649
Photon-photon scattering, 210, 320, 344
Photoproduction of heavy quarks, 597
Physical charge and mass, 214. 246, 266,
331, 423
Physical constants, 809-810
Physical parameters of a quantum field
theory, 325
Physical pole in two-point function, 408
7 meson, 79, 122, 128, 259, 475. 669-676
as Goldstone boson, 669-671
coupling to nucleon, 672
decay of T, 687
decay of 79, 674-676
7* (field of sigma model), 350
7% (Goldstone boson field), 698. 718
11 symbol, symbolic use of, 103. 27
TI(¢?) (QED vacuum polarization
amplitude), 176, 245-256, 331-333
contribution of scalars, 312
I1#¥(q) (gauge boson self-energy). 244
256, 320, 522-526
in two-dimensional QED, 653—-655
in Higgs mechanism, 691, 693-694, 700
in GWS theory, 718, 761-771
sign convention for, 762
IT;, (hadronic vacuum polarization),
616-620
Pictures,
Heisenberg and Schrodinger. 20. 283
interaction, 83
Pion decay constant, see fr
Pion, see m meson
Planck scale, 787, 798-800
Plane waves, xx
Plane-wave solutions, Dirac. 45-48
Poisson distribution, 127, 208
Polarization asymmetry, see A{ R
Polarization of fermions, 4. 141
sums over, 48-49, 575, 804
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Polarization of photons and vector
bosons, 123, 145-146, 511, 748-749
sums over, for photons, 159-160
sums over, for gluons, 571
sums over, for massive vector bosons,
260, 748-749
of intermediate-state photons, 576
of intermediate-state gluons, 589
see also Longitudinal polarization,
Timelike polarization, Unphysical
degrees of freedom
Polarized laser, 167
Pole at d = 2, 251, 524-525
Poles in dimensional regularization, 250
Poles in two-point function, 215-216
Politzer, H. D., 479, 531
Polyakov, A. M., 458, 533
Position-space Feynman rules, 94
Positive frequency, 45, 48
Positive norm, 124
Positronium
annihilation rates, 171-172, 197-198
energy levels, 197-198
selection rules for, 76
Potential, double-well, 349
Potential, electromagnetic, xxi
Potential, for spontaneous symmetry
breaking, 348-350
Potential functions
Yukawa, 121-123
Coulomb, 125, 253-255
Power laws, see Anomalous dimensions,
Critical exponents
Poynting vector, 33
Predictions, unambiguous, 387
Pressure, 292
Price of asymptotic freedom, 543
Principle of least action, 15
Probability of scattering, 104-105
Products of group representations,
501-502
Projection
onto helicity states, 142, 804
onto transverse polarization states,
245
Propagation amplitude, 13, 27, 34
Propagator (Feynman), 92
Klein-Gordon, 29-31
Dirac, 62-63, 302, 506

Propagator, cont.
photon, 123-124, 294, 297
non-Abelian gauge field, 506, 513
ghost, 514-515
massive gauge boson, 734, 742
unphysical bosons, 735, 742
in background field, 504
see also Feynman rules
Propagator, interaction picture, 84, see
also Time-evolution operator
Proper Lorentz transformation, 64
Proton, 197, 486, 475, 546, 564, 588, 622
form factors, 188, 208-209
decay, 647
see also Parton model, Parton distri-
bution functions
Pseudo-scalar, 50, 66, 71
Pseudo-vector, 50, 66, 71
Pseudoreal representation, 499
Pseudoscalar operators, 720
1 particles, 593-594

Q? (momentum transfer in deep inelas-
tic scattering), 477, 555
QCD (Quantum Chromodynamics),
139-140, 259260, 545-649, 677-678
use of perturbation theory in, 551-554
elementary processes of, 568-572
experimental tests of, 593-595
chiral symmetries of, 667676
strong-coupling regime, 547-548,
782-785
see also as, Parton model, Quarks,
Strong interactions
QED (Quantum Electrodynamics), 3,
78, 303, 482-486
scope of, 3
elementary processes of, 131-174
radiative corrections in, 175-210,
216-222, 244-258
scalar, 312
precision tests, 196-198
renormalization of, 318-320, 330-335,
344
evolution equations for, 586587
in d dimensions, 320-321
in two dimensions, 651-659, 791



QED, cont.
see also a, Cross section, Electro-
magnetic field, Gauge invariance,
Photon
Quadratic divergence in self-energy, 409,
525
Quantization
of Klein-Gordon field, 19-24
of Dirac field, 52-63
see also Functional quantization
Quantization, second, 19
Quantum Chromodynamics, see QCD
Quantum Electrodynamics, see QED
Quantum field theory, xi
necessity for, 13
domain of, 798-800
Quantum gravity, 402
Quantum mechanics, xx, 275-282
Quantum statistical mechanics, 312-314
Quark-gluon scattering, 572-573
Quark-quark potential, 782, 784
Quark-quark reactions, 568-573, 573,
596
Quarkonium, 152
decays, 593-594
spectra, 593-594, 785
Quarks, 127, 139-140, 473, 474, 476,
546-548, 559
masses of, 599-603, 670-671
number of in proton, 635
production in eTe™ annihilation,
139-140
weak interactions of, 428-429

R (ratio of hadronic to leptonic cross
sections), 141, 593-594, 622, see also
ete™ annihilation

R unit (annihilation cross section), 140,
809

R¢ gauges, 731-743

Radiative corrections, 9, 175-176, 256

see also QED, QCD, GWS theory

Raising and lowering operators, 497

Ralston, J., 597-598

Ramsey, N., 197

Range of Yukawa force, 122

Rapidity, 46, 565

Rapidity, longitudinal, 566
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Real representation, 498
Rearrangement identities, see Fierz
transformations
Reducibility of Dirac representation, 50
Reducible representation, 43, 498
Redundancy, in functional integration
over gauge fields, 295
Regularization, 194-195
effect on symmetries and conservation
laws, 248-249, 257, 654-655, 662,
679, 682, 686
see also Cutoff, Dimensional regular-
ization, Pauli-Villars regularization,
Infrared divergences
Relativistic invariance, 3, 35
Relativistic quantum mechanics, 13
Relativistic wave equations, 13
Relativistically invariant phase space,
106
Relativity, xix
Relevant operators, 402, 407, 443
Renormalizability, xv, 79-80, 265, 321—
323, 407
proof of, 417418
of non-Abelian gauge theories, 521,
738
Renormalizability gauges, 738
Renormalization, 211-222, 244-256,
315-345
and spontaneously broken symmetry,
347, 352-363, 383-388
of local operators, 428-432
beyond leading order, 335-345
Renormalization conditions, 325, 527,
532
for ¢4 theory, 325, 328, 408
for QED, 332
for linear sigma model, 355
for GWS theory, 711-712, 758-761
MS, 377, 391, 470, 593
at spacelike p, 407-410
Renormalization group, 401-406, 424-
428, 432-435
and critical exponents, 442-447
in QCD, 551-554, 599-615
Renormalization group equation, 420.
424-426, 786
see also Callan-Symanzik equation.
Running coupling constant
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Renormalization group flow, 401-406,
417, 422, 466
Renormalization group improvement of
perturbation theory, 453, 470, 552
Renormalization scale, 377-378, 407—
417, 440, 551, 593, 599, 682
Renormalized perturbation theory,
323-326, 330, 410
for ¢* theory, 323-330
for QED, 330-335
for non-Abelian gauge theories, 528,
531-533
see also Counterterms
Representations of Lie algebras, 497-502
rotation group, 38, 72
Lorentz group, 39-41
SU(3), 547
Repulsive force, 125-126
Rescaling, see Field strength renormal-
ization, v, Z
Resolution of electron structure, 583
Resolution of hadronic structure, 588,
647
Resonances, 101, 151, 237
in ete™ annihilation, 151, 621
see also Breit-Wigner formula
Retarded boundary conditions, 178
Retarded Green’s function, 30, 32, 62-63
Right-handed current, 51
Right-handed neutrino, 704, 715, 726
Right-handed particle, 6, 47
Right-handed spinors, 44
Right-moving fermions, 652
Roman indices, xix
Rosenbluth formula, 208-209
Rotation generators for fermions, 41,
60-61, 71-72
Rotation group, 38-40, 72
in N dimensions, see O(N)
Running coupling constant, 255-257,
404405, 420-422, 424-428
in ¢* theory, 422
in QED («), 255-257, 424
in nonlinear sigma model, 458-461
in QCD (as), 551-553, 593-596
see also Asymptotic freedom, 3, Fixed
point
Running mass parameter, 600-604
Rutherford scattering, 129-130, 155

s (Mandelstam variable), 156
3, t, @ (parton-level Mandelstam vari-
ables), 476, 557
s quark, decay of, 606-612
s(z) (local spin density), 271
s2 (definition of sin® 6,,), 763-772, 774
s¢ (definition of sin? fy,), 759
s2,, (definition of sin®f,,), 712, 759-772,
774
s-channel, 157
S-matrix, 102-115
relation to cross section, 106-107
in terms of Feynman diagrams, 114,
229, 324
relation to correlation functions,
227-229
in renormalized perturbation theory,
324
gauge invariance of, 297-298
see also Analytic properties of ampli-
tudes, Unitarity
S-wave, 147
Salam, A., 700
Scalar field, real, 15-33
complex, 33-34
elementary, 406
Scalar field theory, 321-322, 394-406,
432-468, see also ¢* theory
Scalar gluon (hypothetical), 596
Scalar non-Abelian gauge theory, 544
Scalar particle exchange, 121-123
Scalar QED, 80, 312
Scale invariance
classical description, 682-683
anomalous breaking, 682-686
Scale-dependent parameter, see Running
coupling constant
Scaling, see Bjorken scaling
Scaling behavior in magnets, 436-437
Scaling laws, in critical phenomena, 440
Scaling of two-point function, anoma-
lous, 427
Scattering, see Cross sections, S-matrix
Scattering amplitude (M), 5, 104
near resonance, 101
see also Analytic properties of ampli-
tudes, S-matrix
Scattering experiments, 99-100



Schrodinger equation, 84, 149, 153, 279,
503-504
Schrodinger picture, 20, 25, 283
Schrodinger wavefunction, xx, 149
Schur’s lemma, 50
Schwinger, J., 82, 189, 196, 492, 653
Schwinger-Dyson equations, 308-312
Screening, 255, 458, 541
Second quantization, 19
Second-order phase transition, 268-274
Selection rules of positronium, 76
Self-energy, see M2(p), X(p), [I*(q)
Semi-simple Lie algebra, 496
Semileptonic decay, 605
Shift of integration variable, 242, 299,
662
Short distance scales, effect on theory,
393-406
o (cross section), 100
o (field of linear sigma model), 350
o matrices, see Pauli sigma matrices
Sigma model, see Linear sigma model,
Nonlinear sigma model
ok, g (components of y#), 44
Y (p) (fermion self-energy), 216-222,
318-319, 331-333
in non-Abelian gauge theory, 528-529
sign convention for, 220
Sign of mass shifts, see M (p), X(p),
¥ (q)
Simple harmonic oscillator, 20, 313
Simple Lie algebra, 496
sin? 8y, 702, 705, 809
definitions of, 711-712, 759-760
measurements of, 711-713
see also GWS theory
Single-particle states, affected by inter-
actions, 109
Single-particle wave equations, 13, 35
Singularities of Feynman diagrams, 211,
164-167, 407
in QCD, 553-554, 574-575
see also Analytic properties of ampli-
tudes
SLAC-MIT experiments, 475, 478
Slash notation, 49
SO(4), 127
S0O(10), 681
SO(N), 497, see also O(N)
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Soft photons, 176
multiple, 202-207
Solitons, 367, 793-794
Sound waves, 266—267
Source, see Classical source
Sp(N), 497
Spacelike reference momenta, 407-408
Spacetime dimension, effect on scalar
field theory, 465-466
Spacetime formulation of perturbation
theory, 82
Spacetime geometry and topology, 402,
798-800
Spatially varying background field,
386-387
Specific heat, 441, 446
Spectator quarks, 555
Spectral density function, 214
Spectral representation of two-point
function, 214, 619
Spectroscopy of ¥, T, 593-594, 785
Spectrum of hadrons, 545-547
Spectrum of harmonic oscillator, 20
Spectrum of Klein-Gordon theory, 22
Speed of sound, 266
Sphere in d dimensions, 193, 249
Spin, 4, 38-40
of Dirac particle, 60-61
conservation of, 147
in magnetic systems, 266-267
of gluon, 596
Spin and statistics, 52-58, 514, 546-547
Spin chain, 792
Spin correlation function, 272-273, 293,
442
Spin density, 271, 389
Spin field, 293, 395, 440
Spin sums for fermions, 48-49
Spin-3/2 field, 795
Spin-wave theory, 389
Spinor (of Dirac theory), 41-49
for antifermions, 61
high-energy limit, 46-47, 144
nonrelativistic limit, 187
two-component (Weyl), 43-44, 68
Spinor (of SU(2)), 5, 45, 486, 501
Spinor products, 72-73, 170-171, 174
Splitting functions, see Altarelli-Parisi
equations
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Spontaneous symmetry breaking, 128,
347-363, 368, 383-388, 454, 460,
469-470, 474, 689-777, 786, 793-794

of chiral symmetry, 668-672

of supersymmetry, 797

and vacuum energy, 790

nonperturbative mechanisms, 698-700

see also Goldstone boson, GWS
theory, Higgs mechanism

Square bracket notation, 276

Standard model, 781, see also GWS
theory, QCD

Stationary phase, method of, 14

Statistical mechanics, 269-274, 440-451,
792-793

quantum, 312-314
see also Analogies to statistical me-
chanics, Critical exponents

Statistics and spin, 22, 52-58

Stokes’s theorem, 492

Stress-energy tensor, see Energy-
Momentum tensor

Strictly real representation, 499

String theory, 798-799

Strings, in describing strong interac-
tions, 784-785

Strong coupling regime, 405, 547-548,
552

Strong C'P problem, 726-727

Strong interactions, 64, 127, 139-140,
259-260, 347, 473-480, 545-598,
667-676

see also a5, QCD

Strongly coupled W bosons, 751

Strongly interacting particles, 139-141

Strongly ordered, 582-583

Structure constants, see fb¢

Structure functions, see Parton distribu-
tion functions

Structure of the electron, 583

SU(2), 34, 486, 496, 502, see also Isospin

SU(2) gauge theory, 494, 542-543

spontaneously broken, 694-696, 699—
700

SU(2) x SU(2), 127

SU(2) x U(1) theory, see GWS theory

SU(3), 502

SU(3) broken gauge theory, 696-697

SU(3) color symmetry, 545, 547

SU(3) flavor symmetry, 546, 670-671
SU(3) x SU(2) x U(1) theory, 781
SU(5), 728, 786
SU(N), 496-497, 502, 504, 687-688
group identities, 806
Subdiagrams, divergent, 316, 335
Subtraction of UV divergence, 195
Sudakov double logarithm, 184, 200,
202, 207-208, 407
Sudakov form factor, 207-208
Sum over paths, 276
Sum rules for distribution functions,
562-563
Sum rules
for parton distribution functions,
562-563, 590
for distribution functions in QED, 587
for eTe~ — hadrons, 620-621
for deep inelastic form factors, 634,
641-643
Summation convention, xix
Summation of logarithms, 452-453,
551, 575, 584-586, 635, see also
Exponentiation, Mass singularities
Sums over polarizations, see Polarization
Super-renormalizable interactions,
321-322, 402
Superconductivity, 470, 669, 692, 697
Superficial degree of divergence, 316-323
Superfluids, 267, 272, 437, 449-450
Superposition principle in quantum
mechanics, 94, 276
Superpotential, 75
Supersymmetry, 74, 789, 795-799
extended, 425, 796-797
Susceptibility, magnetic, 441, 446-447
Symanzik, K., 222, 411
symm lim, 655
Symmetric integration tricks, 251, 807
Symmetries, 17, 283, 306-312, 383, 800
more fundamental than Lagrangian,
249, 466
in presence. of divergences, 248-249,
347, 352-363, 383-388, 651-686
see also C, P, T, Gauge invariance,
Noether’s theorem, Lie algebras,
Spontaneous symmetry breaking
Symmetry current, see Current,
Noether’s theorem



Symmetry factors, see Feynman rules
Symmetry generators, see Lie algebras
Symplectic transformations, 497

t (Mandelstam variable), 156
t® (group representation matrices), 490,
498
identities for, 805-806
T (time reversal), 64, 67-69, 71, 75-76,
485, 720-727
T-matrix, 104, 109-112, 231
T® (group representation matrices on
real vectors), 693
Tc (critical temperature), 269-274
t-channel, 157 :
’t Hooft, G., 248, 479, 531, 662
't Hooft-Veltman definition of v°, 681
Tables
C, P, T transformations, 71
attractive/repulsive forces, 126
measurements of a, 198
analogies between magnetic system
and field theory, 367
values of critical exponents, 450
measurements of ag, 594
measurements of sin? 6y, 712
integrals in d dimensions, 807
Tadpole diagrams, 373
in QED, 317-318, 344
in linear sigma model, 355
in non-Abelian gauge theory, 522
7 lepton, 137-138, 473
decay, 594
Technicolor, 719, 789
Temperature, 267-274, 364, 441, 446—
447, 461 '
Tensor, 37
Tensor, energy-momentum, see Energy-
momentum tensor
Tensor notation, xix—xx
Tensor particle exchange, 126
Tensors built from Dirac fields, 49-52
Thermal fluctuations, 267
Thermodynamics of early universe, 469
6 function (step function), xx
8o (weak mixing angle), 759
6. (Cabibbo angle), 714

Index 839

0., (weak mixing angle), 702, see also
GWS theory, sin? 6,,
Thirring model, 791-792, 794
Thomson cross section. 163, 809
Three-body phase space. 260-261
Three-gauge-boson vertex, 507
Three-jet events, 261
Three-photon amplitude, QED, 318
Three-point function, see Correlation
functions
Three-vectors, xix
Threshold, 137-138, 146
see also Analytic properties of ampli-
tudes
Threshold of photon detection, 200-202,
207-208
Thresholds, effect on renormalization
group, 553
Tilde notation, xxi
Time-dependent perturbation theory, 82
Time-evolution operator, 84, 102, 275,
278-282
Time-ordered product, 31, 63, 85, 115,
307
Time reversal, see T
Timelike polarization, 161, 481, 732,
737, 741, 746
Tomonaga, S., 82
Top quark, 546, 747
decay of, 747-750
radiative corrections from, 712, 770-
772
prediction of mass, 772
Topology of vacuum states, 794
Total cross section, for identical parti-
cles, 108
tr (trace of matrix), 304
Tr (trace of operator), 304
Trace anomaly, 684-686, 688
Trace of Dirac matrices, 132-135, 805
Trajectory in space of Lagrangians, 401
Transition energies in hydrogen, 197-19&
Translations, 18
Transverse momentum, of pp collision
products, 475
Transverse polarization vectors, 124.
160, 804
Tree-level processes, 175
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Triangle diagrams, 661-664, 679, 705~
707, see also Adler-Bell-Jackiw
anomaly

Tube of gauge field, 548

Tuning of parameters, 267

Tunneling, 368-369

Twist, 631

Two-body phase space, 808

Two-component magnet, 438

Two-component spinors, 68

Two-dimensional model theories, 390-
391, 405, 454, 791-794

Two-dimensional QED, 651-659

Two-level system, in statistical mechan-
ics, 313

Two-loop diagrams, 336-345

double logarithms in, 314, 344
and renormalization group relations,
595-596
Two-point amplitude, 82, 214
analytic structure, 211-222
scaling behavior, 418-421
see also M?(p), X(p), I**(q)
Two-state model system, 57

u (Mandelstam variable), 156
U gauge, 691, 715, 723, 730, 738, 749
U(1), 496
U(1) charge, in GWS theory, 702-704
U (1) factors, and gravitational anomaly,
681
U(1) gauge theory, 482-486, 690-692,
732-734
U(1) symmetry, broken, 389
U(y, z) (comparator), 482-484, 487
u-channel, 157
Uehling potential, 255
Ultraviolet divergences, xii, 12, 80, 393
in zero-point energy, 21
in QED, 176, 193-195, 220-221, 248,
251-252, 318-320
in scalar field theory, 321-322
in ¢* theory, 324
in linear sigma model, 353-354
in GWS theory, 758, 764-765
effect upon shift of integration vari-
able, 242
classification of, 315

Ultraviolet divergences, cont.
in subdiagrams, 316
overlapping, 336
local vs. nonlocal, 337, 343-344, 386
effect on symmetries, 347, 352-363,
383-388
in Vog, 375
origin of, 265-266
viewpoint toward, 265-266
reinterpretation of, 398
Ultraviolet-stable fixed point, 427, 461
Unification of the fundamental interac-
tions, 347, 497, 786-791
with gravity, 787, 791, 798
Unified electroweak model, of Georgi
and Glashow, 696
Unified electroweak theory, see GWS
theory
Unitarity gauge, see U gauge
Unitarity of S-matrix, 231, 298, 520-
521, 679, 746
in broken gauge theories, 731, 738
limit on M, 750-751
see also BRST symmetry
Unitary implementation of Lorentz
transformations, 59
Unitary transformations, 496-497
Units, xix, xxi
Universality (in critical phenomena),
268, 272, 437, 447, 449, 466
classes, 273-274
Universality of coupling constants, 533,
717
Unphysical degrees of freedom, 124, 505,
508-512, 517, 520, 738, 743
cancellation of, 160-161, 298, 510, 520,
735-736
Unsolved problems, 781-800
Unstable particles, 236-237, see also
Decay rate
T particle, 141, 152, 593-594

V(z) (gauge transformation matrix), 486

Vacuum (ground state), 21-22, 82, 86,
368-369, 383

Vacuum bubble diagrams, 96-98, 113

Vacuum energy, 21, 98, 317, 790-791,
796-797



Vacuum expectation value, 348-350,
364, 372, see also Higgs field
Vacuum polarization, see II(¢?), IT*¥(g),
Iy
Vector boson, 173-174, 757-758
see also Gauge field, Higgs mechanism,
Photon, W, Z
Vector, built from Dirac fields, 50
Vector current, see Current
Vector meson, 150-153
Vector particle exchange, 125
Vector potential, xxi, 483
Veltman, M. J. G., 248, 662
Vertex, see Feynman rules
Vertex corrections, 175, 184-202, 529—
530
Violence
to discrete and flavor symmetries, 722
to gauge invariance, 656, 679
in high-energy behavior, 758
Virtual particles, 5, 113, 393-406, 479
almost real, 155, 209-210, 575
ete™ pairs, 245, 255
Viscosity, 266
Volume, transformation under boosts, 23

W boson, 428-429, 474, 559-560, 696,
701
mass, 710, 712, 762-764, 771-772, 809
decays, 728
in QCD corrections, 609
production in hadron collisions, 593—
594, 710
see also ete™ annihilation
W1, Wy (deep inelastic form factors),
625-634, 648-649
W3 (deep inelastic form factor), 648-649
Ward identity, 160-161, 186, 192, 238,
242, 245-251, 257, 316, 334, 481,
505, 616, 625
trick for proving, 239
violation by bad regulator, 248, 654
in non-Abelian gauge theories, 508—
511, 522, 679, 698, 705-706, 744
of GWS theory, 752
in string theory, 799
see also BRST symmetry, Unphysical
degrees of freedom
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Ward-Takahashi identity, 238-244, 297
for arbitrary symmetry, 311
and counterterm relations, 243, 311—
312, 334
Wave equations, relativistic, 13, 35
Wave-particle duality, 26
Wavefunction of a bound state, 148-153
Wavepackets, 102-103, 224-226
Weak coupling regime, 548
Weak interactions, 473-474, 700-719
at low energies, 428-429, 559-560,
605-606, 708-709
QCD enhancements to, 605-612
see also GWS theory
Weak mixing angle, see sin? 8,
Weak-interaction gauge theory, see GWS
theory
Weinberg, S., 202, 700
Weinberg’s nose, 729
Weizsicker-Williams distribution func-
tion, 174, 210, 579
Wess-Zumino term, 793
Weyl equations, 44
Weyl ordering, 281
Weyl representation, 41
Weyl spinors, 43
Wick rotation, 192-193, 292-293, 394,
807
Wick’s theorem, 88-90, 110, 115, 116.
288, 302
Width of a resonance, see Breit-Wigner
formula
Width of Z resonance, see Z boson
Wilczek, F., 479, 531
Wilson, K., 266, 393-394, 533, 547, 613
Wilson-Fisher fixed point, 405, 435, 439,
441, 445, 448-449, 454, 462, 466
Wilson line, 491-494, 504, 655-657, 783
Wilson loop, 492, 494, 503, 658, 783-784
Wilson’s approach to renormalization,
393-406
Wonderful trick, 619

x (kinematic variable in deep inelastic
scattering), 477-478, 557
& (correlation length), 272
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¢ (gauge parameter), 296-297, 505, 513,
526, 733
dependence of results on, 297, 526,
734-739, 773
¢ (longitudinal fraction of parton), 477,
555
¢ (spinor), 45, 68, 803—-804

y (kinematic variable in deep inelastic
scattering), 558, 561
y (longitudinal rapidity), 566
Y (rapidity), 565
Y (U(1) charge), 702-704
Yang-Mills Lagrangian, 489, 506
Yang-Mills theories, see Non-Abelian
gauge theories
Yennie gauge, 297
Yukawa coupling constant, 79
Yukawa potential, 121-123
Yukawa theory, 79, 116-123, 257, 329—
330
Feynman rules for, 118
renormalization of, 344-345

Yukawa theory, cont.
counterterms for, 408-409
3 functions of, 438

70 boson, 173, 474, 593, 701, 710-711
decay of, 594, 710, 712, 728
mass of, 593, 710, 712, 762-764
see also A£ R
Z (field-strength renormalization), 214
Z1 (QED vertex rescaling), 230, 331,
334-335
relation to Zag, 243
Z2, Z3, see Field-strength renormaliza-
tion
Z0, 429-430
Z[J] (generating functional), 290-292,
302, 365, 367, 394
Zero-point energy, 21, 790
Zero-point function, in QED, 317
Zeroth-order natural relations, 387,
389-390, 758, 774
in GWS theory, 759-766
Zimmermann, W., 222, 338
Zweig, G., 545
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